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Abstract : The notion of Radical classes is introduced in [1]. We prove here some
useful equivalent conditions for a subclass of a fixed universal class to be a radical
class. We introduce the notion of Hoehnke radical and give some consequences of
Hoehnke radical and Kurosh-Amitsur radical.
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1 Introduction

The paper is concerned with generalizing some results in ring theory. In corre-
spondence to the Kurosh-Amitsur radical theory for associative rings, an abstract
concept of radical classes and radicals for semirings has been introduced and in-
vestigated in a series of publications [2–5] by Olson and several coauthors.

There are some definitions of radical class appearing in the semiring literature.
But we were looking for the definition given by Althani [1], who has introduced
the definition of radical class in a different way. Using [1], in this paper we give
some useful equivalent conditions for a subclass of a fixed universal class to be
a radical class. We also introduce the notion of Hoehnke radical and investigate
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some interrelationship between Kurosh-Amitsur radical and Hoehnke radical.

Some of the statements in this paper are more or less known from [6], but we
organize and prove them in a somewhat different way more appropriate for our
purposes.

2 Preliminaries

Throughout this paper, a semiring will be defined as follows: A semiring is a
set S together with two binary operations called addition (+) and multiplication
(·) such that (S, +) is a commutative monoid with identity element 0S; (S, ·) is
a monoid with identity element 1; multiplication distributes over addition from
either side and 0 is multiplicative absorbing element, that is, r0 = 0r = 0 for each
r ∈ S . A semiring S is commutative if (S, ·) is a commutative semigroup.

A subset I of a semiring S will be called an ideal of S if I is an additive
subsemigroup of (S, +), IS ⊆ I and SI ⊆ I. An ideal I of a semiring S is called
proper if and only if I 6= S and a proper ideal I of S is called maximal if and only
if there is no ideal J of S satisfying I ⊂ J ⊂ S. An ideal I of a semiring S will be
called subtractive (k-ideal) if for a ∈ I, a + b ∈ I, b ∈ S imply b ∈ I.

The k-closure I of an ideal I, defined by I = {s ∈ S / s+a ∈ I for some a ∈ I},
is an ideal of S as well. An ideal I of a semiring S is called a k-ideal(closed) if
I = I is true. We denote the set of all ideals of S by I(S) and the set of all
k-ideals by K(S). Note that the ideals defined in this way should be called more
precisely “semiring ideals”. This is of importance if (associative) rings occur in
semiring-theoretical investigations, since a ring S, considered as a semiring, may
have semiring ideals which are not “ring ideals” in the usual meaning. More
precisely, a semiring ideal I of S, is a ring ideal of S if and only if I = I holds, i.e.
if and only if I is a k-ideal of S. We denote I ⊲ S, a semiring ideal in S.

Each homomorphism φ : S → T of semirings corresponds to a congruence k of S
and the homomorphic image φ(S) is isomorphic to the semiring S/k of congruence
classes. In this paper we mainly use congruences that are determined by an ideal
I of S according to skIs

′ ⇔ there are

ai ∈ I satisfying s + a1 = s′ + a2.

In this case one usually denotes S/kI by S/I. Moreover, kI = kI and thus S/I =
S/I hold for all ideals I of S with the same k-closure I, S/I has always an absorbing
zero, namely the congruence class I = [a]I = [a]I determined by each a ∈ I. We
also mention that a semiring has in general much more congruences than those
determined by its ideals. For a last concept of this kind, let φ : S → T be a
surjective homomorphism for semirings which have a zero. Then φ is called a
semi-isomorphism and denoted by φ : S →̃ T if φ(0S) = 0T and φ−1(0T ) = 0S are
satisfied. We emphasize here that such a semi-isomorphism, despite of misleading
name, has in general very little in common with an isomorphism.

Convention: Throughout R 7→ S is a surjective homomorphism.
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Theorem 2.1 ([6]). Let S be a semiring, T a semiring with an absorbing zero
0T , and φ : S → T a surjective homomorphism. Then K = φ−1(0T ) is a k-ideal
of S (also called the kernel of φ ) and φ([s]K) = φ(s) for all s ∈ S defines a
semi-isomorphism φ : S/K →̃ T which satisfies φ ◦ kK

# = φ, where kK
# denotes

the natural homomorphism of S onto S/K = S/kK .

Theorem 2.2 ([6]). For a semiring S with an absorbing zero 0, let S be a sub-
semiring which contains 0 and B an ideal of S. Then φ([a]A∩B) = [a]B for all
a ∈ A ⊆ A + B defines a semi-isomorphism

φ : A/A ∩ B →̃ A + B/B.

Theorem 2.3 ([6]). Let A, B be ideals of a semiring S with the additional con-
dition A ⊆ B. Then φ([s]B) = [[s]A]B/A for all s ∈ S defines an isomorphism

φ : S/B → (S/A)/(B/A).

Definition 2.4 ([1]). Let R be a class of semirings. A semiring (ideal) belonging
to the class R, will be called a R-semiring (R-ideal).

Definition 2.5 ([1]). A class R of semirings is called a radical class whenever the
following three conditions are satisfied:

(a) R is homomorphically closed; i.e. if S is a homomorphic image of a R-
semiring R then S is also a R-semiring.

(b) Every semiring R contains a R-ideal R(R) which in turn contains every
other R-ideal of R.

(c) The factor semiring R/R(R) does not contain any nonzero R-ideal; i.e.
R(R/R(R)) = 0.

Proposition 2.6. Assuming conditions (a) and (b) on a class R of semirings,
condition (c) is equivalent to
(c′) If I is an ideal of the semiring R and if both I and R/I are in R, then R itself
is in R.

Proof. (c) =⇒ (c′) follows by [6, Theorem 1.3]. Conversely, suppose that (c’) holds.
If R(R/R(R)) = K/R(R) 6= 0 for some ideal K of R, then K ∈ R by (c’). Thus
K ⊂ R(R) and K/R(R) = 0, a contradiction to the fact that R(R/R(R)) 6= 0 .
Hence (c).

R is closed under extensions if R satisfies (c’).

Proposition 2.7. Assuming conditions (a) and (c′) on a class R of semirings,
condition (b) is equivalent to
(b′) If I1 ⊂ I2 ⊂ · · · ⊂ Iλ ⊂ . . . is an ascending chain of ideals of a semiring R
and if each Iλ is in R, then

⋃
Iλ is in R.
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Proof. Suppose that (b) holds and B =
⋃

Iλ.Therefore B = R(B) is in R and
hence the if part. Conversely, assume that (b′) holds. Then we can apply Zorn’s
lemma and obtain a maximal R-ideal B of R. If K is an R ideal of R, then
B +K/K is in R by (a). Thus both K and B + K/K are in R and by (c′) B + K
is in R. Since B is maximal with respect to this property, K must be in B and
thus R(R) = B which is in R.

R has inductive property if R satisfies (b’).

Theorem 2.8. A non-empty sub class R of a universal class U is a radical class
if and only if

a) R is homomorphically closed.

b′) R has the inductive property.

c′) R is closed under extensions.

Theorem 2.9. For any subclass R of a fixed universal class U, the following
conditions are equivalent

I. R is a radical class.

II. (R1) If R ∈ R then every R 7→ S 6= 0 there is a I ⊳ S such that 0 6= I ∈ R.

(R2) If R is a semiring of a universal class U and for every R 7→ S 6= 0
there is a I ⊳ S such that 0 6= I ∈ R, then R ∈ R.

III. R satisfies condition (R1), has the induction property and closed under ex-
tensions.

3 Examples

3.1 Köthes Nil Radical

N = {A : ∀a ∈ A ∃n ≥ 1, n depending on a such that an = 0},

i.e. N is a class of all nil semirings. Then N is a radical class called the Nil radical
class, usually denoted by N (A).

3.2 Von-Neumann Radical

A semiring is said to be Von - Neumann regular if for every a ∈ A a = aba ∀ b ∈
A or a ∈ aAa. The class

V = {A : A is Von-Neumann regular} = {a ∈ A : a = aba ∀b ∈ A}

is a radical class.
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4 Hoehnke Radical

From an axiomatic point of view a radical R may be defined as an assignment
R : R −→ R(R) designating a certain ideal R(R) to each semiring R. Such an
assignment R is called Hoehnke radical if

i) f(R(R)) ⊆ R(f(R)) for every homomorphism f : R 7→ R(R).

ii) R(R/R(R)) = 0, for every semiring R.

A Hoehnke radical R may also satisfy the following conditions:

iii) R is complete: If I � R and R(I) = I then I ⊆ R(I).

iv) R is idempotent: R(R(R)) = R(R), for every semiring R.

Theorem 4.1. If R is a Kurosh-Amitsur radical then the assignment A → R(R)
is a complete, idempotent, Hoehnke radical. Conversely, if R is a complete,
idempotent, Hoehnke radical, then there is a Kurosh-Amitsur radical ℘ such that
R(R) = ℘(R) for every semiring R. Moreover ℘ = {R : R(R) = R}.

Proof. If part is immediate. Conversely, assume that R is a complete, idempotent,
Hoehnke radical and define the class ℘ by ℘ = {R : R(R) = R}. Claim that ℘ is
a Kurosh-Amitsur radical class such that R(R) = ℘(R) for every semiring R.

Let R be in ℘ and φ : R → S be a surjective homomorphism. Then by (i)
S = φ(R) = φ(R(R)) ⊆ R(φ(R)) = R(S). Therefore R(S) = S ∈ ℘. This gives
us condition (a) for ℘. For every semiring R, ℘(R) = {I � R : I ∈ ℘} = {I � R :
R(I) = I}. If I � R and R(I) = I, then I ⊆ ℘(R) and by (iii) I ⊆ R(℘(R)).
Therefore ℘(R) ⊆ R(R)) ⊆ ℘(R). Shows that ℘(R) = R(R) and hence ℘(R) ∈ ℘.
Hence condition (b) for ℘.

Also ℘(R) = R(℘(R)) and by completeness property (iii), ℘(R) ⊆ R(R). But
by idempotentness property (iv), R(R(R)) = R(R),implies that R(R) = ℘(R) for
all semirings R. Moreover ℘(A/℘(R)) = (R/R(R)) = 0. Hence the theorem.
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