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Abstract : The tensor h = 1
2Lξφ, L denotes the Lie derivative, plays a crucial

role to determine the nature of a (k, µ)-contact metric manifold. The object of the
present paper is to study (k, µ)-contact metric manifolds for which the tensor h is
parallel, recurrent and cyclically parallel. Three-dimensional (k, µ)-contact metric
manifolds with η-recurrent Ricci tensor have been studied. Illustrative examples,
related to the results obtained in each section, are also given.
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1 Introduction

In [1], the authors introduced a class of contact metric manifolds for which
the characteristic vector field ξ belongs to the (k, µ)-nullity distribution for some
real numbers k and µ. Such manifolds are known as (k, µ)-contact metric man-
ifolds. The class of (k, µ)-contact metric manifolds encloses both Sasakian and
non-Sasakian manifolds. Before Boeckx [2], two classes of non-Sasakian (k, µ)-
contact metric manifolds were known. The first class consists of the unit tan-
gent sphere bundles of spaces of constant curvature, equipped with their natural
contact metric structure, and the second class contains all the three-dimensional
unimodular Lie groups, except the commutative one, admitting the structure of
a left invariant (k, µ)-contact metric manifold [1–3]. A full classification of (k, µ)-
contact metric manifolds was given by Boeckx [2]. (k, µ)-contact metric manifolds
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are invariant under D-homothetic transformations. In [4], Sharma showed that if a
(k, µ)-contact metric manifold admits a non-zero holomorphically planer conformal
vector field, then it is either Sasakian, or, locally isometric to E3 or En+1×Sn(4).
Recently, in [5], the authors proved that a non-Sasakian contact metric manifold
with η-parallel torsion tensor τ and sectional curvatures of plane sections con-
taining the Reeb vector field, different from 1 at some point, is a (k, µ)-contact
manifold. The torsion tensor τ was introduced by Chern and Hamilton [6]. In
particular, the authors of [5] also proved that for the standard contact metric
structure of the tangent sphere bundle the torsion tensor τ is η-parallel if and only
if the manifold is of constant curvature. On a (k, µ)-contact metric manifold the
tensor h defined by h = 1

2Lξφ, L denotes the Lie derivative, plays an important
role to determine the nature of the manifold. For instance, the vanishing of h is
equivalent to ξ being Killing and the manifold becomes K-contact. It is important
to note that η-parallelity of τ need not imply the η-parallelity of h, unless φ is
η-parallel. In dimension three φ is η-parallel and hence the notion of η-parallelity
regarding h and τ are equivalent. But this is not true for the manifolds of dimen-
sion greater than three [5]. Boeckx and Cho [7] introduced the notion of η-parallel
h by taking the vector fields in the contact distribution D, say, where η(X) = 0,

for any arbitrary differentiable vector fields X ∈ D on the manifold. But in this
paper we are concerned with the concept of parallel h by considering arbitrary
vector fields on the manifold. In this paper, we like to find necessary and suffi-
cient conditions for a (2n + 1)-dimensional (n > 1) (k, µ)-contact metric manifold
M (2n+1) to have the tensor h as parallel, recurrent and cyclically parallel.

Ricci tensor plays an important role to determine the nature of a contact
metric manifold. The notion of η-parallel Ricci tensor was introduced by Kon [8]
in the context of Sasakian manifold. In this paper we like to generalize the notion
of η-parallel Ricci tensor and study (k, µ)-contact metric manifolds of dimension
three with η-recurrent Ricci tensor. We also obtain some interesting corollaries.

After the introduction and preliminaries, we investigate the nature of a (2n +
1)-dimensional (n > 1) (k, µ)-contact metric manifold, in Section 3, with h as
parallel, recurrent and cyclically parallel. In this section, we prove that with each of
these conditions the manifold becomes Sasakian. Three-dimensional (k, µ)-contact
metric manifolds with η-recurrent Ricci tensor have been studied in Section 4 and it
is proved that in this case the manifolds are flat. In this section we also obtain some
interesting corollaries regarding three dimensional (k, µ)-contact metric manifolds.
Every section is followed by illustrative examples which are related to the results
obtained.

2 Preliminaries

Let M be a (2n + 1)-dimensional C∞-differentiable manifold. The manifold
is said to admit an almost contact metric structure (φ, ξ, η, g) if it satisfies the
following relations [9]:

φ2X = −X + η(X)ξ, η(ξ) = 1, g(X, ξ) = η(X), (2.1)
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φξ = 0, ηφ = 0, g(X, φY ) = −g(φX, Y ), g(X, φX) = 0, (2.2)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), (2.3)

where φ is a tensor field of type (1, 1), ξ is a vector field, η is an 1-form and g is
a Riemannian metric on M. A manifold equipped with an almost contact metric
structure is called an almost contact metric manifold. An almost contact metric
manifold is called a contact metric manifold if it satisfies

g(X, φY ) = dη(X, Y ).

Given a contact metric manifold M(φ, ξ, η, g), we consider a (1, 1) tensor field
h defined by h = 1

2Lξφ, where L denotes the Lie differentiation. h is a symmetric
operator and satisfies hφ = −φh. If λ is an eigenvalue of h with eigenvector X, then
−λ is also an eigenvalue of h with eigenvector φX. Again, we have trh = trφh = 0,

and hξ = 0. Moreover, if ∇ denotes the Riemannian connection of g, then the
following relation holds [1]:

∇Xξ = −φX − φhX, (∇Xη)Y = g(X + hX, φY ). (2.4)

The vector field ξ is a Killing vector field with respect to g if and only if h = 0. A
contact metric manifold M(φ, ξ, η, g) for which ξ is a Killing vector is said to be a
K-contact manifold. A K-contact structure on M gives rise to an almost complex
structure on the product M × R. If this almost complex structure is integrable,
the contact metric manifold is said to be Sasakian. Equivalently, a contact metric
manifold is said to be Sasakian if and only if

R(X, Y )ξ = η(Y )X − η(X)Y

holds for all X, Y, where R denotes the Riemannian curvature tensor of the man-
ifold M. The (k, µ)-nullity distribution of a contact metric manifold M(φ, ξ, η, g)
is a distribution [1]

N(k, µ) : p → Np(k, µ)

= {Z ∈ Tp(M) : R(X, Y )Z = k(g(Y, Z)X − g(X, Z)Y )

+ µ(g(Y, Z)hX − g(X, Z)hY )}, (2.5)

for any X, Y ∈ TpM. Hence, if the characteristic vector field ξ belongs to the
(k, µ)-nullity distribution, we have

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (2.6)

A contact metric manifold with ξ belonging to (k, µ)-nullity distribution is called
a (k, µ)-contact metric manifold. If k = 1, µ = 0, then the manifold becomes
Sasakian [1]. In particular, if µ = 0, then the notion of (k, µ)-nullity distribution
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reduces to k-nullity distribution introduced by Tanno [10]. A contact metric man-
ifold with ξ belonging to k-nullity distribution is known as N(k)-contact metric
manifold.

In a (2n+1)-dimensional (k, µ)-contact metric manifold we have the following
[1]:

h2 = (k − 1)φ2, k ≤ 1. (2.7)

(∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX). (2.8)

Qφ − φQ = 2(2(n − 1) + µ)hφ. (2.9)

Also, for a contact metric manifold M2n+1(φ, ξ, η, g) with ξ ∈ N(k, µ), the Ricci
operator Q is given by [1]

QX = [2(n− 1)− nµ]X + [2(n− 1)+ µ]hX + [2(1−n) + n(2k + µ)]η(X)ξ, n ≥ 1.

(2.10)

S(X, Y ) = [2(n − 1) − nµ]g(X, Y ) + [2(n − 1) + µ]g(hX, Y )

+ [2(1 − n) + n(2k + µ)]η(X)η(Y ), n ≥ 1. (2.11)

S(X, ξ) = 2nkη(X), (2.12)

where S is the Ricci tensor of the manifold.

r = 2n(2n− 2 + k − nµ), (2.13)

where r is the scalar curvature of the manifold. Also

(∇Xh)Y = [(1 − k)g(X, φY ) + g(X, hφY )]ξ + η(Y )h(φX + φhX) − µη(X)φhY.

(2.14)

Lemma 2.1 ([11]). A contact metric manifold M2n+1(φ, ξ, η, g) with R(X, Y )ξ =
0, for all vector fields X, Y on the manifold and n > 1, is locally isometric to the
Riemannian product En+1 × Sn(4), and for n = 1 the manifold is flat.

Lemma 2.2 ([12]). Let M2n+1 be a contact metric manifold with harmonic cur-
vature tensor and ξ belonging to the (k, µ)-nullity distribution. Then M is either

(i) an Einstein Sasakian manifold, or,

(ii) an η-Einstein manifold, or,

(iii) locally isometric to the Riemannian product En+1 × Sn(4) including a flat
contact metric structure for n = 1.

Lemma 2.3 ([13]). Let M3 be a contact metric manifold with contact metric
structure (φ, ξ, η, g). Then the following conditions are equivalent:

(i) M3 is η−Einstein;

(ii) Qφ = φQ.
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Lemma 2.4 ([13]). Let M3 be a contact metric manifold with φQ = Qφ. Then
M3 is locally φ-symmetric if and only if the scalar curvature of the manifold is
constant.

In this connection we mention that a contact metric manifold is called η-
Einstein if its Ricci tensor S satisfies

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (2.15)

where a and b are scalars, for all differentiable vector fields X, Y.

A contact metric manifold is called φ-symmetric if its curvature tensor R

satisfies φ2(∇W R)(X, Y )Z = 0, for the differentiable vector fields X, Y, Z, W. If
X, Y, Z, W are orthogonal to ξ, then it is called locally φ-symmetric. The notion
of locally φ-symmetric manifolds was introduced by Takahashi [14] in the context
of Sasakian manifolds.

3 (k, µ)-Contact Metric Manifolds with h as

Parallel, Recurrent and Cyclically Parallel

Definition 3.1. The tensor h on a (k, µ)-contact metric manifold is called parallel
if it satisfies

g((∇Xh)Y, Z) = 0 (3.1)

for all differentiable vector fields on the manifold.

In view of (2.14), (3.1) yields

[(1−k)g(X, φY )+g(X, hφY )]η(Z)+η(Y )g(h(φX+φhX), Z)−µη(X)g((φhY ), Z).
(3.2)

Putting Z = ξ and using (2.2), we get from (3.2)

[(1 − k)g(X, φY ) + g(X, hφY )] = 0.

The above equation can be written as

(k − 1)g(X, φY ) = g(hX, φY ).

Replacing φY by W in the above equation, we obtain

(k − 1)g(X, W ) = g(hX, W ).

In the above equation putting X = W = ei, where {ei} is a orthonormal basis
of the tangent space at each point of the manifold, and taking summation over i,

i = 1, 2, 3, ..., 2n + 1, (n > 1), and using trh = 0, we obtain

(2n + 1)(k − 1) = 0.

Hence, k = 1. Consequently, the manifold is Sasakian.
Conversely, suppose that the manifold is Sasakian. Then k = 1 and h = 0,

which trivially implies that g((∇Xh)Y, Z) = 0. From the above discussion, we are
in a position to state the following:
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Theorem 3.2. The tensor h of a (2n + 1)-dimensional (n > 1) (k, µ)-contact
metric manifold is parallel if and only if the manifold is Sasakian.

Definition 3.3. We call the tensor h of a (k, µ)-contact metric manifold as recur-
rent if there exists an 1−form A on the manifold such that

g((∇Xh)Y, Z) = A(X)g(hY, Z)

for all differentiable vector fields on the manifold. If the 1-form vanishes identically
on the manifold, then h is parallel.

Let us consider a (2n + 1)-dimensional (n > 1) (k, µ)-contact metric manifold
with recurrent h. By (2.2) and (2.14), we get for Z = ξ,

[(1 − k)g(X, φY ) + g(X, hφY )] = 0. (3.3)

As before, we get from the above equation k = 1. Consequently, h = 0. Hence,
the manifold is Sasakian. Conversely, if the manifold is Sasakian h is recurrent,
trivially. Thus, we can state the following:

Theorem 3.4. The tensor h of a (2n + 1)-dimensional (n > 1) (k, µ)-contact
metric manifold is recurrent if and only if the manifold is Sasakian.

Definition 3.5. The tensor h of a (k, µ)-contact metric manifold is called cyclically
parallel if it satisfies

g((∇Xh)Y, Z) + g((∇Y h)Z, X) + g((∇Zh)X, Y ) = 0

for all differentiable vector fields on the manifold.

Let us consider a (2n + 1)-dimensional (n > 1) (k, µ)-contact metric manifold
satisfying cyclically parallel h. Then by (2.14), we get

0 = [(1 − k)g(X, φY ) + g(X, hφY )]η(Z) + [(1 − k)g(Y, φZ) + g(Y, hφZ)]η(X)

+ [(1 − k)g(Z, φX) + g(Z, hφX)]η(Y ) + η(Y )g(h(φX + φhX), Z)

− µη(X)g(φhY, Z)η(Z)g(h(φY + φhY ), X) − µη(Y )g(φhZ, X)

+ η(X)g(h(φZ + φhZ), Y ) − µη(Z)g(φhX, Y ). (3.4)

Putting Z = ξ we obtain from (3.4)

(1 − k)g(X, φY ) + 2g(hX, φY ) − g(hX, hφY ) + µg(hX, φY ) = 0.

In the above equation, replacing φY by W, we get

(1 − k)g(X, W ) + 2g(hX, W )− g(hX, hW ) + µg(hX, W ) = 0.

The above equation implies k = 1, for X = W = ξ. Consequently, the manifold is
Sasakian. The converse is trivial.

The above discussion leads us to state the following:
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Theorem 3.6. The tensor h of a (2n + 1)-dimensional (n > 1) (k, µ)-contact
metric manifold is cyclically parallel if and only if the manifold is Sasakian.

From Theorem 3.2, Theorem 3.4 and Theorem 3.6, we conclude the following:

Corollary 3.7. For a (2n+1)-dimensional (n > 1) (k, µ)-contact metric manifold
the following conditions are equivalent:

(i) the manifold is Sasakian;

(ii) the tensor h is parallel;

(iii) the tensor h is recurrent;

(iv) the tensor h is cyclically parallel.

Remark 3.8. It is well known that for a Sasakian manifold h = 0. Hence, from
the above corollary, it follows that for a (2n + 1)-dimensional (n > 1) (k, µ)-
contact metric manifold, there does not exist proper (h 6= 0) parallel, recurrent
and cyclically parallel h.

To verify the above results we give the following:

Example 3.9. Let M = {(x, y, z, u, v) ∈ R5 : (x, y, z, u, v) 6= (0, 0, 0, 0, 0)}, where
(x, y, z, u, v) are the standard coordinates in R5. The vector fields

e1 = 2

(

y
∂

∂z
−

∂

∂x

)

, e2 = 2
∂

∂y
, e3 = 2

∂

∂z
, e4 = 2

(

v
∂

∂z
−

∂

∂u

)

, e5 = 2
∂

∂v
,

are linearly independent at each point of M. Let g be the metric defined by g(ei, ej) =
1 if i = j, otherwise 0. Here i and j varies from 1 to 5. Let η be the 1-form defined
by η(Z) = g(Z, e3) for any Z belongs to χ(M). Let φ be the (1, 1) tensor field
defined by φe1 = −e2, φe2 = e1, φe3 = 0, φ(e4) = −e5, φ(e5) = e4. Then using
the linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3,

for any Z, W ∈ χ(M). Thus for e3 = ξ, M(φ, ξ, η, g) defines an almost contact
metric manifold.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have
[e1, e2] = −2e3, [e4, e5] = −2e3 and [ei, ej ] = 0, for all other i, j.

Taking e3 = ξ and using Koszul formula for the metric g, it can be easily
calculated that

∇e1
e3 = e2, ∇e2

e3 = −e1, ∇e4
e3 = −e1,

∇e5
e3 = −e4, ∇e1

e2 = −e3, ∇e3
e2 = −e1,

∇e3
e1 = e2, ∇e3

e4 = −e1, ∇e5
e4 = −e3,

∇e3
e5 = −e4, ∇e4

e5 = e3.
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and the remaining ∇ei
ej = 0.

From the above results it is easy to verify that M is a (k, µ)-contact metric
manifold with k = 1 and µ = 0. For a contact metric manifold we get

∇Xξ = −φX − φhX.

Hence,
∇e1

e3 = −φe1 − φhe1.

The above equation gives e2 = e2 + hφe1. Therefore, hφe1 = 0, that is, he2 = 0.

Similarly we can prove that he1 = he3 = he4 = he5 = 0. Consequently, h = 0 and
it is parallel, recurrent and cyclically parallel.

It is to be noted that the above example is compatible with Corollary 3.7 and
Remark 3.8.

4 (k, µ)-Contact Metric Manifolds of Dimension

Three with η-Recurrent Ricci Tensor

Definition 4.1. The Ricci tensor of a three-dimensional (k, µ)-contact metric
manifold M3 is called η-recurrent if there exists an 1−form A such that

(∇ZS)(φX, φY ) = A(Z)S(φX, φY ), (4.1)

where A is defined by g(Z, ρ) = A(Z), ρ is a unit vector field and X, Y, Z are arbi-
trary differentiable vector fields on the manifold. If the 1-form vanishes identically
on the manifold, then the Ricci tensor is called η-parallel.

The notion of η-parallel Ricci tensor was introduced by Kon [8] in the context
of Sasakian manifold. From the definition, it follows that if the Ricci tensor is
η-parallel, then it is η-recurrent with A(Z) = 0, but the converse is not true, in
general. From (2.11), using (2.14) we get

(∇ZS)(X, Y ) = [2(n − 1) + µ]{[(1 − k)g(Z, φX) + g(Z, hφX)]η(Y ) (4.2)

+ η(X)g(h(φZ + φhZ), Y ) − µη(Z)g(φhX, Y )}

+ [2(1 − n) + n(2k + µ)]((∇Zη)(X)η(Y ) + η(X)(∇Zη)(Y )).

From (4.2) we have

(∇ZS)(φX, φY ) = −µ[2(n− 1) + µ]η(Z)g(φhφX, φY ). (4.3)

Let the Ricci tensor of M3 is η-recurrent. Then by (2.11), (4.1) and (4.3), we get

−µ[2(n− 1)+µ]η(Z)g(φhφX, φY ) = A(Z)[−µg(φX, φY )+µg(hφX, φY )]. (4.4)

In (4.4), taking Z orthogonal to ξ(6= ρ) we get

µA(Z)g(φX − hφX, φY ) = 0.
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The above equation yields µ = 0. Hence, for n = 1 (2.11) yields

S(X, Y ) = 2kη(X)η(Y ).

Let X, Y be orthogonal to ξ, then the above equation reduces to S(X, Y ) = 0.

Putting X = Y = ei, i = 1, 2, 3, where {ei} is an orthonormal basis of the tangent
space at each point of the manifold, we get, from the above equation r = 0.

Therefore, from (2.13), k = 0.

Thus, we have for a (k, µ)-contact metric manifold of dimension three with η-
recurrent Ricci tensor R(X, Y )ξ = 0. Hence, by Lemma 2.1 we have the manifold
is flat.

Conversely, if the manifold is flat, then R(X, Y )Z = 0 and S(X, Y ) = 0.

Hence, the Ricci tensor is trivially η-recurrent.
Now, we are in a position to state the following:

Theorem 4.2. A three-dimensional (k, µ)-contact metric manifold has η-recurrent
Ricci tensor if and only if the manifold is flat.

For n = 1 and µ = 0, from (2.9) we obtain a three-dimensional (k, µ)-contact
metric manifold with η-recurrent Ricci tensor satisfies φQ = Qφ.

Again, if a contact metric manifold of dimension three satisfies φQ = Qφ, then
from Lemma 2.3 it follows that the manifold is an η-Einstein manifold. Hence,
from (2.15) and (2.2) we have

(∇W S)(φX, φY ) = 0.

Hence, the Ricci tensor of the manifold is η-parallel. Consequently, it is η-
recurrent. The above discussion helps us to state the following:

Theorem 4.3. A three-dimensional (k, µ)-contact metric manifold satisfies φQ =
Qφ if and only if its Ricci tensor is η−recurrent.

From Theorem 4.2 and Theorem 4.3, we obtain the following:

Corollary 4.4. For a three-dimensional (k, µ)-contact metric manifold the fol-
lowing conditions are equivalent:

(i) the manifold has η-recurrent Ricci tensor;

(ii) the manifold satisfies φQ = Qφ;

(iii) the manifold is flat.

Suppose the manifold satisfies φQ = Qφ. Then by above corollary it is flat. If
a manifold is flat, then it is obviously locally φ-symmetric. Hence, it is clear that
every three-dimensional (k, µ)-contact metric manifold with φQ = Qφ is locally
φ-symmetric.

Conversely, suppose that the manifold is locally φ-symmetric. Then

φ2((∇W R)(X, Y )Z) = 0
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for X, Y, Z, W orthogonal to ξ. The above equation yields

g((∇W R)(X, Y )Z, U) = 0.

Putting X = U = ei, i = 1, 2, 3, where {ei} is an orthonormal basis of the tangent
space at each point of the manifold, we get from the above equation

(∇W S)(Y, Z) = 0.

Replacing Y by φY and Z by φZ, we get from the above equation (∇W S)(φY, φZ) =
0. Therefore, the Ricci tensor is η-parallel, consequently, it is η−recurrent and by
Corollary 4.4 it satisfies φQ = Qφ.

Now, we can state the following:

Corollary 4.5. A three-dimensional (k, µ)-contact metric manifold is locally φ-
symmetric if and only if it satisfies φQ = Qφ.

Remark 4.6. In the paper [13], the authors proved that a three-dimensional con-
tact metric manifold with φQ = Qφ is locally φ-symmetric if and only if the scalar
curvature of the manifold is constant. From Corollary 4.5 it is seen that the condi-
tion scalar curvature is constant is not required for (k, µ)-contact metric manifolds.
Hence, we observe that our result improves the result of the paper [13] regarding
(k, µ)-contact metric manifolds.

In the following we give an example.

Example 4.7. In the paper [1], the authors gave examples of (k, µ)-contact metric
manifolds. In the similar way we construct the following example. Consider M =
{(x, y, z) ∈ R3, (x, y, z) 6= (0, 0, 0)}, where (x, y, z) are the standard coordinates in
R3. Let M be generated by three linearly independent vector fields e1, e2 and e3

satisfying

[e2, e3] = 2e1, [e3, e1] = c2e2, [e1, e2] = c3e3. (4.5)

We take c2, c3 as real numbers. Let {ωi} be the dual 1−form to the vector field
{ei}. Using (4.5) we get

dω(e1, e2) = −dw1(e3, e2) = 1 and dw1(ei, ej) = 0

for others i, j. We take e1 = ξ. Define the Riemannian metric by g(ei, ej) = δij . Let
φe3 = −e2, φe2 = e3. For g as an associated metric, we have φ2 = −I + ω1 ⊗ e1.

Hence M(φ, e1, ω1, g) is a contact metric manifold. By Koszul formula we can
calculate the following:

∇e1
e1 = 0, ∇e2

e2 = 0, ∇e3
e3 = 0,

∇e1
e2 = 1

2 (c2 + c3 − 2)e3, ∇e2
e1 = 1

2 (c3 − c2 − 2)e3, ∇e1
e3 = − 1

2e2,

∇e3
e1 = 1

2 (2 + c2 − c3)e2.
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The non-vanishing components of the curvature tensor of the manifold can be
calculated as

R(e2, e1)e1 = [1 −
(c3 − c2)

2

4
]e2 + (2 − c2 − c3)he2,

R(e3, e1)e1 = [1 −
(c3 − c2)

2

4
]e3 + (2 − c2 − c3)he3.

Here k = 1 − (c3−c2)
2

4 , µ = 2 − c2 − c3. In this example, if we choose c2 = −1
and c3 = 3, then k = µ = 0 and the manifold becomes flat. Consequently, by
Corollary 4.4 the manifold satisfies φQ = Qφ and has η-recurrent Ricci tensor.
The manifold is locally φ-symmetric also.

Acknowledgement : The authors are thankful to Prof. U.C. De for his valuable
suggestions in the preparation of the paper.
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