www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

2-Absorbing and Weakly 2-Absorbing Submodules

Ahmad Yousefian Darani ${ }^{1}$ and Fatemeh Soheilnia
Department of Mathematics, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardebil, Iran e-mail : yousefian@uma.ac.ir, youseffian@gmail.com, soheilnia@gmail.com

Abstract

Let R be a commutative ring with a nonzero identity and let M be a unitary R-module. We introduce the concepts of 2 -absorbing and weakly 2-absorbing submodules of M and give some basic properties of these classes of submodules. Indeed these are generalizations of prime and weak prime submodules. A proper submodule N of M is called a 2-absorbing (resp. weakly 2-absorbing) submodule of M if whenever $a, b \in R, m \in M$ and $a b m \in N$ (resp. $0 \neq a b m \in N)$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. It is shown that the intersection of each distinct pair of prime (resp. weak prime) submodules of M is 2 -absorbing (resp. weakly 2 -absorbing). We will also show that if R is a commutative ring, M a cyclic R-module and N a 2 -absorbing submodule of M, then either (1) $M-\operatorname{rad} N=P$ is a prime submodule of M such that $P^{2} \subseteq N$ or (2) $M-\operatorname{rad} N=P_{1} \cap P_{2}, P_{1} P_{2} \subseteq N$ and $(M-\operatorname{rad} N)^{2} \subseteq N$ where P_{1}, P_{2} are the only distinct minimal prime submodules of N.

Keywords : 2-absorbing submodule; Weakly 2-absorbing submodule; Prime submodule; Weakly prime submodule; Weak prime submodule.
2010 Mathematics Subject Classification : 13A15; 13F05.

1 Introduction

Throughout this paper all rings are commutative with a nonzero identity and all modules are considered to be unitary. Prime ideals play an important role in

[^0]commutative ring theory. Let R be a commutative ring. Of course a proper ideal P of R is said to be a prime ideal if $a b \in P$ implies that $a \in P$ or $b \in P$ where $a, b \in R$. Anderson and Smith [1] studied the concept of weakly prime ideals of a commutative ring, where a proper ideal P of R is weakly prime if $a, b \in R$ and $0 \neq a b \in P$ imply that either $a \in P$ or $b \in P$. Another generalization of prime ideals is the concept of almost prime ideals. Let R be an integral domain. A proper ideal I of R is said to be almost prime provided that $a, b \in R$ with $a b \in I-I^{2}$ imply that $a \in I$ or $b \in I$ (see [2]). This definition can obviously be made for any commutative ring R. A number of generalizations of prime ideals in commutative rings can be found in [3].

Prime submodules play an important role in the module theory over commutative rings. Let M be a module over a commutative ring R. A prime (resp. primary) submodule N of M is a proper submodule N of M with the property that for $a \in R$ and $m \in M, a m \in N$ implies that $m \in N$ or $a \in\left(N:_{R} M\right)$ (resp. $a^{k} \in\left(N:_{R} M\right)$ for some positive integer $\left.k\right)$. In this case $P=\left(N:_{R} M\right)$ (resp. $\left.P=\sqrt{\left(N:_{R} M\right)}\right)$ is a prime ideal of R and we say that N is a P-prime (resp. P-primary) submodule of M. There are several ways to generalize the notion of prime submodules. We could restrict where $a m$ lies or we can restrict where a and/or b lie. We begin by mentioning some examples obtained by restricting where $a b$ lies. Weakly prime submodules were introduced by Ebrahimi Atani and Farzalipour in [4]. A proper submodule N of M is weakly prime if for $a \in R$ and $m \in M$ with $0 \neq a m \in N$, either $m \in N$ or $a \in\left(N:_{R} M\right)$. Behboodi and Koohi in [5] defined another class of submodules and called it weakly prime. This paper is on the basis of some recent papers devoted to this new class of submodules. Let R be a commutative and M an R-module. A proper submodule N of M is said to be weakly prime when for $a, b \in R$ and $m \in M, a b m \in N$ implies that $a m \in N$ or $b m \in N$. To avoid the ambiguity we call submodules introduced in [4] weak prime submodules and those introduced in [5], weakly prime submodule.

Badawi in [6] generalized the concept of prime ideals in a different way. He defined a nonzero proper ideal I of R to be a 2 -absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. This definition can obviously be made for any ideal of R. This concept has a generalization, called weakly 2 -absorbing ideals, which has studied in [7]. A proper ideal I of R to be a weakly 2 -absorbing ideal of R if whenever $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Anderson and Badawi [8] generalized the concept of 2 -absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of R is called an n-absorbing (resp., strongly n-absorbing) ideal if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$ (resp, $I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R), then there are n of the x_{i} 's (resp., n of the I_{i} 's) whose product is in I. In this paper, we generalize the two concepts of 2 -absorbing and weakly 2-absorbing ideals to submodules of a module over a commutative ring. Let M ba an R-module and N a proper submodule of $M . N$ is said to be a 2 -absorbing submodule (resp. weakly 2 -absorbing submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in N($ resp. $0 \neq a b m \in N)$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. A more general concept than 2 -absorbing submodules of M is the concept
of (n, k)-absorbing submodules. Suppose that k, n are two positive integers with $n>k$. A submodule N of M is called an (n, k)-absorbing submodule if whenever $a_{1}, a_{2}, \ldots, a_{n-1} \in R$ and $m \in M$ with $a_{1} a_{2} \cdots a_{n-1} m \in N$, then either there are k of a_{i} 's whose product is in $\left(N:_{R} M\right)$ or there are $k-1$ of a_{i} 's whose product with m lies in N. The concept of weakly (n, k)-absorbing submodules is defined in a similar way.

Here is a brief summary of the paper. In Theorem 2.3 we show that the intersection of each pair of distinct prime (resp. weak prime) submodules of M is 2 -absorbing (resp. weakly 2 -absorbing). Let R be a commutative ring, M an R-module and N a weakly 2 -absorbing submodule of M. In Theorem 2.5 we prove that if N is not 2-absorbing, then $\left(N:_{R} M\right)^{2} N=0$. In Theorem 2.10 we show that if R is a commutative a ring, M a cyclic R-module and N a 2 -absorbing submodule of M, then one of the following hold: (1) $M-\operatorname{radN}=P$ is a prime submodule of M such that $P^{2} \subseteq N$ or (2) $M-\operatorname{rad} N=P_{1} \cap P_{2}, P_{1} P_{2} \subseteq N$ and $(M-\operatorname{rad} N)^{2} \subseteq N$ where P_{1}, P_{2} are the only distinct minimal prime submodules of N.

2 Results

Proposition 2.1. Let M be a module over a commutative ring R and N a submodule of M.
(1) Prime submodules \Rightarrow weak prime submodules $\Rightarrow 2$-absorbing submodules.
(2) Weakly prime submodules \Rightarrow weakly 2 -absorbing submodules.
(3) 2-absorbing submodules \Rightarrow weakly 2-absorbing submodules.
(4) N is (n, k)-absorbing (resp. weakly (n, k)-absorbing) if and only if it is ($k+1, k$)-absorbing (resp. weakly $(k+1, k)$-absorbing).
(5) If N is (n, k)-absorbing (resp. weakly (n, k)-absorbing), then it is $\left(n, k^{\prime}\right)$ absorbing (resp. weakly (n, k^{\prime})-absorbing) for every positive integer $k^{\prime}>k$.
(6) N is a prime (resp. weak prime) submodule of M if and only if it is a $(2,1)$-absorbing (resp. weakly $(2,1)$-absorbing) submodule of M.
(7) N is a 2-absorbing (resp. weakly 2-absorbing) submodule of M if and only if it is a (3,2)-absorbing (resp. weakly (3,2)-absorbing) submodule of M.

Example 2.2. Let R be a commutative ring and M an R-module. By Proposition 2.1, every 2 -absorbing submodule is weakly 2 -absorbing but the converse does not necessarily hold. For example consider the case where $R=\mathbb{Z}, M=\mathbb{Z} / 30 \mathbb{Z}$ and $N=0$. Then 2.3. $(5+30 \mathbb{Z})=0 \in N$ while $2.3 \notin\left(N:_{R} M\right), 2 .(5+30 \mathbb{Z}) \notin N$ and $3 .(5+30 \mathbb{Z}) \notin N$. Therefore N is not 2-absorbing while it is weakly 2-absorbing.

Theorem 2.3. Let R be a commutative ring and let M an R-module.
(1) The intersection of each pair of distinct prime submodules of M is 2-absorbing.
(2) The intersection of each pair of distinct weak prime submodules of M is weakly 2-absorbing.

Proof. (1) Let N and K be two distinct prime submodules of M. Assume that $a, b \in R$ and $m \in M$ are such that $a b m \in N \cap K$ but $a m \notin N \cap K$ and $b m \notin N \cap K$. The case $a m \notin N$ and $b m \notin N$ leads us to a contradiction since N is prime. A similar argument is true for the case where $a m \notin K$ and $b m \notin K$ since K is prime. So assume that $a m \notin N$ and $b m \notin K$. Then from $a b m \in N$ and $a b m \in K$ we have $b \in\left(N:_{R} M\right)$ and $a \in\left(K:_{R} M\right)$. Hence $a b \in\left(N:_{R} M\right) \cap\left(K:_{R} M\right)=\left(N \cap K:_{R}\right.$ $M)$. Therefore $N \cap K$ is a 2 -absorbing submodule of M.
(2) The proof is completely similar to that of (1).

Lemma 2.4. Let R be a ring, M an R-module and N, K submodules of M with $K \subseteq N$. Then N is a 2-absorbing submodule of M if and only if N / K is a 2 -absorbing R-submodule of M / K.

Proof. Suppose first that N is a 2 -absorbing submodule of M and let $a, b \in R$ and $m \in M$ be such that $a b(m+K) \in N / K$. Then $a b m \in N$ and N 2-absorbing gives $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. Therefore $a b \in\left(N / K:_{R} M / K\right)$ or $a(m+k) \in N / K$ or $b(m+K) \in N / K$, that is N / K is a 2 -absorbing submodule of M / K. Conversely, assume that N / K is a 2 -absorbing submodule of M / K. Suppose that $a, b \in R$ and $m \in M$ are such that $a b m \in N$. Then we have $a b(m+K) \in N / K$. Therefore $a b \in\left(N / K:_{R} M / K\right)$ or $a(m+K) \in N / K$ or $b(m+K) \in N / K$ since N / K is 2-absorbing in M / K. Therefore $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. This implies that N is a 2 -absorbing submodule of M.

Let R be a commutative ring and M an R-module. By Proposition 2.1(2), every 2 -absorbing submodule of M is weakly 2 -absorbing. But the converse does not necessarily hold. For example consider the case where $R=\mathbb{Z}, M=\mathbb{Z} / 60 \mathbb{Z}$ and $N=\{0\}$. As N is weakly prime in M, it is weakly 2 -absorbing in M, but N is not 2-absorbing. The following result provides some condition under which a weakly 2 -absorbing submodule is 2 -absorbing.

Theorem 2.5. Let R be a commutative ring, M an R-module and N a weakly 2-absorbing submodule of M. If N is not 2-absorbing, then $\left(N:_{R} M\right)^{2} N=0$.

Proof. Assume that $\left(N:_{R} M\right)^{2} N \neq 0$. We will prove that N is 2 -absorbing. Let $a, b \in R$ and $m \in M$ be such that $a b m \in N$. If $a b c \neq 0$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$ since N is weakly 2 -absorbing. So assume that $a b m=0$. Assume first that $a b N \neq 0$, say $a b n_{0} \neq 0$ for some $n_{0} \in N$. Then $0 \neq a b n_{0}=$ $a b\left(m+n_{0}\right) \in N$. Since N is weakly 2 -absorbing we get $a b \in\left(N:_{R} M\right)$ or $a\left(m+n_{0}\right) \in N$ or $b\left(m+n_{0}\right) \in N$. Hence $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. Hence we may assume that $a b N=0$. If $\operatorname{am}\left(N:_{R} M\right) \neq 0$, then there exists $r_{0} \in\left(N:_{R} M\right)$ such that $a r_{0} m \neq 0$. Then $0 \neq a r_{0} m=a\left(b+r_{0}\right) m \in N$. Since N is weakly 2 -absorbing we have $a\left(b+r_{0}\right) \in\left(N:_{R} M\right)$ or $a m \in N$ or $\left(b+r_{0}\right) m \in N$. Therefore $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. So we can assume that $a m\left(N:_{R}\right.$ $M)=0$. Likewise we can assume that $b m\left(N:_{R} M\right)=0$. Since $\left(N:_{R} M\right)^{2} N \neq 0$,
there exist $a_{0}, b_{0} \in\left(N:_{R} M\right)$ and $x_{0} \in N$ with $a_{0} b_{0} x_{0} \neq 0$. If $a b_{0} x_{0} \neq 0$, then $0 \neq a b_{0} x_{0}=a\left(b+b_{0}\right)\left(m+x_{0}\right) \in N$ implies that $a\left(b+b_{0}\right) \in\left(N:_{R} M\right)$ or $a\left(m+x_{0}\right) \in N$ or $\left(b+b_{0}\right)\left(m+x_{0}\right) \in N$. Hence $a b \in\left(N:_{R} M\right)$ or am $\in N$ or $b m \in N$. So we can assume that $a b_{0} x_{0}=0$. Likewise we can assume that $a_{0} b_{0} m=0$ and $a_{0} b x_{0}=0$. Then from $0 \neq a_{0} b_{0} x_{0}=\left(a+a_{0}\right)\left(b+b_{0}\right)\left(m+x_{0}\right) \in N$ we get $\left(a+a_{0}\right)\left(b+b_{0}\right) \in\left(N:_{R} M\right)$ or $\left(a+a_{0}\right)\left(m+x_{0}\right) \in N$ or $\left(b+b_{0}\right)\left(m+x_{0}\right) \in N$. Therefore $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$, and so N is 2 -absorbing.

Let R be a commutative ring. An R-module M is called a multiplication module if for each submodule N of $M, N=I M$ for some ideal I of R. In this case we can take $I=(N: M)$ (see [9]).

Let R be a commutative ring and M an R-module. For a submodule N of M, if $N=I M$ for some ideal I of R, then we say that I is a presentation ideal of N. Note that it is possible that for a submodule N, no such presentation ideal exist. For example, assume that M is a vector space over an arbitrary field F with $\operatorname{dim}_{F} M \geq 2$ and let N be a proper subspace of M such that $N \neq 0$. Then M is finite length (so M is both Noetherian, Artinian and injective), but M is not multiplication and N has not any presentation. Clearly, every submodule of M has a presentation ideal if and only if M is a multiplication module. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then by [10, Theorem 3.4], the product of N and K is independent of presentations of N and K. Moreover, for $a, b \in M$, by $a b$, we mean the product of $R a$ and $R b$. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$ (see [10]).

A submodule N of an R-module M is called a nilpotent submodule if ($N:_{R}$ $M)^{k} N=0$ for some positive integer k (see [11]).

Corollary 2.6. Let R be a commutative ring and let M be an R-module. Assume that N is a weakly 2-absorbing submodule of M that is not 2-absorbing, then
(1) N is nilpotent.
(2) If M is a multiplication module, then $N^{3}=0$.

Proposition 2.7. Let R be a ring and M a faithful multiplication R-module. Let N be a weakly 2-absorbing submodule of M. If N is not 2-absorbing, then $N \subseteq M-r a d 0$.

Proof. Suppose that N is not 2-absorbing. By Theorem 2.5, $\left(N:_{R} M\right)^{2} N=0$. In this case we have $\left(N:_{R} M\right)^{3} \subseteq\left(\left(N:_{R} M\right)^{2} N:_{R} M\right)=\left(0:_{R} M\right)=0$ since M is faithful, so that $\left(N:_{R} M\right)^{3}=0$. If $a \in\left(N:_{R} M\right)$, then $a^{3}=0$ and hence $a \in \operatorname{sqrt0}$. So that $\left(N:_{R} M\right) \subseteq \sqrt{0}$ and therefore $N=\left(N:_{R} M\right) M \subseteq \sqrt{0} M=M-\operatorname{rad} 0$.

Theorem 2.8. Let R be a commutative ring and M a finitely generated, faithful multiplication R-module. If N a nonzero weakly 2-absorbing projective submodule of M. Then N is never 2-absorbing.

Proof. We first prove that $\left(0:_{R}\left(N:_{R} M\right)^{2} N\right)=\left(0:_{R} N\right)$. Clearly $\left(0:_{R} N\right) \subseteq$ $\left(0:_{R}\left(N:_{R} M\right)^{2} N\right)$. For the reverse containment, pick an element $a \in\left(0:_{R}\left(N:_{R}\right.\right.$ $\left.M)^{2} N\right)$. Since M is a multiplication module, $N=\left(N:_{R} M\right) M$. So it follows from $a\left(N:_{R} M\right)^{2} N=0$ that $a\left(N:_{R} M\right)^{3} \subseteq\left(0:_{R} M\right)=0$. So $a\left(N:_{R} M\right)^{3}=0$. Therefore $\left(0:_{R} M\right) \cap\left(N:_{R} M\right) \supseteq a\left(N:_{R} M\right)^{2}$. Let $\operatorname{Tr}(N)=\sum_{\phi \in \operatorname{Hom}_{R}(N, R)} \phi(N)$ be the trace ideal of N. Since N is projective, $\operatorname{Tr}(N)$ is a pure ideal of $R,\left(0:_{R}\right.$ $N)=\left(0:_{R} \operatorname{Tr}(N)\right)$ and $N=\operatorname{Tr}(N) N$ by [12, Proposition 3.30]. Hence

$$
\left(N:_{R} M\right)=\left(\operatorname{Tr}(N) N:_{R} M\right)=\operatorname{Tr}(N)\left(N:_{R} M\right) \subseteq \operatorname{Tr}(N) .
$$

Consequently $a\left(N:_{R} M\right)^{2} \subseteq \operatorname{Tr}(N) \cap\left(0:_{R} \operatorname{Tr}(N)\right.$. Since $\operatorname{Tr}(N)$ is a pure ideal of R, from [13], we get $\operatorname{Tr}(N) \cap\left(0:_{R} \operatorname{Tr}(N)\right)=0$. Therefore $a\left(N:_{R} M\right)^{2}=0$. By repeating this method, we will have $a\left(N:_{R} M\right)=0$, and hence therefore $a N=0$, that is $a \in\left(0:_{R} N\right)$. Thus $\left(0:_{R}\left(N:_{R} M\right)^{2} N\right) \subseteq\left(0:_{R} N\right)$. Therefore $\left(0:_{R}\left(N:_{R} M\right)^{2} N\right)=\left(0:_{R} N\right)$. Now if N is not 2-absorbing, then $N^{3}=0$. Then $\left(0:_{R} N\right)=\left(0:_{R} N^{3}\right)=R$ which is a contradiction.

Proposition 2.9. Let R be a commutative a ring, M a cyclic R-module and $N a$ submodule of M.
(1) N is a 2-absorbing submodule of M if and only if $\left(N:_{R} M\right)$ is a 2-absorbing ideal of R.
(2) If in addition M is faithful, then N is a weakly 2-absorbing submodule of M if and only if $\left(N:_{R} M\right)$ is a weakly 2-absorbing ideal of R.

Proof. (1) Let N ba a 2-absorbing submodule of M. Assume that $M=R m$ for some $m \in M$ and let $a b c \in\left(N:_{R} M\right)$ for some $a, b, c \in R$, but $a b \notin\left(N:_{R} M\right)$ and $b c \notin\left(N:_{R} M\right)$. There exist $r, s \in R$ such that $a b(r m) \notin N$ and $b c(s m) \notin N$. Now it follows from $a b c m \in N, a b m \notin N$ and $b c m \notin N$ that $a c \in\left(N:_{R} M\right)$ since N is 2-absorbing. Conversely, assume that $\left(N:_{R} M\right)$ is a 2-absorbing ideal of R and let $a b x \in N$ for some $a, b \in R$ and $m \in N$. There exists $c \in R$ with $x=r m$. Then $a b c \in\left(N:_{R} m\right)=\left(N:_{R} M\right)$ and $\left(N:_{R} M\right)$ weakly 2-absorbing gives $a b \in\left(N:_{R} M\right)$ or $a c \in\left(N:_{R} M\right)$ or $b c \in\left(N:_{R} M\right)$. Therefore $a b \in\left(N:_{R} M\right)$ or $a x \in N$ or $b x \in N$. Hence N is 2-absorbing.
(2) Let $0 \neq a b c \in\left(N:_{R} M\right)$ for some $a, b, c \in R$, but $a b \notin\left(N:_{R} M\right)$ and $b c \notin\left(N:_{R} M\right)$. Then $0 \neq a b c m \in N$ for otherwise $a b c m=0$ implies that $a b c \in\left(0:_{R} M\right)=0$, a contradiction. Now a similar argument as in the proof of part (1) will complete the proof.

Let N be a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted by $M-\operatorname{rad} N$, is defined in [14] to be the intersection of all prime submodules of M containing N. It is shown in [9, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad} N=\operatorname{Rad}\left(\left(N:_{R}\right.\right.$ M)) M.

Theorem 2.10. Let R be a commutative a ring, M a cyclic R-module and $N a$ 2 -absorbing submodule of M. Then one of the following hold:
(1) $M-\operatorname{rad} N=P$ is a prime submodule of M such that $P^{2} \subseteq N$.
(2) $M-\operatorname{rad} N=P_{1} \cap P_{2}, P_{1} P_{2} \subseteq N$ and $(M-\operatorname{rad} N)^{2} \subseteq N$ where P_{1}, P_{2} are the only distinct minimal prime submodules of N.

Proof. By Proposition 2.9, $\left(N:_{R} M\right)$ is a 2-absorbing submodule of M. It follows from [6, Theorem 2.4] that either $\operatorname{Rad}\left(\left(N:_{R} M\right)\right)=p$ is a prime ideal of R such that $p^{2} \subseteq\left(N:_{R} M\right)$ or $\operatorname{Rad}\left(\left(N:_{R} M\right)\right)=p_{1} \cap p_{2}, p_{1} p_{2} \subseteq\left(N:_{R} M\right)$, and $\operatorname{Rad}\left(\left(N:_{R} M\right)\right)^{2} \subseteq\left(N:_{R} M\right)$ where p_{1} and p_{2} are minimal prime ideals of $\left(N:_{R} M\right)$. If the former case holds, then since M is multiplication, we have $M-\operatorname{rad} N=\operatorname{Rad}\left(\left(N:_{R} M\right)\right) M=p M$ is a prime submodule of M by [9, Corollary 2.11, Theorem 2.12] and $(p M)^{2}=p^{2} M \subseteq\left(N:_{R} M\right) M=N$. Now assume that the latter case holds. Then, by [9, Corollary 2.11], $p_{1} M$ and $p_{2} M$ are minimal prime submodules of N and $M-\operatorname{radN}=\operatorname{Rad}\left(\left(N:_{R} M\right)\right) M=\left(p_{1} \cap p_{2}\right) M=$ $\left(p_{1}+\operatorname{ann}(M)\right) M \cap\left(p_{2}+\operatorname{ann}(M)\right) M=p_{1} M \cap p_{2} M$ by [9, Theorem 2.12]. Moreover $\left(p_{1} M\right)\left(p_{2} M\right)=\left(p_{1} p_{2}\right) M \subseteq\left(N:_{R} M\right) M=N$ and $(M-\operatorname{rad} N)^{2}=\left(\operatorname{Rad}\left(\left(N:_{R}\right.\right.\right.$ $M)) M)^{2}=\left(\operatorname{Rad}\left(\left(N:_{R} M\right)\right)\right)^{2} M \subseteq\left(N:_{R} M\right) M=N$.

Theorem 2.11. Let N be a p-primary submodule of a cyclic R-module. Then N is 2-absorbing if and only if $(p M)^{2} \subseteq N$.

Proof. Assume first that N is 2-absorbing. Since N is p-primary, it follows from [9, Theorem 2.12] that $M-\operatorname{radN}=p M$. Hence $(p M)^{2} \subseteq N$ by Theorem 2.10. Conversely, assume that $(p M)^{2} \subseteq N$ and let $a b m \in N$ for some $a, b \in R$ and $m \in M, a m \notin N$ and $b m \notin N$. Since N is p-primary, it follows that $a, b \in$ $\sqrt{\left(N:_{R} M\right)}=p$. Thus $a b \in p^{2} \subseteq\left(N:_{R} M\right)$. Therefore N is 2-absorbing.

Acknowledgement : The authors would like to thank the referee for his/her comments.

References

[1] D.D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003) 831-840.
[2] S.M. Bhatwadekar, P.K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005) 43-49.
[3] D.D. Anderson, M. Batanieh, Generalizations of prime ideals, Comm. Algebra 36 (2008) 686-696.
[4] S. Ebrahimi Atani, F. Farzalipour, On weakly prime submodules, Tamkang Journal of Mathematics 38 (3) (2007) 247-252.
[5] M. Behboodi, H. Koohi, Weakly prime modules, Vietnam J. Math. 32 (2) (2004) 185-195.
[6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417-429.
[7] A. Badawi, A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., To appear.
[8] D.F. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646-1672.
[9] Z.A. El-Bast, P.F. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755-779.
[10] R. Ameri, On the prime submodules of multiplication modules, Inter. J. Math. and Mathematical Sciences 27 (2003) 1715-1724.
[11] M.M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008) 4620-4642.
[12] C. Faith, Algebra: Rings, modules and categories I, Springer-Verlag, Berlin Heidelberg, New York, 1973.
[13] W.W. Smith, Projective ideals of finite type, Canad. J. Math. 21 (1969) 10571061.
[14] R.L. McCasland, M.E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986) 37-39.
(Received 21 November 2010)
(Accepted 8 June 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: yousefian@uma.ac.ir (A. Yousefian Darani)
 Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.

