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Abstract : The tensor h = %Lg(b, L denotes the Lie derivative, plays a crucial
role to determine the nature of a (k, u)-contact metric manifold. The object of the
present paper is to study (k, p)-contact metric manifolds for which the tensor h is
parallel, recurrent and cyclically parallel. Three-dimensional (k, u)-contact metric
manifolds with n-recurrent Ricci tensor have been studied. Illustrative examples,
related to the results obtained in each section, are also given.
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1 Introduction

In [1], the authors introduced a class of contact metric manifolds for which
the characteristic vector field £ belongs to the (k, u)-nullity distribution for some
real numbers k and p. Such manifolds are known as (k, u)-contact metric man-
ifolds. The class of (k, p)-contact metric manifolds encloses both Sasakian and
non-Sasakian manifolds. Before Boeckx [2], two classes of non-Sasakian (k, u)-
contact metric manifolds were known. The first class consists of the unit tan-
gent sphere bundles of spaces of constant curvature, equipped with their natural
contact metric structure, and the second class contains all the three-dimensional
unimodular Lie groups, except the commutative one, admitting the structure of
a left invariant (k, u)-contact metric manifold [1-3]. A full classification of (k, u)-
contact metric manifolds was given by Boeckx [2]. (k, p)-contact metric manifolds
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are invariant under D-homothetic transformations. In [4], Sharma showed that if a
(k, u)-contact metric manifold admits a non-zero holomorphically planer conformal
vector field, then it is either Sasakian, or, locally isometric to E3 or E"T1 x S™(4).
Recently, in [5], the authors proved that a non-Sasakian contact metric manifold
with n-parallel torsion tensor 7 and sectional curvatures of plane sections con-
taining the Reeb vector field, different from 1 at some point, is a (k, p)-contact
manifold. The torsion tensor 7 was introduced by Chern and Hamilton [6]. In
particular, the authors of [5] also proved that for the standard contact metric
structure of the tangent sphere bundle the torsion tensor 7 is n-parallel if and only
if the manifold is of constant curvature. On a (k, u)-contact metric manifold the
tensor h defined by h = %ngb, L denotes the Lie derivative, plays an important
role to determine the nature of the manifold. For instance, the vanishing of h is
equivalent to £ being Killing and the manifold becomes K -contact. It is important
to note that n-parallelity of 7 need not imply the n-parallelity of h, unless ¢ is
n-parallel. In dimension three ¢ is n-parallel and hence the notion of n-parallelity
regarding h and 7 are equivalent. But this is not true for the manifolds of dimen-
sion greater than three [5]. Boeckx and Cho [7] introduced the notion of 7-parallel
h by taking the vector fields in the contact distribution D, say, where n(X) = 0,
for any arbitrary differentiable vector fields X € D on the manifold. But in this
paper we are concerned with the concept of parallel h by considering arbitrary
vector fields on the manifold. In this paper, we like to find necessary and suffi-
cient conditions for a (2n + 1)-dimensional (n > 1) (k, u)-contact metric manifold
M(n+1) to have the tensor h as parallel, recurrent and cyclically parallel.

Ricci tensor plays an important role to determine the nature of a contact
metric manifold. The notion of 7-parallel Ricci tensor was introduced by Kon [8]
in the context of Sasakian manifold. In this paper we like to generalize the notion
of n-parallel Ricci tensor and study (k, u)-contact metric manifolds of dimension
three with n-recurrent Ricci tensor. We also obtain some interesting corollaries.

After the introduction and preliminaries, we investigate the nature of a (2n +
1)-dimensional (n > 1) (k, p)-contact metric manifold, in Section 3, with h as
parallel, recurrent and cyclically parallel. In this section, we prove that with each of
these conditions the manifold becomes Sasakian. Three-dimensional (k, p)-contact
metric manifolds with n-recurrent Ricci tensor have been studied in Section 4 and it
is proved that in this case the manifolds are flat. In this section we also obtain some
interesting corollaries regarding three dimensional (k, 11)-contact metric manifolds.
Every section is followed by illustrative examples which are related to the results
obtained.

2 Preliminaries

Let M be a (2n + 1)-dimensional C'*°-differentiable manifold. The manifold
is said to admit an almost contact metric structure (¢,€,n,¢) if it satisfies the
following relations [9]:

P°X = —X +n(X)&n(€) =1,9(X,€) =n(X), (2.1)
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9(¢X,9Y) = g(X,Y) —n(X)n(Y), (2.3)

where ¢ is a tensor field of type (1,1), £ is a vector field, n is an 1-form and g is
a Riemannian metric on M. A manifold equipped with an almost contact metric
structure is called an almost contact metric manifold. An almost contact metric
manifold is called a contact metric manifold if it satisfies

9(X, 9Y) = dn(X,Y).

Given a contact metric manifold M (¢, &, n, g), we consider a (1,1) tensor field
h defined by h = %L5¢, where L denotes the Lie differentiation. h is a symmetric
operator and satisfies h¢p = —h. If A is an eigenvalue of h with eigenvector X, then
—\ is also an eigenvalue of h with eigenvector ¢.X. Again, we have trh = trph = 0,
and h§ = 0. Moreover, if V denotes the Riemannian connection of g, then the
following relation holds [1]:

Vi€ = —¢X — 6hX, (Vxn)¥ = g(X + hX, V). (2.4)

The vector field € is a Killing vector field with respect to g if and only if A = 0. A
contact metric manifold M (¢, &, n, g) for which ¢ is a Killing vector is said to be a
K-contact manifold. A K-contact structure on M gives rise to an almost complex
structure on the product M x R. If this almost complex structure is integrable,
the contact metric manifold is said to be Sasakian. Equivalently, a contact metric
manifold is said to be Sasakian if and only if

R(X,Y)§ =n(Y)X —n(X)Y

holds for all X,Y, where R denotes the Riemannian curvature tensor of the man-
ifold M. The (k, p)-nullity distribution of a contact metric manifold M (¢, &, n, g)
is a distribution [1]

N(k, ) : p — Np(k, p)
—{Z eT,(M): R(X,Y)Z = k(g(Y, Z)X — g(X, Z)Y)
+ u(g(Y, Z)hX — g(X, Z)hY)}, (2.5)

for any X,Y € T,M. Hence, if the characteristic vector field { belongs to the
(k, p)-nullity distribution, we have

R(X,Y)E = k[n(Y)X = n(X)Y]+ pn(Y)hX —n(X)hY]. (2.6)

A contact metric manifold with & belonging to (k, u)-nullity distribution is called
a (k, p)-contact metric manifold. If k¥ = 1, p = 0, then the manifold becomes
Sasakian [1]. In particular, if 4 = 0, then the notion of (k, x)-nullity distribution
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reduces to k-nullity distribution introduced by Tanno [10]. A contact metric man-
ifold with £ belonging to k-nullity distribution is known as N (k)-contact metric
manifold.

In a (2n+ 1)-dimensional (k, u)-contact metric manifold we have the following

[1]:

R = (k—1)¢* k<. (2.7)
(Vxo)(Y) =g(X +hX,Y)E —n(Y)(X + hX). (2.8)
Qo — ¢Q =2(2(n — 1) + p)ho. (2.9)

Also, for a contact metric manifold M?"+1(¢, ¢, n, g) with € € N(k, i), the Ricci
operator @ is given by [1]

QX =02n-1)—nu)X +[2(n—1)+ phX +[2(1 —n) +n(2k + p)n(X)E, n > 1.

(2.10)
S(X,Y)=[2(n—1) —nplg(X,Y) + [2(n — 1) + plg(hX,Y)
+[2(1 = ) + 02k + @n(X)m(Y), n > 1. (2.11)
S(X,€) = 2nkn(X), (2.12)
where S is the Ricci tensor of the manifold.
r=2n2n—2+k —nu), (2.13)

where r is the scalar curvature of the manifold. Also

(Vxh)Y = [(1 = k)g(X, oY) + g(X, hoY )€ + n(Y)h(X + ¢hX) — ;m(X)f(th-)
2.14

Lemma 2.1 ([11]). A contact metric manifold M>"*1(¢, &, n, g) with R(X,Y)¢ =
0, for all vector fields X,Y on the manifold and n > 1, is locally isometric to the
Riemannian product E"t1 x S™(4), and for n = 1 the manifold is flat.

Lemma 2.2 ([12]). Let M*"*1 be a contact metric manifold with harmonic cur-
vature tensor and & belonging to the (k, u)-nullity distribution. Then M is either

(i) an FEinstein Sasakian manifold, or,
(i1) an n-FEinstein manifold, or,

i) locally isometric to the Riemannian product E"t! x S™(4) including o flat
Y g
contact metric structure for n = 1.

Lemma 2.3 ([13]). Let M?® be a contact metric manifold with contact metric
structure (¢,&,m,g). Then the following conditions are equivalent:

(i) M3 is n—Einstein;
(ii) Qb = ¢Q.
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Lemma 2.4 ([13]). Let M? be a contact metric manifold with ¢Q = Q. Then
M? is locally ¢-symmetric if and only if the scalar curvature of the manifold is
constant.

In this connection we mention that a contact metric manifold is called 7-
Einstein if its Ricci tensor S satisfies

S(X,Y) =ag(X,Y)+ n(X)n(Y), (2.15)

where a and b are scalars, for all differentiable vector fields X, Y.

A contact metric manifold is called ¢-symmetric if its curvature tensor R
satisfies ¢?(Vw R)(X,Y)Z = 0, for the differentiable vector fields X,Y, Z, W. If
X,Y,Z, W are orthogonal to &, then it is called locally ¢-symmetric. The notion
of locally ¢-symmetric manifolds was introduced by Takahashi [14] in the context
of Sasakian manifolds.

3 (k,pu)-Contact Metric Manifolds with & as
Parallel, Recurrent and Cyclically Parallel

Definition 3.1. The tensor h on a (k, u)-contact metric manifold is called parallel
if it satisfies

9(Vxh)Y,Z) =0 (3.1)
for all differentiable vector fields on the manifold.

In view of (2.14), (3.1) yields
[(1=K)g(X, 9Y)+9(X, hoY)In(Z) +n(Y)g(h(¢X +hX), Z) — pn(X)g((phY), Z))-
(3.2
Putting Z = ¢ and using (2.2), we get from (3.2)
[(1 = k)g(X, ¢Y) + g(X, hoY)] = 0.
The above equation can be written as
(k= 1)g(X,0Y) = g(hX, ¢Y).

Replacing ¢Y by W in the above equation, we obtain

In the above equation putting X = W = ¢;, where {e;} is a orthonormal basis
of the tangent space at each point of the manifold, and taking summation over i,
i=1,2,3,...,2n+1, (n > 1), and using trh = 0, we obtain

2n+1)(k—1) =0.

Hence, k = 1. Consequently, the manifold is Sasakian.

Conversely, suppose that the manifold is Sasakian. Then &k = 1 and h = 0,
which trivially implies that g((Vxh)Y, Z) = 0. From the above discussion, we are
in a position to state the following:
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Theorem 3.2. The tensor h of a (2n + 1)-dimensional (n > 1) (k, p)-contact
metric manifold is parallel if and only if the manifold is Sasakian.

Definition 3.3. We call the tensor h of a (k, u)-contact metric manifold as recur-
rent if there exists an 1—form A on the manifold such that

9(Vxh)Y, Z) = A(X)g(hY, Z)

for all differentiable vector fields on the manifold. If the 1-form vanishes identically
on the manifold, then A is parallel.

Let us consider a (2n + 1)-dimensional (n > 1) (k, 1)-contact metric manifold
with recurrent h. By (2.2) and (2.14), we get for Z = ¢,

[(1=F)g(X,0Y) + g(X, héY)] = 0. (3.3)

As before, we get from the above equation & = 1. Consequently, h = 0. Hence,
the manifold is Sasakian. Conversely, if the manifold is Sasakian h is recurrent,
trivially. Thus, we can state the following:

Theorem 3.4. The tensor h of a (2n + 1)-dimensional (n > 1) (k, p)-contact
metric manifold is recurrent if and only if the manifold is Sasakian.

Definition 3.5. The tensor h of a (k, u)-contact metric manifold is called cyclically
parallel if it satisfies

g(Vxh)Y,Z)+g((Vyh)Z,X) + g((Vzh)X,Y) =0
for all differentiable vector fields on the manifold.

Let us consider a (2n + 1)-dimensional (n > 1) (k, 1)-contact metric manifold
satisfying cyclically parallel h. Then by (2.14), we get

0=1[(1-Fk)g(X,8Y)+ g(X,hoY)In(Z) + [(1 = k)g(Y, ¢Z) + g(Y, h¢Z)In(X)
+[(1 = k)g9(Z, ¢X) + 9(Z,h¢X)In(Y) + n(Y)g(h(¢X + ¢hX), Z)
— un(X)g(ohY, Z)n(Z)g(h(¢Y + ¢hY'), X) — un(Y)g(phZ, X)
+n(X)g(h(¢Z + ¢hZ),Y) — un(Z)g(phX,Y). (3.4)

Putting Z = £ we obtain from (3.4)
(1 k)g(X, 9Y) + 29(hX, $Y) — g(hX, hoY) + pg(hX,$Y) = .
In the above equation, replacing ¢Y by W, we get
(1 —-k)g(X, W)+ 29(hX, W) — g(hX,hW) 4+ pug(hX, W) = 0.

The above equation implies k = 1, for X = W = £. Consequently, the manifold is
Sasakian. The converse is trivial.
The above discussion leads us to state the following:



On (k, p)-Contact Metric Manifolds 591

Theorem 3.6. The tensor h of a (2n + 1)-dimensional (n > 1) (k,u)-contact
metric manifold is cyclically parallel if and only if the manifold is Sasakian.

From Theorem 3.2, Theorem 3.4 and Theorem 3.6, we conclude the following;:

Corollary 3.7. For a (2n+1)-dimensional (n > 1) (k, u)-contact metric manifold
the following conditions are equivalent:

(i) the manifold is Sasakian;
(i1) the tensor h is parallel;
(i11) the tensor h is recurrent;

(iv) the tensor h is cyclically parallel.

Remark 3.8. It is well known that for a Sasakian manifold h = 0. Hence, from
the above corollary, it follows that for a (2n + 1)-dimensional (n > 1) (k, p)-
contact metric manifold, there does not exist proper (h # 0) parallel, recurrent
and cyclically parallel h.

To verify the above results we give the following:

Example 3.9. Let M = {(z,y,2,u,v) € R® : (x,y,2,u,v) # (0,0,0,0,0)}, where
(x,y,z,u,v) are the standard coordinates in R®. The vector fields

0 0 0 0 0 0 0
61—2(y5—%), 62—28—y, 63—2&, 64—2(0&-&), 65—2%,

are linearly independent at each point of M. Let g be the metric defined by g(e;, e;) =
1 if i = j, otherwise 0. Here i and j varies from 1 to 5. Let n be the 1-form defined
by n(Z) = g(Z,e3) for any Z belongs to x(M). Let ¢ be the (1,1) tensor field
defined by de1 = —ea, @ea = e1, des = 0, @p(eq) = —es, d(e5) = eq. Then using
the linearity of ¢ and g we have

n(es) =1, ¢°Z = —Z +n(Z)es,

for any Z,2W € x(M). Thus for e3 = &, M(¢,&,n,9) defines an almost contact
metric manifold.

Let V be the Levi-Civita connection with respect to the metric g. Then we have
[e1, 2] = —2e3, [ea,e5] = —2e3 and [e;, e;] = 0, for all other i, j.

Taking es = & and using Koszul formula for the metric g, it can be easily
calculated that

Ve, e3 = €2, Ve,e3 = —e1, Ve,e3 = —eq,
Vesez = —e4, Ve e = —e3, V€0 = —ey,
Vese1 = e2, Veseqa = —e1, Ve eq = —e3,

V6365 = —€y4, V8465 = €3.
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and the remaining V., e; = 0.
From the above results it is easy to verify that M is a (k,p)-contact metric
manifold with k =1 and pu = 0. For a contact metric manifold we get

Vyé = —¢X — ¢hX.

Hence,
Ve €3 = —¢e1 — ghes.

The above equation gives es = es + hoey. Therefore, hge; = 0, that is, hes = 0.
Similarly we can prove that he; = hes = hey = hes = 0. Consequently, h =0 and
it is parallel, recurrent and cyclically parallel.

It is to be noted that the above example is compatible with Corollary 3.7 and
Remark 3.8.

4 (k,p)-Contact Metric Manifolds of Dimension
Three with n-Recurrent Ricci Tensor

Definition 4.1. The Ricci tensor of a three-dimensional (k, p)-contact metric
manifold M3 is called n-recurrent if there exists an 1—form A such that

(Vz9)(¢X,¢Y) = A(Z)S(¢X, ¢Y), (4.1)

where A is defined by ¢g(Z, p) = A(Z), p is a unit vector field and X,Y, Z are arbi-
trary differentiable vector fields on the manifold. If the 1-form vanishes identically
on the manifold, then the Ricci tensor is called n-parallel.

The notion of n-parallel Ricci tensor was introduced by Kon [8] in the context
of Sasakian manifold. From the definition, it follows that if the Ricci tensor is
n-parallel, then it is n-recurrent with A(Z) = 0, but the converse is not true, in
general. From (2.11), using (2.14) we get

(VzS)(X,Y) =[2(n—1) + p{[(1 = k)9(Z, ¢ X) + 9(Z, h¢ X)In(Y) (4.2)
+n(X)g(h(dZ + ¢hZ),Y) — un(Z)g(¢hX,Y)}
+2(1 = n) +n(2k + w)](Vzn)(X)n(Y) +n(X)(Vzn)(Y)).

From (4.2) we have
(Vz8)(9X,0Y) = —p[2(n — 1) + pn(Z)g(oho X, ¢Y). (4.3)
Let the Ricci tensor of M? is n-recurrent. Then by (2.11), (4.1) and (4.3), we get
—pl2(n—1)+un(Z)g(ohe X, ¢Y) = A(Z)[—pg(¢X, ¢Y) + pg(hd X, ¢Y)]. (4.4)
n (4.4), taking Z orthogonal to &( p) we get
HA(Z)g(¢X — ho X, ¢Y) = 0.
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The above equation yields u = 0. Hence, for n =1 (2.11) yields
S(X,Y) = 2kn(X)n(Y).

Let X,Y be orthogonal to &, then the above equation reduces to S(X,Y) = 0.
Putting X =Y =e;, i = 1,2, 3, where {e;} is an orthonormal basis of the tangent
space at each point of the manifold, we get, from the above equation r = 0.
Therefore, from (2.13), k = 0.

Thus, we have for a (k, 1)-contact metric manifold of dimension three with 7-
recurrent Ricci tensor R(X,Y)¢ = 0. Hence, by Lemma 2.1 we have the manifold
is flat.

Conversely, if the manifold is flat, then R(X,Y)Z = 0 and S(X,Y) = 0.
Hence, the Ricci tensor is trivially n-recurrent.

Now, we are in a position to state the following:

Theorem 4.2. A three-dimensional (k, u)-contact metric manifold has n-recurrent
Ricci tensor if and only if the manifold is flat.

For n =1 and p = 0, from (2.9) we obtain a three-dimensional (k, 1)-contact
metric manifold with n-recurrent Ricci tensor satisfies ¢QQ = Q¢.

Again, if a contact metric manifold of dimension three satisfies ¢QQ = Q¢, then
from Lemma 2.3 it follows that the manifold is an 7n-Einstein manifold. Hence,
from (2.15) and (2.2) we have

(VwS)(¢X,¢Y) = 0.

Hence, the Ricci tensor of the manifold is n-parallel. Consequently, it is 7-
recurrent. The above discussion helps us to state the following:

Theorem 4.3. A three-dimensional (k, 1)-contact metric manifold satisfies $Q =
Q¢ if and only if its Ricci tensor is n—recurrent.

From Theorem 4.2 and Theorem 4.3, we obtain the following:

Corollary 4.4. For a three-dimensional (k,u)-contact metric manifold the fol-
lowing conditions are equivalent:

(i) the manifold has n-recurrent Ricci tensor;
(i1) the manifold satisfies dQ = Qb;
(i1i) the manifold is flat.
Suppose the manifold satisfies ¢QQ = Q¢. Then by above corollary it is flat. If
a manifold is flat, then it is obviously locally ¢-symmetric. Hence, it is clear that
every three-dimensional (k, u)-contact metric manifold with ¢Q = Q¢ is locally

¢-symmetric.
Conversely, suppose that the manifold is locally ¢-symmetric. Then

#*(VwR)(X,Y)Z) =0
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for X,Y, Z, W orthogonal to £. The above equation yields

Putting X =U = e¢;, i = 1,2,3, where {¢;} is an orthonormal basis of the tangent
space at each point of the manifold, we get from the above equation

(Vi S)(Y, Z) = 0.

Replacing Y by ¢Y and Z by ¢Z, we get from the above equation (Vi S)(9Y, ¢Z) =
0. Therefore, the Ricci tensor is n-parallel, consequently, it is n—recurrent and by
Corollary 4.4 it satisfies ¢pQ = Q¢.

Now, we can state the following:

Corollary 4.5. A three-dimensional (k,p)-contact metric manifold is locally ¢-
symmetric if and only if it satisfies pQ = Q¢.

Remark 4.6. In the paper [13], the authors proved that a three-dimensional con-
tact metric manifold with ¢Q = Q¢ is locally ¢-symmetric if and only if the scalar
curvature of the manifold is constant. From Corollary 4.5 it is seen that the condi-
tion scalar curvature is constant is not required for (k, p)-contact metric manifolds.
Hence, we observe that our result improves the result of the paper [13] regarding
(k, u)-contact metric manifolds.

In the following we give an example.

Example 4.7. In the paper [1], the authors gave examples of (k, u)-contact metric
manifolds. In the similar way we construct the following example. Consider M =
{(z,y,2) € R3,(z,y,2) # (0,0,0)}, where (x,y, z) are the standard coordinates in
R3. Let M be generated by three linearly independent vector fields e1,es and es
satisfying

[62, 63] = 261, [63, 61] = C2€9, [61, 62] = C3€3. (45)

We take ca,c3 as real numbers. Let {w;} be the dual 1—form to the vector field
{ei}. Using (4.5) we get

dw(er, es) = —dwi (e, e2) =1 and dwq(e;,ej) =0

for others i, j. We take ey = £. Define the Riemannian metric by g(e;, e;) = 0;;. Let
pes = —eq, peg = e3. For g as an associated metric, we have ¢? = —I + w1 ® ey.
Hence M(¢,e1,w1,9) is a contact metric manifold. By Koszul formula we can
calculate the following:

Velel = 0; V€2€2 = 0; ve3€3 = Oa
V6162 =

Veael =

(c2+c3—2)es, Veyer = 5(c3 —ca —2)es, Ve, e3 = —3ea,
(2 —+ co — 63)62.

N[ D=
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The non-vanishing components of the curvature tensor of the manifold can be
calculated as

(c3 —c2)”

R(62,€1)61 = [1 — 4

]62 —|— (2 — Cy — Cg)heg,

_ (c3 —c2)”
R(eg,el)el = [1 — T

]63 + (2 —Co — C3)h€3.

Here k =1 — %, = 2—co — c3. In this example, if we choose co = —1
and cg = 3, then k = p = 0 and the manifold becomes flat. Consequently, by
Corollary 4.4 the manifold satisfies ¢Q = Q¢ and has n-recurrent Ricci tensor.
The manifold is locally ¢-symmetric also.
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