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Abstract : In this paper we apply the generalized de la Vallée-Pousin mean to
prove some Korovkin type approximation theorems. We also show by an example
that there is a sequence of linear operators for which the Korovkin theorem does
not hold but our theorem holds. Finally, we apply regular matrices in proving
these theorems.
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1 Introduction and Preliminaries

Let λ = (λn) be a non-decreasing sequence of positive numbers tending to ∞
such that

λn+1 ≤ λn + 1, λ1 = 0.

The generalized de la Vallée-Pousin mean is defined by

tn(x) =:
1

λn

∑

j∈In

xj

where In = [n− λn + 1, n].
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A sequence x = (xj) is said to be (V, λ)-summable to a number ℓ (see [1]) if

tn(x) → ℓ as n→ ∞.

In this case ℓ is called the λ-lim x. If λn = n then (V, λ)-summablity is reduced to
the Cesàro summability.

Remark 1.1. It is observed that if a sequence is convergent to a number ℓ, then
it is also (V, λ)-summable to the same number ℓ but the converse need not be true.
For example, let the sequence z = (zn) be defined by

zn =

{

(−1)n, if λn = n ∈ N;
0, otherwise.

Then x is (V, λ)-summable to 0 but not convergent.

In this paper, we generalize the results of Mursaleen [2] by using the concept of
(V, λ)-summability. Further we apply regular matrices to get more general results.
The classical Korovkin approximation theorem states as follows (see [3–5]): Let
(Tn) be a sequence of positive linear operators from C[a, b] into C[a, b]. Then
limn ‖Tn(f, x) − f(x)‖∞ = 0, for all f ∈ C[a, b] if and only if limn ‖Tn(fi, x) −
fi(x)‖∞ = 0, for i = 0, 1, 2, where f0(x) = 1, f1(x) = x and f2(x) = x2.

2 Main Results

The following is the (V, λ)-summability version of the classical Korovkin ap-
proximation theorem followed by an example to show its importance.

Let C[a, b] be the space of all functions f continuous on [a, b]. We know that
C[a, b] is a Banach space with norm ||f ||∞ := supa≤x≤b |f(x)|, f ∈ C[a, b]. Suppose
that Tn : C[a, b] → C[a, b]. We write Tn(f, x) for Tn(f(t), x) and we say that T is
a positive operator if T (f, x) ≥ 0 for all f(x) ≥ 0.

Throughout the paper we consider the function f to be continuous on [a, b]
and at the end points.

Theorem 2.1. Let (Tk) be a sequence of positive linear operators from C[a, b] into
C[a, b]. Then for any function f ∈ C[a, b] bounded on the whole real line, we have

λ− lim
n

||Tn(f, x) − f(x)||∞ = 0. (2.1)

if and only if

λ− lim
n

||Tn(1, x) − 1||∞ = 0, (2.2)

λ− lim
n

||Tn(t, x) − x||∞ = 0, (2.3)

λ− lim
n

||Tn(t2, x) − x2||∞ = 0. (2.4)
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Proof. Since each 1, x, x2 belongs to C[a, b], conditions (2.2)-(2.4) follow immedi-
ately from (2.1). Since f ∈ C[a, b] and f is bounded on the whole real line, we
have

|f(x)| ≤M, −∞ < x <∞.

Therefore,

|f(t) − f(x)| ≤ 2M, −∞ < t, x <∞. (2.5)

Also, since f ∈ C[a, b] we do have that f is continuous on [a, b], i.e.

|f(t) − f(x)| < ǫ, ∀ |t− x| < δ. (2.6)

Using (2.5), (2.6) and putting ψ(t) = (t− x)2, we get

|f(t) − f(x)| < ǫ+
2M

δ2
ψ, ∀ |t− x| < δ.

This means

−ǫ−
2M

δ2
ψ < f(t) − f(x) < ǫ+

2M

δ2
ψ.

Now we could apply Tn(1, x) to this inequality since Tn(f, x) is monotone and
linear. Hence,

Tn(1, x)

(

−ǫ−
2M

δ2
ψ

)

< Tn(1, x) (f(t) − f(x)) < Tn(1, x)

(

ǫ+
2M

δ2
ψ

)

.

Note that x is fixed and so f(x) is constant number. Therefore,

− ǫTn(1, x) −
2M

δ2
Tn(ψ, x) < Tn(f, x) − f(x)Tn(1, x) < ǫTn(1, x) +

2M

δ2
Tn(ψ, x).

(2.7)
But,

Tn(f, x) − f(x) = Tn(f, x) − f(x)Tn(1, x) + f(x)Tn(1, x) − f(x)

= [Tn(f, x) − f(x)Tn(1, x)] + f(x)[Tn(1, x) − 1]. (2.8)

Using (2.7) and (2.8), we have

Tn(f, x) − f(x) < ǫTn(1, x) +
2M

δ2
Tn(ψ, x) + f(x)(Tn(1, x) − 1). (2.9)

Now, let us estimate Tn(ψ, x),

Tn(ψ, x) = Tn((t− x)2, x) = Tn(t2 − 2tx+ x2, x)

= Tn(t2, x) − 2xTn(t, x) + x2Tn(1, x)

= [Tn(t2, x) − x2] − 2x[Tn(t, x) − x] + x2[Tn(1, x) − 1].
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Using (2.9), we get

Tn(f, x) − f(x) < ǫTn(1, x) +
2M

δ2
{[Tn(t2, x) − x2] − 2x[Tn(t, x) − x]

+ x2[Tn(1, x) − 1]} + f(x)(Tn(1, x) − 1)

= ǫ[Tn(1, x) − 1] + ǫ+
2M

δ2
{[Tn(t2, x) − x2] − 2x[Tn(t, x) − x]

+ x2[Tn(1, x) − 1]} + f(x)(Tn(1, x) − 1).

Since ǫ is arbitrary we can write

||Tn(f, x) − f(x)||∞ ≤

(

ǫ+
2Mb2

δ2
+M

)

||Tn(1, x) − 1||∞ +
4Mb

δ2
||Tn(t, x) − x||∞

+
2M

δ2
||Tn(t2, x) − x2||∞. (2.10)

Now replacing Tn(t, x) by Bk(t, x) = 1
λk

∑

n∈Ik
Tn(t, x), taking the limit as k → ∞

on both sides of (2.10) and using conditions (2.2), (2.3) and (2.4), we get

λ− lim
n

||Tn(f, x) − f(x)||∞ = 0.

This completes the proof of the theorem.

In the following we give an example of a sequence of positive linear operators
satisfying the conditions of Theorem 2.1 but does not satisfy the conditions of the
Korovkin theorem.

The following example shows that our Theorem 2.1 deals even with those
sequences which do not satisfy the conditions of the classical Korovkin theorem.

Example 2.2. Consider the sequence of classical Bernstein polynomials

Bn(f, x) :=
n

∑

k=0

f
(n

k

)

(n
k )xk(1 − x)n−k; 0 ≤ x ≤ 1.

Let the sequence (Pn) be defined by Pn : C[0, 1] → C[0, 1] with Pn(f, x) =
(1+ zn)Bn(f, x), where zn is defined as above. Then

Bn(1, x) = 1, Bn(t, x) = x, Bn(t2, x) = x2 +
x− x2

n
,

and the sequence (Pn) satisfies the conditions (2.2), (2.3) and (2.4). Hence we
have

λ− lim
n

||Pn(f, x) − f(x)||∞ = 0.

On the other hand, we get Pn(f, 0) = (1+ zn)f(0), since Bn(f, 0) = f(0),
and hence

||Pn(f, x) − f(x)||∞ ≥| Pn(f, 0) − f(0) |= zn | f(0) | .

We see that (Pn) does not satisfy the classical Korovkin theorem, since lim supn→∞ zn

does not exist.
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Next we study a Korovkin type theorem for a sequence of positive linear op-
erators on Lp[a, b] by using the generalized de la Vall ée-Pousin mean.

Theorem 2.3. Let (Tn) be the sequence of positive linear operators Tn : Lp[a, b] →
Lp[a, b] and let the sequence {||Tn||} be uniformly bounded. If

λ− lim
n

||Tn(1, x) − 1||Lp
= 0,

λ− lim
n

||Tn(t, x) − x||Lp
= 0,

and

λ− lim
n

||Tn(t2, x) − x2||Lp
= 0.

Then for any function f ∈ Lp[a, b], we have

λ− lim
n

||Tn(f, x) − f(x)||Lp
= 0.

Remark 2.4. We can reformulate the above theorem under the same hypothesis
as follows, that is, if

lim
n

||Dn(1, x) − 1||Lp
= 0,

lim
n

||Dn(t, x) − x||Lp
= 0,

and

lim
n

||Dn(t2, x) − x2||Lp
= 0,

hold. Then for any function f ∈ Lp[a, b], we have

lim
n

||Dn(f, x) − f(x)||Lp
= 0,

where Dn = 1
λn

∑

k∈In
Tk.

Now we present a slight general result.

Theorem 2.1. Let (Tn) be a sequence of positive linear operators on Lp[a, b] such
that

lim
n

1

λn

∑

k∈In

||Tn − Tk|| = 0.

If

λ− lim
n

||Tn(tν , x) − xν ||Lp
= 0 (ν = 0, 1, 2). (2.11)

Then for any function f ∈ Lp[a, b], we have

lim
n

||Tn(f, x) − f(x)||Lp
= 0. (2.12)
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Proof. From Theorem 2.3, we have that if (2.11) holds then

λ− lim
n

||Tn(f, x) − f(x)||Lp
= 0,

which is equivalent to

lim
n

||Dn(f, x) − f(x)||Lp
= 0,

that (Dn(f, x)) is convergent to f(x) in Lp-norm. Now

Tn −Dn = Tn −
1

λn

∑

k∈In

Tk

=
1

λn

∑

k∈In

(Tn − Tk).

Hence using the hepothesis we get

lim
n

||Tn(f, x) − f(x)||Lp
= lim

n
||Dn(f, x) − f(x)||Lp

= 0,

that is (2.12) holds.

3 λ-Convergence with Order

In this section we define the order of λ-convergence of a sequence of positive
linear operators and give an analogue of Theorem 2.1.

Definition 3.1. The number sequence x = (xk) is λ-convergent to the number
L with order 0 < β < 1 if

lim
n

1

(λn)1−β

∑

j∈In

xj = L.

In this case, we write

xn − L = o((λn)−β), as n→ ∞.

Theorem 3.2. Suppose that Tn : C[a, b] → C[a, b] is a sequence of positive linear
operator satisfying the following conditions

||Tn(1, x) − 1||∞ = o((λn)−β1),

||Tn(t, x) − x||∞ = o((λn)−β2),

||Tn(t2, x) − x2||∞ = o((λn)−β3).

Then for any function f ∈ C[a, b], we have

||Tn(f, x) − f(x)||∞ = o((λn)−β), as n→ ∞,

where β =min{β1, β2, β3}.
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Proof. We can rewrite the inequality (2.10) as follows:

||Tn(f, x) − f(x)||∞
(λk)1−β

≤

(

ǫ+
2Mb2

δ2
+M

)

||Tn(1, x) − 1||∞
(λk)1−β1

(

(λk)1−β1

(λk)1−β

)

+
4Mb

δ2
||Tn(t, x) − x||∞

(λk)1−β2

(

(λk)1−β2

(λk)1−β

)

+
2M

δ2
||Tn(t2, x) − x2||∞

(λk)1−β3

(

(λk)1−β3

(λk)1−β

)

.

Hence,
||Tn(f, x) − f(x)||∞ = o((λn)−β), as n→ ∞,

where β =min{β1, β2, β3}.

4 Approximation by Regular Matrices

In this section, we discass the applications of regular matrices in proving above
approximation theorems. Let c be the Banach space of all convergent sequences
of real numbers with the usual supremum norm. If x = (xk) is a number sequence
and Ax = (An(x)) is an infinite matrix, then Ax is the sequence whose nth term is
given by An(x) =

∑

k ankxk. We say that x is A-summable to L if limn An(x) = L,

provided that the series
∑

k ankxk converges for each n; L is called the A-limit
of x. Let X and Y be any two sequence spaces. If x ∈ X implies Ax ∈ Y , then
we say that the matrix A maps X into Y . We denote by (X,Y ), the class of all
matrices A which map X into Y .

A matrix A = (ank) is said to be regular [6] if Ax ∈ c for all x ∈ c with A-lim
x = lim x.

The following are the well-known Silverman-Toeplitz conditions for the regu-
larity of A.

Lemma 4.1. A matrix A = (ank) is regular if and only if

(i) ||A|| = supn

∑

k |ank| <∞,

(ii) limn ank = 0, for each k,

(iii) limn

∑

k ank = 1.

Remark 4.2. Let us define A = (ank) by

ank =







1
λn
, if n− λn + 1 ≤ k ≤ n,

0, otherwise.

Then the A-summability is reduced to the (V, λ)-summability.

Results of Section 2 can be easily proved on the similar lines, by taking the
A-transform on both sides of (2.10) and using the conditions of regularity. Hence
we have the following:
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Theorem 4.3. Let A = (ank) be a regular matrix. Suppose that Tk : C[a, b] →
C[a, b] is a sequence of positive linear operator and Gn(·, ·) =

∑

k ankTk(·, ·) satis-
fying the following conditions

lim
n

||Gn(1, x) − 1||∞ = 0, lim
n

||Gn(t, x) − x||∞ = 0,

lim
n

||Gn(t2, x) − x2||∞ = 0.

Then for any function f ∈ C[a, b] bounded on the whole real line, we have

lim
n

||Gn(f, x) − f(x)||∞ = 0.

Theorem 4.4. Let A = (ank) be a regular matrix and (Tk) be the sequence of
positive linear operators Tk : Lp[a, b] → Lp[a, b] and let the sequence {||Tk||} be
uniformly bounded. If

lim
n

||Gn(1, x) − 1||Lp
= 0, lim

n
||Gn(t, x) − x||Lp

= 0,

and
lim
n

||Gn(t2, x) − x2||Lp
= 0.

Then for any function f ∈ Lp[a, b], we have

lim
n

||Gn(f, x) − f(x)||Lp
= 0.
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[1] L. Leindler, Über die de la Vallée-Pousinsche summierbarkeit allgemeiner Or-
thogonalreihen, Acta Math. Acad. Sci. Hungar. 16 (1965) 375–387.

[2] M. Mursaleen, Some approximation theorems through Cesàro summability,
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