Existence Results for Vector Variational-Like Inequalities ${ }^{1}$

Rais Ahmad
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
e-mail : raisain_123@rediffmail.com

Abstract

The purpose of this work is to introduce and study a more general form of vector variational-like inequalities in Banach spaces. By using the definitions of $h-\eta$-quasimonotone of Stampacchia type and Minty type mappings, some existence results for vector variational-like inequalities are obtained. Some examples supporting the main results are also constructed.

Keywords : Vector variational-like inequality; proper h - η-quasimonotonicity; h -η-pseudomonotonicity; C-convex; Affinity; KKM-mapping. 2010 Mathematics Subject Classification : 49J40; 47H19; 47 H 04.

1 Introduction

One important generalization of the classical variational inequality is the vector variational inequality, which was introduced by Giannessi [1] in a finite dimentional Euclidean space. Subsequently, vector variational inequalities have been investigated in abstract spaces, see [2-4]. A vector variational-like inequality is a generalization of vector variational inequality related to the class of η-connected sets which is much more general than the class of convex sets, see [5, 6].

Of course, monotonicity of a nonlinear mapping is one of most rapidly used concept in the theory of vector variational inequalities. Some important generalizations of monotonicity, such as quasimonotonicity, proper quasimonotonicity,

[^0]pseudomonotonicity, semi-monotonicity, relaxed $\eta-\alpha$-monotonicity, have been introduced and considered in the study of various variational inequalities, see [7-9]. In 2006, Zhao and Xia [10] obtained some existence results for vector variationallike inequalities by using definitions of properly η-quasimonotone of Minty type and properly η-quasimonotone of Stampacchia type mappings. For more details we refer to [11-13].

In this paper, we introduce and study a more general form of vector variationallike inequalities in Banach spaces. Some existence results are established by defining the concept of properly h - η-quasimonotone of Stampacchia type mappings and properly h - η-quasimonotone of Minty type mappings. Some examples are also given.

2 Preliminaries

Throughout this work, unless otherwise specified, let X and Y be two real Banach spaces, $K \subset X$ a nonempty, closed and convex subset, $C \subset Y$ a pointed, closed and convex cone in Y such that int $C \neq \emptyset$, where int C denotes the interior of C. Then for $y_{1}, y_{2} \in Y$, a partial order \leq_{C} in Y is defined as

$$
y_{1} \leq_{C} y_{2} \Longleftrightarrow y_{2}-y_{1} \in C .
$$

Note that $C \neq Y$ iff $0 \notin$ int C. Denote by $L(X, Y)$ the space of all continuous linear mappings from X to Y. For any $l \in L(X, Y), x \in X$, let $\langle l, x\rangle$ denote the value of l at x. Let $T: K \rightarrow L(X, Y), \eta: K \times K \rightarrow K$ and $h: K \times K \rightarrow Y$ be mappings. Consider the following vector variational-like inequalities:

Find $x \in K$ such that

$$
\begin{equation*}
\langle T x, \eta(y, x)\rangle+h(y, x) \geq_{C} 0, \quad \forall y \in K \tag{2.1}
\end{equation*}
$$

and find $x \in K$ such that

$$
\begin{equation*}
\langle T y, \eta(x, y)\rangle+h(x, y) \leq_{C} 0, \quad \forall y \in K . \tag{2.2}
\end{equation*}
$$

If $h=0$, then (2.1) and (2.2) reduces to the following vector variational-like inequalities considered and studied by Zhao and Xia [10].

Find $x \in K$ such that

$$
\begin{equation*}
\langle T x, \eta(y, x)\rangle \geq_{C} 0, \quad \forall y \in K \tag{2.3}
\end{equation*}
$$

and find $x \in K$ such that

$$
\begin{equation*}
\langle T y, \eta(x, y)\rangle \leq_{C} 0, \quad \forall y \in K . \tag{2.4}
\end{equation*}
$$

The following concepts and results are needed in the sequel.
Definition 2.1. A mapping $f: K \rightarrow Y$ is said to be hemicontinuous if, for any fixed $x, y \in K$, the mapping $t \mapsto f(x+t(y-x))$ is continuous at 0^{+}.

Definition 2.2. Let $C: K \rightarrow 2^{Y}$ be a set-valued mapping, $h: K \times K \rightarrow Y$ and $\eta: K \times K \rightarrow K$ be single-valued mappings. Then
(i) $h(\cdot, v)$ is said to be C-convex in first argument if

$$
h\left(t u_{1}+(1-t) u_{2}, v\right) \in t h\left(u_{1}, v\right)+(1-t) h\left(u_{2}, v\right)-C, \forall u_{1}, u_{2} \in K, \forall t \in[0,1] ;
$$

(ii) If K is an affine set, then $\eta(u, v)$ is said to be affine with respect to u if for any given $v \in K$,

$$
\eta\left(t u_{1}+(1-t) u_{2}, v\right)=t \eta\left(u_{1}, v\right)+(1-t) \eta\left(u_{2}, v\right), \forall u_{1}, u_{2} \in K, \forall t \in \mathbb{R}
$$

with $u=t u_{1}+(1-t) u_{2} \in K$.
Definition 2.3. Let $T: K \rightarrow L(X, Y), \eta: K \times K \rightarrow X$ and $h: K \times K \rightarrow Y$ be mappings. Then T is said to be $h-\eta-p s e u d o m o n o t o n e ~ i f ~ f o r ~ a n y ~ x, y \in K$,

$$
\langle T x, \eta(y, x)\rangle+h(y, x) \geq_{C} 0 \Rightarrow\langle T y, \eta(x, y)\rangle+h(x, y) \leq_{C} 0 .
$$

Remark 2.4.

(i) If $h(\cdot, \cdot) \equiv 0$, then $h-\eta$-pseudomonotonicity of T reduces to η-pseudomonotonicity of T.
(ii) If $\eta(y, x)=y-x$ and $h(\cdot, \cdot) \equiv 0$, then $h-\eta$-pseudomonotonicity of T reduces to pseudomonotonicity of T.

Example 2.5. Let $X=\mathbb{R}, K=\mathbb{R}_{+}, Y=\mathbb{R}^{2}, C=\mathbb{R}_{+}^{2}$ and

$$
T(x)=\binom{2+\sin 2 x}{2+\cos 2 x}, \eta(y, x)=y-2 x, h(y, x)=\binom{y^{2}-x y-2 x^{2}}{2 y-4 x}
$$

$\forall x, y \in K$. Then $\forall x, y \in K$,

$$
\begin{aligned}
\langle T(x), \eta(y, x)\rangle+h(y, x) & =\binom{2+\sin 2 x}{2+\cos 2 x}(y-2 x)+\binom{y^{2}-x y-2 x^{2}}{2 y-4 x} \\
& =\binom{(2+\sin 2 x)(y-2 x)}{(2+\cos 2 x)(y-2 x)}+\binom{y^{2}-x y-2 x^{2}}{2 y-4 x} \\
& =(y-2 x)\binom{(2+\sin 2 x)+(x+y)}{(2+\cos 2 x)+2} \geq_{C} 0
\end{aligned}
$$

implies $y>2 x$, so it follows that

$$
\begin{aligned}
\langle T(y), \eta(x, y)\rangle+h(x, y) & =\binom{2+\sin 2 y}{2+\cos 2 y}(x-2 y)+\binom{x^{2}-x y-2 y^{2}}{2 x-4 y} \\
& =(x-2 y)\binom{(2+\sin 2 y)+(x+y)}{(2+\cos 2 y)+2} \leq_{C} 0
\end{aligned}
$$

$\Longrightarrow T$ is $h-\eta-p s e u d o m o n o t o n e$.

Definition 2.6 ([14]). A multivalued operator $T: X \rightarrow 2^{X^{*}}$ is called quasimonotone if, for all $x, y \in X$, the following implication holds:

$$
\exists x^{*} \in T(x):\left\langle x^{*}, y-x\right\rangle>0 \Rightarrow \forall y^{*} \in T(y):\left\langle y^{*}, y-x\right\rangle \geq 0
$$

Definition 2.7 ([14]). An operator $T: X \rightarrow 2^{X^{*}}$ is called properly quasimonotone if, for every $x_{1}, x_{2}, \ldots, x_{n} \in X$ and every $y \in \operatorname{Conv}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, there exists i such that

$$
\forall x_{i}^{*} \in T\left(x_{i}\right):\left\langle x_{i}^{*}, y-x_{i}\right\rangle \leq 0
$$

Choosing $y=\frac{\left(x_{1}+x_{2}\right)}{2}$, we see that a properly quasimonotone operator is quasimonotone.

Remark 2.8. The adjective "quasimonotone" suggests a relationship to quasiconvex function which indeed exists.

Definition 2.9. Let $T: K \rightarrow L(X, Y)$ be mapping. Then
(i) T is said to be properly quasimonotone of Stampacchia type if for all $n \in \mathbb{N}$, for all vectors $v_{1}, \ldots, v_{n} \in K$ and scalars $\lambda_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \lambda_{i}=$ 1 and $u:=\sum_{i=1}^{n} \lambda_{i} v_{i}$,

$$
\left\langle T u, v_{i}-u\right\rangle \geq_{C} 0, \quad \text { holds for some } i .
$$

(ii) T is said to be properly quasimonotone of Minty type if for all vectors $v_{1}, \ldots, v_{n} \in K$ and scalars $\lambda_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \lambda_{i}=1$ and $u:=\sum_{i=1}^{n} \lambda_{i} v_{i}$,

$$
\left\langle T v_{i}, v_{i}-u\right\rangle \geq_{C} 0, \quad \text { holds for some } i
$$

Definition 2.10. Let $T: K \rightarrow L(X, Y)$ and $\eta: K \times K \rightarrow X$ be mappings. Then
(i) T is said to be properly η-quasimonotone of Stampacchia type if for all $n \in$ \mathbb{N}, for all vectors $v_{1}, \ldots, v_{n} \in K$ and scalars $\lambda_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \lambda_{i}=1$ and $u:=\sum_{i=1}^{n} \lambda_{i} v_{i}$,

$$
\left\langle T u, \eta\left(v_{i}, u\right)\right\rangle \geq_{C} 0, \quad \text { holds for some } i
$$

(ii) T is said to be properly η-quasimonotone of Minty type if for all vectors $v_{1}, \ldots, v_{n} \in K$ and scalars $\lambda_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \lambda_{i}=1$ and $u:=\sum_{i=1}^{n} \lambda_{i} v_{i}$,

$$
\left\langle T v_{i}, \eta\left(v_{i}, u\right)\right\rangle \geq_{C} 0, \text { holds for some } i
$$

Definition 2.11. Let $T: K \rightarrow L(X, Y), \eta: K \times K \rightarrow X$ and $h: K \times K \rightarrow Y$ be mappings. Then
(i) T is said to be properly $h-\eta$-quasimonotone of Stampacchia type if for all $n \in \mathbb{N}$, for all vectors $v_{1}, \ldots, v_{n} \in K$ and scalars $\lambda_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \lambda_{i}=1$ and $u:=\sum_{i=1}^{n} \lambda_{i} v_{i}$,

$$
\left\langle T u, \eta\left(v_{i}, u\right)\right\rangle+h\left(v_{i}, u\right) \geq_{C} 0, \quad \text { holds for some } i
$$

(ii) T is said to be properly $h-\eta$-quasimonotone of Minty type if for all vectors $v_{1}, \ldots, v_{n} \in K$ and scalars $\lambda_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \lambda_{i}=1$ and $u:=\sum_{i=1}^{n} \lambda_{i} v_{i}$,

$$
\left\langle T v_{i}, \eta\left(u, v_{i}\right)+h\left(u, v_{i}\right)\right\rangle \leq_{C} 0, \quad \text { holds for some } i
$$

Example 2.12. Let X, K, Y, C be same as in Example 2.5 and

$$
T(x)=\binom{2 x^{2}}{8 x^{3}}, \eta(y, x)=y-\left(x-x^{2}\right), h(y, x)=\binom{y+2 x^{2}}{y+x}
$$

We claim that T is properly $h-\eta$-quasimonotone of Stampacchia type. Suppose to the contrary that there exists $x_{i} \in K, t_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} t_{i}=1$ such that

$$
\left\langle T x, \eta\left(x_{i}, x\right)\right\rangle+h\left(x_{i}, x\right) \not ¥_{C} 0, \quad i=1,2, \ldots, n,
$$

where $x=\sum_{i=1}^{n} t_{i} x_{i}$. It follows that
$\left\langle T x, \eta\left(x_{i}, x\right)\right\rangle+h\left(x_{i}, x\right)=\binom{2 x^{2}\left(x_{i}-x+x^{2}\right)+\left(x_{i}+2 x^{2}\right)}{8 x^{3}\left(x_{i}-x+x^{2}\right)+\left(x_{i}+x\right)} \not Ł_{C} 0, \quad i=1,2, \ldots, n$,
which is a contradiction, since

$$
2 x^{2}\left(x_{i}-x+x^{2}\right)+\left(x_{i}+2 x^{2}\right) \geq_{C} 0
$$

and

$$
8 x^{3}\left(x_{i}-x+x^{2}\right)+\left(x_{i}+x\right) \geq_{C} 0, \text { for atleast one } i
$$

Thus, T is properly $h-\eta$-quasimonotone of Stampacchia type.
Lemma 2.13. Let $T: K \rightarrow L(X, Y), \eta: K \times K \rightarrow X$ and $h: K \times K \rightarrow Y$ be mappings. If T is h - η-pseudomonotone and properly $h-\eta$-quasimonotone of Stampacchia type, then T is properly $h-\eta$-quasimonotone of Minty type.

Proof. The fact directly follows from the Definition 2.3 and Definition 2.11.
Definition 2.14. Let D be a nonempty subset of a topological Häusdorff space E. A mapping $G: D \rightarrow 2^{E}$ (where 2^{E} is the family of all nonempty subsets of E) is said to be a KKM mapping if, for any finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subset D, \operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subset$ $\bigcup_{i=1}^{n} G\left(x_{i}\right)$, where conv denotes the convex hull operator.

Lemma 2.15 ([15]). Let D be a nonempty subset of a topological Häusdorff vector space E and $G: D \rightarrow 2^{E}$ a KKM mapping. If $G(x)$ is closed for any $x \in D$ and compact for some $x \in D$, then $\bigcap_{x \in D} G(x) \neq \emptyset$.

Lemma 2.16. Let Y be topological vector space with a pointed, closed and convex cone such that int $C \neq \emptyset$. Then, for all $x, y, z \in Y$,
(i) $x-y \in-C$ and $x \notin$-int $C \Longrightarrow y \notin-$ int C;
(ii) $x \in-$ int C and $y \notin$ int $C \Longrightarrow x+y \notin C$.

3 Existence Results

In this section, we establish some existence results for (2.1) and (2.2) by using Lemma 2.15.
Lemma 3.1. Let $T: K \rightarrow L(X, Y), \eta: K \times K \rightarrow X$ and $h: K \times K \rightarrow Y$ be mappings satisfying the following conditions:
(i) T is h - η-pseudomonotone;
(ii) for any fixed $y \in X$, the mapping $y \rightarrow\langle T y, \eta(x, y)\rangle$ is hemicontinuous and $h(x, y)$ is continuous with $\left\{z_{t}\right\} \rightarrow x_{0} \in K, z_{t} \in K$;
(iii) $h(\cdot, y)$ is C-convex in the first variable and $h(x, x)=0, \forall x \in K$;
(iv) $\eta(\cdot, y)$ is affine in the first variable and $\eta(x, x)=0, \forall x \in K$.

Then for any $x_{0} \in K$, the following statements are equivalent:
(I) $\left\langle T x_{0}, \eta\left(x, x_{0}\right)\right\rangle+h\left(x, x_{0}\right) \geq_{C} 0, \quad \forall x \in K$;
(II) $\left\langle T x, \eta\left(x_{0}, x\right)\right\rangle+h\left(x_{0}, x\right) \leq_{C} 0, \quad \forall x \in K$.

Proof. As T is h - η-pseudomonotone, it follows that $(\mathrm{I}) \Rightarrow(\mathrm{II})$.
Conversely, suppose that (II) holds i.e. for any $x_{0} \in K$,

$$
\begin{equation*}
\left\langle T x, \eta\left(x_{0}, x\right)\right\rangle+h\left(x_{0}, x\right) \leq_{C} 0, \quad \forall x \in K . \tag{3.1}
\end{equation*}
$$

For any arbitrary $z \in K$, letting $z_{t}=(1-t) x_{0}+t z, 0<t<1$, we have $z_{t} \in K$ by convexity of K. Hence, we have

$$
\begin{equation*}
\left\langle T z_{t}, \eta\left(x_{0}, z_{t}\right)\right\rangle+h\left(x_{0}, z_{t}\right) \leq_{C} 0 . \tag{3.2}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\left\langle T z_{t}, \eta\left(z, z_{t}\right)\right\rangle+h\left(z, z_{t}\right) \geq_{C} 0 . \tag{3.3}
\end{equation*}
$$

Suppose that (3.3) is not true, then

$$
\begin{equation*}
\left\langle T z_{t}, \eta\left(z, z_{t}\right)\right\rangle+h\left(z, z_{t}\right) \not \geq_{C} 0 . \tag{3.4}
\end{equation*}
$$

As C is a convex cone and in view of (iii), (iv), we get

$$
\begin{aligned}
0 & =\left\langle T z_{t}, \eta\left(z_{t}, z_{t}\right)\right\rangle+h\left(z_{t}, z_{t}\right) \\
& =\left\langle T z_{t}, \eta\left((1-t) x_{0}+t z, z_{t}\right)\right\rangle+h\left((1-t) x_{0}+t z, z_{t}\right) \\
& =t\left\{\left\langle T z_{t}, \eta\left(z, z_{t}\right)\right\rangle+h\left(z, z_{t}\right)\right\}+(1-t)\left\{\left\langle T z_{t}, \eta\left(x_{0}, z_{t}\right)\right\rangle+h\left(x_{0}, z_{t}\right)\right\} \\
& \in t\left\{\left\langle T z_{t}, \eta\left(z, z_{t}\right)\right\rangle+h\left(z, z_{t}\right)\right\}+(1-t)\left\{\left\langle T z_{t}, \eta\left(x_{0}, z_{t}\right)\right\rangle+h\left(x_{0}, z_{t}\right)\right\}-C
\end{aligned}
$$

which implies that

$$
\begin{equation*}
t\left\{\left\langle T z_{t}, \eta\left(z, z_{t}\right)\right\rangle+h\left(z, z_{t}\right)\right\}+(1-t)\left\{\left\langle T z_{t}, \eta\left(x_{0}, z_{t}\right)\right\rangle+h\left(x_{0}, z_{t}\right)\right\} \in C . \tag{3.5}
\end{equation*}
$$

In view of Lemma 2.16, (3.2) and (3.4), we have

$$
t\left\{\left\langle T z_{t}, \eta\left(z, z_{t}\right)\right\rangle+h\left(z, z_{t}\right)\right\}+(1-t)\left\{\left\langle T z_{t}, \eta\left(x_{0}, z_{t}\right)\right\rangle+h\left(x_{0}, z_{t}\right)\right\} \notin C
$$

which is a contradiction to (3.5) and hence (3.3) is true. Condition (ii) implies that

$$
\left\langle T x_{0}, \eta\left(x, x_{0}\right)\right\rangle+h\left(x, x_{0}\right) \geq_{C} 0, \quad \forall x \in K .
$$

Theorem 3.2. Let X and Y be real Banach spaces and $K \subset X$ a nonempty, compact and convex set. Let $T: K \rightarrow L(X, Y), \eta: K \times K \rightarrow X$ and $h: K \times K \rightarrow Y$ be mappings satisfying the following conditions:
(i) for any fixed $y \in K$, the mappings $x \rightarrow\langle T x, \eta(y, x)\rangle$ and $h(\cdot, x)$ are continuous;
(ii) T is properly $h-\eta$-quasimonotone of Stampacchia type;
(iii) for all $x \in K, \eta(x, x)=0=h(x, x)$.

Then there exists $x \in K$ such that

$$
\langle T x, \eta(y, x)\rangle+h(y, x) \geq_{C} 0, \quad \forall y \in K .
$$

Proof. Define a multivalued mapping $H_{1}: K \rightarrow 2^{K}$ by

$$
H_{1}(z)=\left\{x \in K:\langle T x, \eta(z, x)\rangle+h(z, x) \geq_{C} 0\right\}, \quad \forall z \in K .
$$

Then $H_{1}(z)$ is nonempty for each $z \in K$. Note that H_{1} is a KKM mapping on K. Infact, if it is not the case, then there exists $\left\{x_{1}, \ldots, x_{n}\right\} \subset K, x=\sum_{i=1}^{n} t_{i} x_{i}$ with $t_{i}>0, i=1,2, \ldots, n$ and $\sum_{i=1}^{n} t_{i}=1$ such that $x \notin \bigcup_{i=1}^{n} H_{1}\left(x_{i}\right)$. This implies that

$$
\left\langle T x, \eta\left(x_{i}, x\right)\right\rangle+h\left(x_{i}, x\right) \not ¥_{C} 0, \quad i=1, \ldots, n .
$$

This contradicts condition (ii). Therefore, H_{1} is a KKM mapping. Now, we prove that for any $z \in K, H_{1}(z)$ is closed. In view of (i), let there exists a net $\left\{x_{n}\right\} \subset H_{1}(z)$ such that $x_{n} \longrightarrow x \in K$.Because

$$
\left\langle T x, \eta\left(z, x_{n}\right)\right\rangle+h\left(z, x_{n}\right) \geq_{C} 0, \quad \text { for all } n,
$$

we have

$$
\langle T x, \eta(z, x)\rangle+h(z, x) \geq_{C} 0 .
$$

Hence $x \in H_{1}(z)$ and so $H_{1}(z)$ is closed. It follows from the compactness of K and closedness of $H_{1}(z) \subset K$, that $H_{1}(z)$ is compact. Thus by Lemma 2.15, we have

$$
\bigcap_{z \in K} H_{1}(z) \neq \emptyset .
$$

Hence there exists $x \in K$ such that

$$
\langle T x, \eta(y, x)\rangle+h(y, x) \geq_{C} 0, \quad \forall y \in K
$$

This completes the proof.
Theorem 3.3. Let K be a nonempty, bounded, closed and convex subset of a real reflexive Banach space X and Y a real Banach space. Let $T: K \rightarrow L(X, Y)$, $\eta: K \times K \rightarrow X$ and $h: K \times K \rightarrow Y$ be mappings satisfying the following conditions:
(i) T is properly $h-\eta$-quasimonotone of Minty type;
(ii) for all $x \in K, \eta(x, x)=0$ and $h(x, x)=0$.

Then there exists $x \in K$ such that

$$
\langle T y, \eta(x, y)\rangle+h(x, y) \leq_{C} 0, \quad \forall y \in K
$$

Proof. Define multivalued mapping $H_{2}: K \rightarrow 2^{K}$ by

$$
H_{2}(z)=\left\{x \in K:\langle T z, \eta(x, z)\rangle+h(x, z) \leq_{C} 0\right\}, \quad \forall z \in K
$$

Then for each $z \in K, H_{2}(z)$ is nonempty. Suppose that H_{2} is not a KKM mapping, then there exists $\left\{x_{1}, \ldots, x_{n}\right\} \subset K, x=\sum_{i=1}^{n} t_{i} x_{i}$ with $t_{i}>0, i=1,2, \ldots, n$ and $\sum_{i=1}^{n} t_{i}=1$ such that $x \notin \bigcup_{i=1}^{n} H_{2}\left(x_{i}\right)$. This implies that

$$
\left\langle T x_{i}, \eta\left(x, x_{i}\right)\right\rangle+h\left(x, x_{i}\right) \not Z_{C} 0, \quad i=1, \ldots, n
$$

which contradicts condition (i). Therefore, H_{2} is a KKM mapping. In addition, it is easy to verify that $H_{2}(z)$ is bounded, closed and convex for all $z \in K$. Since X is reflexive, $H_{2}(z)$ is weakly compact for all $z \in K$. It follows from Lemma 2.15 that

$$
\bigcap_{z \in K} H_{2}(z) \neq \emptyset
$$

Hence there exists $x \in K$ such that

$$
\langle T y, \eta(x, y)\rangle+h(x, y) \leq_{C} 0, \quad \forall y \in K
$$

This completes the proof.

References

[1] F. Giannessi, Theory of alternative, quadratic programs and complementarity problems, in: R.W. Cottle, F. Giannessi, J. L. Lions (Eds.) Variational Inequalites and Complementarity Problems, Wiley, 1980, 151-186.
[2] Q.H. Ansari, On generalized vector variational-like inequalities, Ann. Sci. Math. Quebec 19 (1995) 131-137.
[3] O. Chadli, X.Q. Yang, J.C. Yao, On generalized vector pre-variotional inequalities, J. Math. Anal. Appl. 295 (2004) 392-403.
[4] S.J. Yu, J.-C. Yao, On vector variational inequalities, J. Optim. Theory Appl. 89 (1996) 749-769.
[5] A.H. Siddiqui, Q.H. Ansari, R. Ahmad, On vector variational-like inequalities, Indian J. Pure Appl. Math. 26 (1995) 1135-1141.
[6] X.Q. Yang, G.-Y. Chen, A class of nonconvex functions and variational inequalities, J. Math. Anal. Appl. 169 (1992) 359-373.
[7] Y.Q. Chen, On the semi-monotone optimization theory and applications, J. Math. Anal. Appl. 231 (1999) 177-192.
[8] A. Deniilidis, N. Hadjisavvas, On the subdifferential of quasiconvex and pseudoconvex functions and cyclic monotonicity, J. Math. Anal. Appl. 237 (1999) 30-42.
[9] Y.P. Fang, N.J. Huang, Variaional-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl. 118 (2003) 327-338.
[10] Y. Zhao, Z. Xia, Existence results for systems of vector variational-like inequalities, Nonlinear Anal. RWA 8 (2007) 1370-1378.
[11] S.-J. Jiang, L.-P. Pang, J. Shen, Existence of solutions of generalized vector variational-type inequalities with set-valued mappings, Comput. Math with Appl. 56 (2010) 1453-1461.
[12] S. Al-Homidan, Q.H. Ansari, Generalized Minty vector variational-like inequalities and vector optimization problems, J. Optim. Theory Appl. 144 (2010) 1-11.
[13] A.P. Farajzadeh, B.S. Lee, Vector variational-like inequality problem and vector optimization problem, Appl. Math. Lett. 23 (2010) 48-52.
[14] A. Deniilidis, N. Hadjisavvas, Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions, J. Optm. Theory Appl. 102 (1999) 525-536.
[15] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984) 519-547.
(Accepted 22 June 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ This work is supported by Department of Science and Technology, Government of India under grant no. SR/S4/MS: 577/09.

    ```
    Copyright (c) 2011 by the Mathematical Association of Thailand.
    All rights reserved.
    ```

