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Abstract : The purpose of this work is to introduce and study a more gen-
eral form of vector variational-like inequalities in Banach spaces. By using the
definitions of h-η-quasimonotone of Stampacchia type and Minty type mappings,
some existence results for vector variational-like inequalities are obtained. Some
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1 Introduction

One important generalization of the classical variational inequality is the vec-
tor variational inequality, which was introduced by Giannessi [1] in a finite dimen-
tional Euclidean space. Subsequently, vector variational inequalities have been
investigated in abstract spaces, see [2–4]. A vector variational-like inequality is a
generalization of vector variational inequality related to the class of η-connected
sets which is much more general than the class of convex sets, see [5, 6].

Of course, monotonicity of a nonlinear mapping is one of most rapidly used
concept in the theory of vector variational inequalities. Some important gener-
alizations of monotonicity, such as quasimonotonicity, proper quasimonotonicity,
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pseudomonotonicity, semi-monotonicity, relaxed η-α-monotonicity, have been in-
troduced and considered in the study of various variational inequalities, see [7–9].
In 2006, Zhao and Xia [10] obtained some existence results for vector variational-
like inequalities by using definitions of properly η-quasimonotone of Minty type
and properly η-quasimonotone of Stampacchia type mappings. For more details
we refer to [11–13].

In this paper, we introduce and study a more general form of vector variational-
like inequalities in Banach spaces. Some existence results are established by defin-
ing the concept of properly h-η-quasimonotone of Stampacchia type mappings
and properly h-η-quasimonotone of Minty type mappings. Some examples are
also given.

2 Preliminaries

Throughout this work, unless otherwise specified, let X and Y be two real
Banach spaces, K ⊂ X a nonempty, closed and convex subset, C ⊂ Y a pointed,
closed and convex cone in Y such that int C 6= ∅, where int C denotes the interior
of C. Then for y1, y2 ∈ Y , a partial order ≤C in Y is defined as

y1 ≤C y2 ⇐⇒ y2 − y1 ∈ C.

Note that C 6= Y iff 0 6∈ int C. Denote by L(X, Y ) the space of all continuous
linear mappings from X to Y . For any l ∈ L(X, Y ), x ∈ X , let 〈l, x〉 denote the
value of l at x. Let T : K → L(X, Y ), η : K × K → K and h : K × K → Y be
mappings. Consider the following vector variational-like inequalities:

Find x ∈ K such that

〈Tx, η(y, x)〉 + h(y, x) ≥C 0, ∀ y ∈ K (2.1)

and find x ∈ K such that

〈Ty, η(x, y)〉 + h(x, y) ≤C 0, ∀ y ∈ K. (2.2)

If h = 0, then (2.1) and (2.2) reduces to the following vector variational-like
inequalities considered and studied by Zhao and Xia [10].

Find x ∈ K such that

〈Tx, η(y, x)〉 ≥C 0, ∀ y ∈ K (2.3)

and find x ∈ K such that

〈Ty, η(x, y)〉 ≤C 0, ∀ y ∈ K. (2.4)

The following concepts and results are needed in the sequel.

Definition 2.1. A mapping f : K → Y is said to be hemicontinuous if, for any
fixed x, y ∈ K, the mapping t 7→ f(x + t(y − x)) is continuous at 0+.
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Definition 2.2. Let C : K → 2Y be a set-valued mapping, h : K × K → Y and
η : K × K → K be single-valued mappings. Then

(i) h(·, v) is said to be C-convex in first argument if

h(tu1+(1−t)u2, v) ∈ th(u1, v)+(1−t)h(u2, v)−C, ∀ u1, u2 ∈ K, ∀ t ∈ [0, 1];

(ii) If K is an affine set, then η(u, v) is said to be affine with respect to u if for
any given v ∈ K,

η(tu1 + (1 − t)u2, v) = tη(u1, v) + (1 − t)η(u2, v), ∀ u1, u2 ∈ K, ∀ t ∈ R;

with u = tu1 + (1 − t)u2 ∈ K.

Definition 2.3. Let T : K → L(X, Y ), η : K × K → X and h : K × K → Y be
mappings. Then T is said to be h-η-pseudomonotone if for any x, y ∈ K,

〈Tx, η(y, x)〉 + h(y, x) ≥C 0 ⇒ 〈Ty, η(x, y)〉 + h(x, y) ≤C 0.

Remark 2.4.

(i) If h(·, ·) ≡ 0, then h-η-pseudomonotonicity of T reduces to η-pseudomonotonicity
of T .

(ii) If η(y, x) = y −x and h(·, ·) ≡ 0, then h-η-pseudomonotonicity of T reduces
to pseudomonotonicity of T .

Example 2.5. Let X = R, K = R+, Y = R
2, C = R

2
+ and

T (x) =

(

2 + sin2x
2 + cos2x

)

, η(y, x) = y − 2x, h(y, x) =

(

y2 − xy − 2x2

2y − 4x

)

,

∀ x, y ∈ K. Then ∀ x, y ∈ K,

〈T (x), η(y, x)〉 + h(y, x) =

(

2 + sin2x
2 + cos2x

)

(y − 2x) +

(

y2 − xy − 2x2

2y − 4x

)

=

(

(2 + sin2x)(y − 2x)
(2 + cos2x)(y − 2x)

)

+

(

y2 − xy − 2x2

2y − 4x

)

= (y − 2x)

(

(2 + sin2x) + (x + y)
(2 + cos2x) + 2

)

≥C 0

implies y > 2x, so it follows that

〈T (y), η(x, y)〉 + h(x, y) =

(

2 + sin2y
2 + cos2y

)

(x − 2y) +

(

x2 − xy − 2y2

2x − 4y

)

= (x − 2y)

(

(2 + sin2y) + (x + y)
(2 + cos2y) + 2

)

≤C 0

=⇒ T is h-η-pseudomonotone.
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Definition 2.6 ([14]). A multivalued operator T : X → 2X
∗

is called quasi-
monotone if, for all x, y ∈ X , the following implication holds:

∃ x∗ ∈ T (x) : 〈x∗, y − x〉 > 0 ⇒ ∀y∗ ∈ T (y) : 〈y∗, y − x〉 ≥ 0.

Definition 2.7 ([14]). An operator T : X → 2X
∗

is called properly quasimonotone
if, for every x1, x2, ..., xn ∈ X and every y ∈ Conv{x1, x2, ..., xn}, there exists i
such that

∀x∗

i ∈ T (xi) : 〈x∗

i , y − xi〉 ≤ 0.

Choosing y = (x1+x2)
2 , we see that a properly quasimonotone operator is qua-

simonotone.

Remark 2.8. The adjective “quasimonotone” suggests a relationship to quasicon-
vex function which indeed exists.

Definition 2.9. Let T : K → L(X, Y ) be mapping. Then

(i) T is said to be properly quasimonotone of Stampacchia type if for all n ∈ N,
for all vectors v1, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with

∑n

i=1 λi =
1 and u :=

∑n

i=1 λivi,

〈Tu, vi − u〉 ≥C 0, holds for some i.

(ii) T is said to be properly quasimonotone of Minty type if for all vectors
v1, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with

∑n

i=1 λi = 1 and
u :=

∑n

i=1 λivi,

〈Tvi, vi − u〉 ≥C 0, holds for some i.

Definition 2.10. Let T : K → L(X, Y ) and η : K ×K → X be mappings. Then

(i) T is said to be properly η-quasimonotone of Stampacchia type if for all n ∈
N, for all vectors v1, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with
∑n

i=1 λi = 1 and u :=
∑n

i=1 λivi,

〈Tu, η(vi, u)〉 ≥C 0, holds for some i.

(ii) T is said to be properly η-quasimonotone of Minty type if for all vectors
v1, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with

∑n

i=1 λi = 1 and
u :=

∑n

i=1 λivi,

〈Tvi, η(vi, u)〉 ≥C 0, holds for some i.

Definition 2.11. Let T : K → L(X, Y ), η : K × K → X and h : K × K → Y be
mappings. Then
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(i) T is said to be properly h-η-quasimonotone of Stampacchia type if for all
n ∈ N, for all vectors v1, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with
∑n

i=1 λi = 1 and u :=
∑n

i=1 λivi,

〈Tu, η(vi, u)〉 + h(vi, u) ≥C 0, holds for some i.

(ii) T is said to be properly h-η-quasimonotone of Minty type if for all vectors
v1, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with

∑n

i=1 λi = 1 and
u :=

∑n

i=1 λivi,

〈Tvi, η(u, vi) + h(u, vi)〉 ≤C 0, holds for some i.

Example 2.12. Let X, K, Y , C be same as in Example 2.5 and

T (x) =

(

2x2

8x3

)

, η(y, x) = y − (x − x2), h(y, x) =

(

y + 2x2

y + x

)

.

We claim that T is properly h-η-quasimonotone of Stampacchia type. Suppose to
the contrary that there exists xi ∈ K, ti ≥ 0, i = 1, 2, ..., n with

∑n

i=1 ti = 1 such
that

〈Tx, η(xi, x)〉 + h(xi, x) 6≥C 0, i = 1, 2, ..., n,

where x =
∑n

i=1 tixi. It follows that

〈Tx, η(xi, x)〉 + h(xi, x) =

(

2x2(xi − x + x2) + (xi + 2x2)
8x3(xi − x + x2) + (xi + x)

)

6≥C 0, i = 1, 2, ..., n,

which is a contradiction, since

2x2(xi − x + x2) + (xi + 2x2) ≥C 0

and
8x3(xi − x + x2) + (xi + x) ≥C 0, for atleast one i.

Thus, T is properly h-η-quasimonotone of Stampacchia type.

Lemma 2.13. Let T : K → L(X, Y ), η : K × K → X and h : K × K → Y
be mappings. If T is h-η-pseudomonotone and properly h-η-quasimonotone of
Stampacchia type, then T is properly h-η-quasimonotone of Minty type.

Proof. The fact directly follows from the Definition 2.3 and Definition 2.11.

Definition 2.14. Let D be a nonempty subset of a topological Häusdorff space E.
A mapping G : D → 2E (where 2E is the family of all nonempty subsets of E) is
said to be a KKM mapping if, for any finite set {x1, ..., xn} ⊂ D, conv{x1, ..., xn} ⊂
⋃n

i=1 G(xi), where conv denotes the convex hull operator.

Lemma 2.15 ([15]). Let D be a nonempty subset of a topological Häusdorff vector
space E and G : D → 2E a KKM mapping. If G(x) is closed for any x ∈ D and
compact for some x ∈ D, then

⋂

x∈D
G(x) 6= ∅.



558 Thai J. Math. 9 (2011)/ R. Ahmad

Lemma 2.16. Let Y be topological vector space with a pointed, closed and convex
cone such that int C 6= ∅. Then, for all x, y, z ∈ Y ,

(i) x − y ∈ −C and x 6∈ −int C =⇒ y 6∈ −int C;

(ii) x ∈ −int C and y 6∈ int C =⇒ x + y 6∈ C.

3 Existence Results

In this section, we establish some existence results for (2.1) and (2.2) by using
Lemma 2.15.

Lemma 3.1. Let T : K → L(X, Y ), η : K × K → X and h : K × K → Y be
mappings satisfying the following conditions:

(i) T is h-η-pseudomonotone;

(ii) for any fixed y ∈ X, the mapping y → 〈Ty, η(x, y)〉 is hemicontinuous and
h(x, y) is continuous with {zt} → x0 ∈ K, zt ∈ K;

(iii) h(·, y) is C-convex in the first variable and h(x, x) = 0, ∀x ∈ K;

(iv) η(·, y) is affine in the first variable and η(x, x) = 0, ∀x ∈ K.

Then for any x0 ∈ K, the following statements are equivalent:

(I) 〈Tx0, η(x, x0)〉 + h(x, x0) ≥C 0, ∀x ∈ K;

(II) 〈Tx, η(x0, x)〉 + h(x0, x) ≤C 0, ∀x ∈ K.

Proof. As T is h-η-pseudomonotone, it follows that (I)⇒(II).
Conversely, suppose that (II) holds i.e. for any x0 ∈ K,

〈Tx, η(x0, x)〉 + h(x0, x) ≤C 0, ∀x ∈ K. (3.1)

For any arbitrary z ∈ K, letting zt = (1− t)x0 + tz, 0 < t < 1, we have zt ∈ K by
convexity of K. Hence, we have

〈Tzt, η(x0, zt)〉 + h(x0, zt) ≤C 0. (3.2)

Now we prove that
〈Tzt, η(z, zt)〉 + h(z, zt) ≥C 0. (3.3)

Suppose that (3.3) is not true, then

〈Tzt, η(z, zt)〉 + h(z, zt) 6≥C 0. (3.4)

As C is a convex cone and in view of (iii), (iv), we get

0 = 〈Tzt, η(zt, zt)〉 + h(zt, zt)

= 〈Tzt, η((1 − t)x0 + tz, zt)〉 + h((1 − t)x0 + tz, zt)

= t{〈Tzt, η(z, zt)〉 + h(z, zt)} + (1 − t){〈Tzt, η(x0, zt)〉 + h(x0, zt)}

∈ t{〈Tzt, η(z, zt)〉 + h(z, zt)} + (1 − t){〈Tzt, η(x0, zt)〉 + h(x0, zt)} − C
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which implies that

t{〈Tzt, η(z, zt)〉 + h(z, zt)} + (1 − t){〈Tzt, η(x0, zt)〉 + h(x0, zt)} ∈ C. (3.5)

In view of Lemma 2.16, (3.2) and (3.4), we have

t{〈Tzt, η(z, zt)〉 + h(z, zt)} + (1 − t){〈Tzt, η(x0, zt)〉 + h(x0, zt)} 6∈ C

which is a contradiction to (3.5) and hence (3.3) is true. Condition (ii) implies
that

〈Tx0, η(x, x0)〉 + h(x, x0) ≥C 0, ∀x ∈ K.

Theorem 3.2. Let X and Y be real Banach spaces and K ⊂ X a nonempty,
compact and convex set. Let T : K → L(X, Y ), η : K×K → X and h : K×K → Y
be mappings satisfying the following conditions:

(i) for any fixed y ∈ K, the mappings x → 〈Tx, η(y, x)〉 and h(·, x) are contin-
uous;

(ii) T is properly h-η-quasimonotone of Stampacchia type;

(iii) for all x ∈ K, η(x, x) = 0 = h(x, x).

Then there exists x ∈ K such that

〈Tx, η(y, x)〉 + h(y, x) ≥C 0, ∀ y ∈ K.

Proof. Define a multivalued mapping H1 : K → 2K by

H1(z) = {x ∈ K : 〈Tx, η(z, x)〉 + h(z, x) ≥C 0}, ∀ z ∈ K.

Then H1(z) is nonempty for each z ∈ K. Note that H1 is a KKM mapping on K.
Infact, if it is not the case, then there exists {x1, ..., xn} ⊂ K, x =

∑n

i=1 tixi with
ti > 0, i = 1, 2, ..., n and

∑n

i=1 ti = 1 such that x /∈
⋃n

i=1 H1(xi). This implies
that

〈Tx, η(xi, x)〉 + h(xi, x) 6≥C 0, i = 1, ..., n.

This contradicts condition (ii). Therefore, H1 is a KKM mapping. Now, we
prove that for any z ∈ K, H1(z) is closed. In view of (i), let there exists a net
{xn} ⊂ H1(z) such that xn −→ x ∈ K.Because

〈Tx, η(z, xn)〉 + h(z, xn) ≥C 0, for all n,

we have
〈Tx, η(z, x)〉 + h(z, x) ≥C 0.

Hence x ∈ H1(z) and so H1(z) is closed. It follows from the compactness of K
and closedness of H1(z) ⊂ K, that H1(z) is compact. Thus by Lemma 2.15, we
have

⋂

z∈K

H1(z) 6= ∅.
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Hence there exists x ∈ K such that

〈Tx, η(y, x)〉 + h(y, x) ≥C 0, ∀ y ∈ K.

This completes the proof.

Theorem 3.3. Let K be a nonempty, bounded, closed and convex subset of a real
reflexive Banach space X and Y a real Banach space. Let T : K → L(X, Y ),
η : K × K → X and h : K × K → Y be mappings satisfying the following
conditions:

(i) T is properly h-η-quasimonotone of Minty type;

(ii) for all x ∈ K, η(x, x) = 0 and h(x, x) = 0.

Then there exists x ∈ K such that

〈Ty, η(x, y)〉 + h(x, y) ≤C 0, ∀ y ∈ K.

Proof. Define multivalued mapping H2 : K → 2K by

H2(z) = {x ∈ K : 〈Tz, η(x, z)〉+ h(x, z) ≤C 0}, ∀ z ∈ K.

Then for each z ∈ K, H2(z) is nonempty. Suppose that H2 is not a KKM mapping,
then there exists {x1, ..., xn} ⊂ K, x =

∑n

i=1 tixi with ti > 0, i = 1, 2, ..., n and
∑n

i=1 ti = 1 such that x /∈
⋃n

i=1 H2(xi). This implies that

〈Txi, η(x, xi)〉 + h(x, xi) 6≤C 0, i = 1, ..., n

which contradicts condition (i). Therefore, H2 is a KKM mapping. In addition, it
is easy to verify that H2(z) is bounded, closed and convex for all z ∈ K. Since X
is reflexive, H2(z) is weakly compact for all z ∈ K. It follows from Lemma 2.15
that

⋂

z∈K

H2(z) 6= ∅.

Hence there exists x ∈ K such that

〈Ty, η(x, y)〉 + h(x, y) ≤C 0, ∀ y ∈ K.

This completes the proof.
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