Online ISSN 1686-0209

A New Approximation Method for Equilibrium, Variational Inequality and Fixed Point Problems

Smaila S. Sanni ${ }^{\dagger}$, Eugene C. Ukaegbu ${ }^{\dagger}$ and Yekini Shehu ${ }^{\ddagger, 1}$
${ }^{\dagger}$ Department of Statistics, University of Nigeria, Nsukka, Nigeria
${ }^{\ddagger}$ Department of Mathematics, University of Nigeria, Nsukka, Nigeria
e-mail : deltanougt2006@yahoo.com

Abstract

The purpose of this paper is to construct a new iterative scheme and prove strong convergence theorem for approximation of a common fixed point of a countable family of relatively nonexpansive mappings which is also a common solution to an equilibrium and variational inequality problems in a 2 -uniformly convex and uniformly smooth real Banach space. We apply our result to convex feasibility problem.

Keywords : Relatively nonexpansive mappings; Generalized projection operator; Equilibrium problem; Variational inequality problem; Banach spaces. 2010 Mathematics Subject Classification : 47H06; 47H09; 47J05; 47J25.

1 Introduction

Let E be a real Banach space with dual E^{*} and C be nonempty, closed and convex subset of E. A mapping $T: C \rightarrow C$ is called nonexpansive if

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C . \tag{1.1}
\end{equation*}
$$

A point $x \in C$ is called a fixed point of T if $T x=x$. The set of fixed points of T is denoted by $F(T):=\{x \in C: T x=x\}$.

[^0]The modulus of smoothness of E is the function $\rho_{E}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho_{E}(t):=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1:\|x\| \leq 1,\|y\| \leq t\right\}
$$

E is uniformly smooth if and only if

$$
\lim _{t \rightarrow 0} \frac{\rho_{E}(t)}{t}=0
$$

Let $\operatorname{dim} E \geq 2$. The modulus of convexity of E is the function $\delta_{E}:(0,2] \rightarrow[0,1]$ defined by

$$
\delta_{E}(\epsilon):=\inf \left\{1-\left\|\frac{x+y}{2}\right\|:\|x\|=\|y\|=1 ; \epsilon=\|x-y\|\right\}
$$

E is uniformly convex if for any $\epsilon \in(0,2]$, there exists a $\delta=\delta(\epsilon)>0$ such that if $x, y \in E$ with $\|x\| \leq 1, \quad\|y\| \leq 1$ and $\|x-y\| \geq \epsilon$, then $\left\|\frac{1}{2}(x+y)\right\| \leq 1-\delta$. Equivalently, E is uniformly convex if and only if $\delta_{E}(\epsilon)>0$ for all $\epsilon \in(0,2]$. A normed space E is called strictly convex if for all $x, y \in E, \quad x \neq y, \quad\|x\|=\|y\|=1$, we have $\|\lambda x+(1-\lambda) y\|<1, \quad \forall \lambda \in(0,1)$.

We denote by J the normalized duality mapping from E to $2^{E^{*}}$ defined by

$$
J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}
$$

The following properties of J are well known (The reader can consult [1-3] for more details):

1. If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each bounded subset of E.
2. $J(x) \neq \emptyset, \quad x \in E$.
3. If E is reflexive, then J is a mapping from E onto E^{*}.
4. If E is smooth, then J is single valued.

Let E be a smooth, strictly convex and reflexive real Banach space and let C be a nonempty, closed and convex subset of E. Following Alber [4], the generalized projection Π_{C} from E onto C is defined by

$$
\Pi_{C}(x):=\operatorname{argmin} \min _{y \in C} \phi(y, x), \quad \forall x \in E
$$

The existence and uniqueness of Π_{C} follows from the property of the functional $\phi(x, y)$ and strict monotonicity of the mapping J (see, for example, [3-7]). If E is a Hilbert space, then Π_{C} is the metric projection of H onto C.

Throughout this paper, we denote by ϕ, the functional on $E \times E$ defined by

$$
\begin{equation*}
\phi(x, y)=\|x\|^{2}-2\langle x, J(y)\rangle+\|y\|^{2}, \quad \forall x, y \in E \tag{1.2}
\end{equation*}
$$

It is obvious from (1.2) that

$$
\begin{equation*}
(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2}, \quad \forall x, y \in E \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi\left(x, J^{-1}\left(\sum_{i=1}^{n} \lambda_{i} J x_{i}\right)\right) \leq \sum_{i=1}^{n} \lambda_{i} \phi\left(x, x_{i}\right) \tag{1.4}
\end{equation*}
$$

for all $\lambda_{i} \in[0,1]$ and $x, x_{i} \in E, \forall i=1,2, \ldots, n$ such that $\sum_{i=1}^{n} \lambda_{i}=1$.
Definition 1.1. Let C be a nonempty subset of E and let $\left\{T_{n}\right\}_{n=0}^{\infty}$ be a countable family of mappings from C into E. A point $p \in C$ is said to be an asymptotic fixed point of $\left\{T_{n}\right\}_{n=0}^{\infty}$ if C contains a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ which converges weakly to p and $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$. The set of asymptotic fixed points of $\left\{T_{n}\right\}_{n=0}^{\infty}$ is denoted by $\widehat{F}\left(\left\{T_{n}\right\}_{n=0}^{\infty}\right)$. We say that $\left\{T_{n}\right\}_{n=0}^{\infty}$ is countable family of relatively nonexpansive mappings (see, for example, [8]) if the following conditions are satisfied:
(R1) $F\left(\left\{T_{n}\right\}_{n=0}^{\infty}\right) \neq \emptyset$;
(R2) $\phi\left(p, T_{n} x\right) \leq \phi(p, x), \forall x \in C, p \in F\left(T_{n}\right), n \geq 0$;
(R3) $\cap_{n=0}^{\infty} F\left(T_{n}\right)=\widehat{F}\left(\left\{T_{n}\right\}_{n=0}^{\infty}\right)$.
Definition 1.2. A point $p \in C$ is said to be an asymptotic fixed point of T if C contains a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ which converges weakly to p and $\lim _{n \rightarrow \infty} \| x_{n}-$ $T x_{n} \|=0$. The set of asymptotic fixed points of T is denoted by $\widehat{F}(T)$. We say that a mapping T is relatively nonexpansive (see, for example, [9-14]) if the following conditions are satisfied:
(R1) $F(T) \neq \emptyset$;
(R2) $\phi(p, T x) \leq \phi(p, x), \forall x \in C, \quad p \in F(T) ;$
(R3) $F(T)=\widehat{F}(T)$.
Definition 1.2 is a special form of Definition 1.1 as $T_{n} \equiv T, \quad \forall n \geq 0$. If T satisfies $(R 1)$ and $(R 2)$, then T is said to be relatively quasi-nonexpansive. It is easy to see that the class of relatively quasi-nonexpansive mappings contains the class of relatively nonexpansive mappings. Many authors have studied the methods of approximating the fixed points of relatively quasi-nonexpansive mappings (see, for example, $[15,16]$ the references contained therein). Clearly, in Hilbert space H, relatively quasi-nonexpansive mappings and quasi-nonexpansive mappings are the same, for $\phi(x, y)=\|x-y\|^{2}, \quad \forall x, y \in H$ and this implies that

$$
\phi(p, T x) \leq \phi(p, x) \Leftrightarrow\|T x-p\| \leq\|x-p\|, \quad \forall x \in C, \quad p \in F(T)
$$

It is known that the generalized projection mapping Π_{C} is relatively quasi-nonexpansive and $F\left(\Pi_{C}\right)=C$ (see, for example, [16]).

Let F be a bifunction of $C \times C$ into \mathbb{R}. The equilibrium problem (see, for example, [17-29]) is to find $x^{*} \in C$ such that

$$
\begin{equation*}
F\left(x^{*}, y\right) \geq 0, \quad \forall y \in C . \tag{1.5}
\end{equation*}
$$

We shall denote the solutions set of (1.5) by $E P(F)$. Numerous problems in Physics, optimization and economics reduce to find a solution of problem (1.5). The equilibrium problems include fixed point problems, optimization problems and variational inequality problems as special cases (see, for example, [30]).
For solving the equilibrium problem for a bifunction $F: C \times C \rightarrow \mathbb{R}$, let us assume that F satisfies the following conditions:
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) F is monotone, i.e., $F(x, y)+F(y, x) \leq 0$ for all $x, y, \in C$;
(A3) for each $x, y \in C, \lim _{n \rightarrow \infty} F(t z+(1-t) x, y) \leq F(x, y)$;
(A4) for each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.
An operator $B: C \rightarrow E^{*}$ is called α-inverse-strongly monotone, if there exists a positive real number α such that

$$
\begin{equation*}
\langle x-y, B x-B y\rangle \geq \alpha\|B x-B y\|^{2}, \quad \forall x, y \in C, \tag{1.6}
\end{equation*}
$$

and A is said to be monotone if

$$
\begin{equation*}
\langle x-y, B x-B y\rangle \geq 0, \quad \forall x, y \in C . \tag{1.7}
\end{equation*}
$$

Let B be a monotone operator from C into E^{*}, the classical variational inequality (see, for example, [31]), denoted by $V I(C, B)$, is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle y-x^{*}, B x^{*}\right\rangle \geq 0, \quad \forall y \in C . \tag{1.8}
\end{equation*}
$$

The variational inequality (1.8) is connected with the convex minimization problem, the complementarity problem, the problem of finding a point $x^{*} \in E$ such that $B x^{*}=0$ and so on.

It is well known that for a nonexpansive mapping T with $F(T) \neq \emptyset$, the classical Picard iteration sequence $x_{n+1}=T x_{n}, x_{1} \in D(T)$ does not always converge. An iterative process commonly used for finding fixed points of nonexpansive mappings is the following: For a convex subset C of a Banach space E and $T: C \rightarrow C$, the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is defined iteratively by $x_{1} \in C$,

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, \quad n \geq 1, \tag{1.9}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is a sequence in $[0,1]$ satisfying the following conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$; (ii) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. The sequence of (1.9) is generally referred to as the Mann sequence in the light of [32]. It is generally known that the Mann iterative sequence (1.9) converges weakly to a fixed point of T (see, for example,
[33]). Motivated by (1.9), Matsushita and Takahashi [34] considered the following iterative scheme: $x_{0} \in C$,

$$
\begin{equation*}
\left.x_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T x_{n}\right)\right), \quad n \geq 0 \tag{1.10}
\end{equation*}
$$

and proved weak convergence theorems for approximation of a fixed point of relatively nonexpansive mapping T in uniformly convex and uniformly smooth Banach space under appropriate conditions. In order to obtain strong convergence, Matsushita and Takahashi [12] introduced a hybrid iterative scheme for approximation of fixed points of relatively nonexpansive mapping T in a uniformly convex real Banach space which is also uniformly smooth: $x_{0} \in C$,

$$
\left\{\begin{array}{l}
y_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T x_{n}\right), \tag{1.11}\\
H_{n}=\left\{w \in C: \phi\left(w, y_{n}\right) \leq \phi\left(w, x_{n}\right)\right\}, \\
W_{n}=\left\{w \in C:\left\langle x_{n}-w, J x_{0}-J x_{n}\right\rangle,\right. \\
x_{n+1}=\Pi_{H_{n} \cap W_{n}} x_{0}, \quad n \geq 0 .
\end{array}\right.
$$

They proved that $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $\Pi_{F(T)} x_{0}$, where $F(T) \neq \emptyset$.
One method for solving a point $x^{*} \in V I(C, B)$ is using the projection algorithm which starts with any $x_{1}=x \in C$ and

$$
x_{n+1}=P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right), \quad n \geq 1
$$

P_{C} is the metric projection from real Hilbert H onto C and $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive real numbers. For finding an element of $F(T) \cap V I(C, B)$, Takahashi and Toyoda [35] introduced the following iterative scheme: $x_{1} \in C$, and

$$
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right), \quad n \geq 1
$$

and obtained a weak convergence theorem in a Hilbert space. Recently, Iiduka and Takahashi [36] proposed a new iterative scheme: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right), \quad n \geq 1
$$

and obtained a strong convergence theorem in a Hilbert space. In the case when the space is a Banach space E, for finding a unique solution $V I(C, B)$, Alber [4] introduced the following iterative scheme: $x_{1}=x \in E$, and

$$
x_{n+1}=\Pi_{C} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right), \quad n \geq 1
$$

He proved that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to a unique element of z of $V I(C, B)$.
Motivated by Alber [4], Iiduka and Takahashi [37] introduced the following iterative scheme for finding a zero point of an inverse-strongly monotone operator B in a 2-uniformly convex and uniformly smooth Banach space:

$$
\left\{\begin{array}{l}
x_{1}=x \in E \\
y_{n}=J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right) \\
H_{n}=\left\{w \in E: \phi\left(w, y_{n}\right) \leq \phi\left(w, x_{n}\right)\right\} \\
W_{n}=\left\{w \in E:\left\langle x_{n}-w, J x-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{H_{n} \cap W_{n}} x_{0}, \quad n \geq 1
\end{array}\right.
$$

They proved strong convergence theorem of the scheme under the conditions that B is α-inverse-strongly monotone and $A^{-1} 0 \neq \emptyset$.

In [34], Matsushita and Takahashi considered the following iterative scheme: $x_{0} \in C$,

$$
\begin{equation*}
\left.x_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T x_{n}\right)\right), \quad n \geq 0 \tag{1.12}
\end{equation*}
$$

and proved weak convergence theorems for approximation of a fixed point of relatively nonexpansive mapping T in uniformly convex and uniformly smooth Banach space under appropriate conditions.

In [14], Takahashi and Zembayashi introduced the following hybrid iterative scheme for approximation of fixed point of relatively nonexpansive mapping which is also a solution to an equilibrium problem in a uniformly convex real Banach space which is also uniformly smooth: $x_{0} \in C, C_{1}=C, x_{1}=\Pi_{C_{1}} x_{0}$,

$$
\left\{\begin{array}{l}
y_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T x_{n}\right), \\
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left(y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0, \forall y \in C, \\
C_{n+1}=\left\{w \in C_{n}: \phi\left(w, u_{n}\right) \leq \phi\left(w, x_{n}\right)\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 1,
\end{array}\right.
$$

where J is the duality mapping on E. Then, they proved that $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $\Pi_{\Omega} x_{0}$, where $\Omega=E P(F) \cap F(T) \neq \emptyset$.

Another iteration process which has been found to be successful for approximating fixed points of nonexpansive maps is the Halpern iteration process (see, for example, [38]). Let C be a nonempty, closed and convex subset of a Hilbert space and $T: C \rightarrow C$ be a nonexpansive mapping. Assume that $F(T) \neq \emptyset$. For fixed $u \in C$, let the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ be generated by $x_{1} \in C$,

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}, \tag{1.13}
\end{equation*}
$$

for all $n \geq 1$. He proved strong convergence of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ to a fixed point of T, where $\alpha_{n}:=n^{-a}, a \in(0,1)$. He pointed out that the conditions $(C 1): \lim _{n \rightarrow \infty} \alpha_{n}=0$ and (C2): $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ are necessary for the convergence of the Halpern iteration (1.13) to a fixed point of T. The iteration process (1.13) has been proved to be strongly convergent for nonexpansive mapping T both in Hilbert spaces [38-40] and uniformly smooth Banach spaces [41, 42] when the sequence $\left\{\alpha_{n}\right\}$ satisfies the conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and
(iii) either $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\alpha_{n+1}}=1$.

In [43], Plubtieng and Ungchittrakool introduced the following hybrid projec-
tion algorithm for a pair of relatively nonexpansive mappings T and $S: x_{0} \in C$,

$$
\left\{\begin{array}{l}
z_{n}=J^{-1}\left(\beta_{n}^{(1)} J x_{n}+\beta_{n}^{(2)} J T x_{n}+\beta_{n}^{(3)} J S x_{n}\right) \tag{1.14}\\
y_{n}=J^{-1}\left(\alpha_{n} J x_{0}+\left(1-\alpha_{n}\right) J z_{n}\right) \\
C_{n}=\left\{z \in C: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)+\alpha_{n}\left(\left\|x_{0}\right\|^{2}+2\left\langle w, J x_{n}-J x_{0}\right\rangle\right)\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{n}-J x_{0}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}^{(1)}\right\},\left\{\beta_{n}^{(2)}\right\}$ and $\left\{\beta_{n}^{(3)}\right\}$ are sequences in $(0,1)$ satisfying $\beta_{n}^{(1)}+\beta_{n}^{(2)}+$ $\beta_{n}^{(3)}=1$ and T and S are relatively nonexpansive mappings and J is the singlevalued duality mapping on E. They proved under the appropriate conditions on the parameters that the sequence $\left\{x_{n}\right\}$ generated by (1.14) converges strongly to a common fixed point of T and S.

Motivated by (1.13), Kohsaka and Takahashi, [44] introduced and studied the following iterative scheme: $x=x_{0} \in E$,

$$
\begin{equation*}
x_{n+1}=J^{-1}\left(\alpha_{n} J x+\left(1-\alpha_{n}\right) J J_{r_{n}} x_{n}\right), \quad n \geq 0 \tag{1.15}
\end{equation*}
$$

where J is the duality mapping and $J_{r}=(J+r A)^{-1} J$ for all $r>0$. They proved that if $A^{-1} 0 \neq \emptyset, \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} r_{n}=\infty$, then the sequence generated by (1.15) converges strongly to an element of $A^{-1} 0$.

Quite recently, Nilsrakoo and Saejung, [45] proved the following strong convergence theorem for approximation of fixed point of relatively nonexpansive mapping in a uniformly convex and uniformly smooth Banach space.

Theorem 1.3 (Nilsrakoo and Saejung [45]). Let C be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth Banach space E and T be a relatively nonexpansive mapping from C into E. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences in $(0,1)$ satisfying: (i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$, (ii) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and (iii) $0<$ $\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Then $\left\{x_{n}\right\}$ defined by $u \in E, x_{1} \in C$,

$$
\begin{equation*}
x_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J u+\left(1-\alpha_{n}\right)\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J T x_{n}\right)\right), \quad n \geq 1 \tag{1.16}
\end{equation*}
$$

converges strongly to $\Pi_{F(T)} u$, where $\Pi_{F(T)}$ is the generalized projection of E onto $F(T)$.

Motivated by the above mentioned results and the on-going research, it is our purpose in this paper to introduce a new iterative scheme and prove strong convergence theorem for a countable family of relatively nonexpansive mappings which is also a common solution to an equilibrium and variational inequality problems in a 2 -uniformly convex and uniformly smooth real Banach space. We also apply our result to convex feasibility problem.

2 Preliminaries

We know that the following lemmas hold for generalized projections.

Lemma 2.1 (Alber [4], Kamimura and Takahashi [7]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. Then

$$
\phi\left(x, \Pi_{C} y\right)+\phi\left(\Pi_{C} y, y\right) \leq \phi(x, y), \quad \forall x \in C, \forall y \in E
$$

Lemma 2.2 (Alber [4], Kamimura and Takahashi [7]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. Let $x \in E$ and $z \in C$. Then

$$
z=\Pi_{C} x \Leftrightarrow\langle y-z, J(x)-J(z)\rangle \leq 0, \quad \forall y \in C
$$

Lemma 2.3 (Matsushita and Takahashi [12]). Let C be a nonempty, closed and convex subset of a smooth, strictly convex Banach space E. Let T be a relatively nonexpansive mapping of C into itself. Then $F(T)$ is closed and convex.

Let C be a nonempty, closed and convex subset of a smooth, uniformly convex Banach space E and J be the duality mapping from E into E^{*}. Then J^{-1} is single-valued, one-one and surjective and it is the duality mapping from E^{*} into E. We make use of the following function V as studied by Alber [4]:

$$
\begin{equation*}
V\left(x, x^{*}\right)=\|x\|^{2}-2\left\langle x, x^{*}\right\rangle+\|y\|^{2} \tag{2.1}
\end{equation*}
$$

for all $x \in E$ and $x^{*} \in E^{*}$. Thus, $V\left(x, x^{*}\right)=\phi\left(x, J^{-1}\left(x^{*}\right)\right)$ for all $x \in E$ and $x^{*} \in E^{*}$. We know the following lemma from Alber [4].

Lemma 2.4 (Alber [4]). Let E be a real reflexive, strictly convex and Banach space and V be as in (2.1). Then

$$
V\left(x, x^{*}\right)+2\left\langle J^{-1}\left(x^{*}\right)-x, y^{*}\right\rangle \leq V\left(x, x^{*}+y^{*}\right)
$$

for all $x \in E$ and $x^{*}, y^{*} \in E^{*}$.
Also, this following lemma holds in a uniformly convex real Banach space.
Lemma 2.5 (Chang et al. [46]). Let E be a uniformly convex real Banach space. For arbitrary $r>0$, let $B_{r}(0):=\{x \in E:\|x\| \leq r\}$. Then, for any given sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset B_{r}(0)$ and for any given sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that $\sum_{i=1}^{\infty} \lambda_{i}=1$, there exists a continuous strictly increasing convex function

$$
g:[0,2 r] \rightarrow \mathbb{R}, \quad g(0)=0
$$

such that for any positive integers i, j with $i<j$, the following inequality holds:

$$
\left\|\sum_{n=1}^{\infty} \lambda_{n} x_{n}\right\|^{2} \leq \sum_{n=1}^{\infty} \lambda_{n}\left\|x_{n}\right\|^{2}-\lambda_{i} \lambda_{j} g\left(\left\|x_{i}-x_{j}\right\|\right)
$$

The following lemma is an analogue of Lemma 2.5 with respect to ϕ.

Lemma 2.6. Let E be a uniformly convex real Banach space. For arbitrary $r>0$, let $B_{r}(0):=\{x \in E:\|x\| \leq r\}$. Then, for any given sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset B_{r}(0)$ and for any given sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that $\sum_{i=1}^{\infty} \lambda_{i}=1$, there exists a continuous strictly increasing convex function

$$
g:[0,2 r] \rightarrow \mathbb{R}, \quad g(0)=0
$$

such that for any positive integers i, j with $i<j$, the following inequality holds:

$$
\phi\left(x, J^{-1}\left(\sum_{n=1}^{\infty} \lambda_{n} J x_{n}\right)\right) \leq \sum_{n=1}^{\infty} \lambda_{n} \phi\left(x, x_{n}\right)-\lambda_{i} \lambda_{j} g\left(\left\|J x_{i}-J x_{j}\right\|\right)
$$

It is easy to see that if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences of a smooth Banach space E, then $x_{n}-y_{n} \rightarrow 0, n \rightarrow \infty$ implies that $\phi\left(x_{n}, y_{n}\right) \rightarrow 0, n \rightarrow \infty$.

Lemma 2.7 (Blum and Oettli [30]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r>0$ and $x \in E$. Then, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0 \text { for all } y \in C
$$

Lemma 2.8 (Takahashi and Zembayashi [47]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. Assume that $F: C \times C \rightarrow \mathbb{R}$ satisfies (A1)-(A4). For $r>0$ and $x \in E$, define a mapping $T_{r}: E \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}
$$

for all $z \in E$. Then, the following hold:

1. T_{r} is single-valued;
2. T_{r} is firmly nonexpansive-type mapping, i.e., for any $x, y \in E$,

$$
\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle \leq\left\langle T_{r} x-T_{r} y, J x-J y\right\rangle
$$

3. $F\left(T_{r}\right)=E P(F)$;
4. $E P(F)$ is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [47]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. Assume that $F: C \times C \rightarrow \mathbb{R}$ satisfies $(A 1)-(A 4)$ and let $r>0$. Then for each $x \in E$ and $q \in F\left(T_{r}\right)$,

$$
\phi\left(q, T_{r} x\right)+\phi\left(T_{r} x, x\right) \leq \phi(q, x)
$$

Also, this following lemma will be used in the sequel.
Lemma 2.10 (Kamimura and Takahashi [7]). Let C be a nonempty closed convex subset of a smooth, uniformly convex Banach space E. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences in E such that either $\left\{x_{n}\right\}_{n=1}^{\infty}$ or $\left\{y_{n}\right\}_{n=1}^{\infty}$ is bounded. If $\lim _{n \rightarrow \infty} \phi\left(x_{n}, y_{n}\right)=0$, then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 2.11 (Xu [48]). Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the following relation:

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \sigma_{n}+\gamma_{n}, n \geq 0
$$

where, (i) $\left\{\alpha_{n}\right\} \subset[0,1], \sum \alpha_{n}=\infty$; (ii) limsup $\sigma_{n} \leq 0 ;(i i i) \gamma_{n} \geq 0 ;(n \geq 0)$, $\sum \gamma_{n}<\infty$. Then, $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 2.12 (Mainge [49]). Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that $a_{n_{i}}<a_{n_{i}+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\left\{m_{k}\right\} \subset \mathbb{N}$ such that $m_{k} \rightarrow \infty$ and the following properties are satisfied by all (sufficiently large) numbers $k \in \mathbb{N}$:

$$
a_{m_{k}} \leq a_{m_{k}+1} \text { and } a_{k} \leq a_{m_{k}+1} .
$$

In fact, $m_{k}=\max \left\{j \leq k: a_{j}<a_{j+1}\right\}$.
Lemma 2.13 (Beauzamy [50]). Let E be a 2-uniformly convex Banach space, then for all x, y from any bounded set of E and $j x \in J x, \quad j y \in J y$, we have

$$
\langle x-y, j x-j y\rangle \geq \frac{c^{2}}{2}\|x-y\|^{2},
$$

where $\frac{1}{c}$ is the 2-uniformly constant of E.
Lemma 2.14 (Rockafellar [51]). Let C be a nonempty, closed and convex subset of a Banach space E and let B be a monotone and hemicontinuous operator of C into E^{*} with $C=D(A)$. Let $B \subset E \times E^{*}$ be an operator defined as follows:

$$
M v:=\left\{\begin{array}{l}
B v+N_{C}(v), \quad v \in C \\
\emptyset, v \notin C .
\end{array}\right.
$$

Then M is maximal monotone and $M^{-1}(0)=V I(C, B)$.
In this paper, we shall assume that
(B1) B is α-inverse strongly monotone;
(B2) $\|B y\| \leq\|B y-B u\|$ for all $y \in C$ and $u \in V I(C, B)$;
(B3) $V I(C, B) \neq \emptyset$.

3 Main Results

Theorem 3.1. Let E be a 2-uniformly convex real Banach space which is also uniformly smooth. Let C be a nonempty, closed and convex subset of E. Let F be a bifunction from $C \times C \rightarrow \mathbb{R}$ satisfying $(A 1)-(A 4), B: C \rightarrow E^{*}$ an operator satisfying $(B 1)-(B 3)$ and $\left\{T_{n}\right\}_{n=0}^{\infty}$ a countable family of relatively nonexpansive mappings of C into E such that $\Omega:=\left(\cap_{n=0}^{\infty} F\left(T_{n}\right)\right) \cap E P(F) \cap V I(C, B) \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be sequences in $(0,1)$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$. Suppose $\left\{x_{n}\right\}_{n=0}^{\infty}$ is iteratively generated by $u, u_{0} \in E$,

$$
\left\{\begin{array}{l}
y_{n}=\Pi_{C} J^{-1}\left(J u_{n}-r_{n} B u_{n}\right), \tag{3.1}\\
x_{n}=T_{r_{n}} y_{n}, \\
u_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right), \quad n \geq 0,
\end{array}\right.
$$

with the conditions
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<b \leq \beta_{n} \gamma_{n} \leq 1$;
(iii) $0<a \leq r_{n} \leq b<\frac{c^{2} \alpha}{2}$.

Then, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $\Pi_{\Omega} u$.
Proof. Let $x^{*} \in \Omega$. Then, we obtain

$$
\begin{align*}
\phi\left(x^{*}, y_{n}\right)= & \phi\left(x^{*}, \Pi_{C} J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)\right) \\
\leq & \phi\left(x^{*}, J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)\right) \\
= & V\left(x^{*}, J u_{n}-r_{n} B u_{n}\right) \\
\leq & V\left(x^{*},\left(J u_{n}-r_{n} B u_{n}\right)+r_{n} B u_{n}\right) \\
& -2\left\langle J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-x^{*}, r_{n} B u_{n}\right\rangle \\
= & V\left(x^{*}, J u_{n}\right)-2 r_{n}\left\langle J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-x^{*}, B u_{n}\right\rangle \\
= & \phi\left(x^{*}, u_{n}\right)-2 r_{n}\left\langle u_{n}-x^{*}, B u_{n}\right\rangle \\
& +2\left\langle J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-u_{n},-r_{n} B u_{n}\right\rangle . \tag{3.2}
\end{align*}
$$

From condition $(B 1)$ and $x^{*} \in V I(C, B)$, we obtain

$$
\begin{align*}
-2 r_{n}\left\langle u_{n}-x^{*}, B u_{n}\right\rangle & =-2 r_{n}\left\langle u_{n}-x^{*}, B u_{n}-B x^{*}\right\rangle-2 r_{n}\left\langle u_{n}-x^{*}, B x^{*}\right\rangle \\
& \leq-2 \alpha r_{n}\left\|B u_{n}-B x^{*}\right\|^{2} . \tag{3.3}
\end{align*}
$$

By Lemma 2.13 and condition (B2), we also obtain

$$
\begin{align*}
2\left\langleJ ^ { - 1 } \left(J u_{n}-r_{n} B\right.\right. & \left.\left.u_{n}\right)-u_{n},-r_{n} B u_{n}\right\rangle \\
& =2\left\langle J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-J^{-1}\left(J u_{n}\right),-r_{n} B u_{n}\right\rangle \\
& \leq 2\left\|J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-J^{-1}\left(J u_{n}\right)\right\|\left\|r_{n} B u_{n}\right\| \\
& \leq \frac{4}{c^{2}}\left\|\left(J u_{n}-r_{n} B u_{n}\right)-\left(J u_{n}\right)\right\|\left\|r_{n} B u_{n}\right\| \\
& =\frac{4}{c^{2}} r_{n}^{2}\left\|B u_{n}\right\|^{2} \\
& \leq \frac{4}{c^{2}} r_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \tag{3.4}
\end{align*}
$$

Combining (3.2), (3.3) and (3.4) and $0<a \leq r_{n} \leq b<\frac{c^{2} \alpha}{2}$, we obtain

$$
\begin{equation*}
\phi\left(x^{*}, y_{n}\right) \leq \phi\left(x^{*}, u_{n}\right)-2 \alpha r_{n}\left\|B u_{n}-B x^{*}\right\|^{2}+\frac{4}{c^{2}} r_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \tag{3.5}
\end{equation*}
$$

From (3.5), we have that

$$
\begin{align*}
\phi\left(x^{*}, y_{n}\right) & \leq \phi\left(x^{*}, u_{n}\right)+2 r_{n}\left(\frac{2}{c^{2}} r_{n}-\alpha\right)\left\|B u_{n}-B x^{*}\right\|^{2} \\
& \leq \phi\left(x^{*}, u_{n}\right) \tag{3.6}
\end{align*}
$$

Using (3.1), (3.6) and the fact that $T_{r_{n}}$ is relatively quasi-nonexpansive, we have

$$
\begin{align*}
\phi\left(x^{*}, x_{n+1}\right) & =\phi\left(x^{*}, T_{r_{n+1}} y_{n+1}\right) \leq \phi\left(x^{*}, y_{n+1}\right) \leq \phi\left(x^{*}, u_{n+1}\right) \tag{3.7}\\
& =\phi\left(x^{*}, J^{-1}\left(\alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right)\right) \\
& \leq \alpha_{n} \phi\left(x^{*}, u\right)+\beta_{n} \phi\left(x^{*}, x_{n}\right)+\gamma_{n} \phi\left(x^{*}, T_{n} x_{n}\right) \\
& \leq \alpha_{n} \phi\left(x^{*}, u\right)+\beta_{n} \phi\left(x^{*}, x_{n}\right)+\gamma_{n} \phi\left(x^{*}, x_{n}\right) \\
& =\alpha_{n} \phi\left(x^{*}, u\right)+\left(1-\alpha_{n}\right) \phi\left(x^{*}, x_{n}\right) \\
& \leq \max \left\{\phi\left(x^{*}, u\right), \phi\left(x^{*}, x_{n}\right)\right\} \\
& \vdots \\
& \leq \max \left\{\phi\left(x^{*}, u\right), \phi\left(x^{*}, x_{0}\right)\right\} .
\end{align*}
$$

Hence, $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded and also is $\left\{T_{n} x_{n}\right\}_{n=0}^{\infty}$. Since E is uniformly smooth, E^{*} is uniformly convex. Then from Lemma 2.6 , we have for some $M>0$ that

$$
\begin{align*}
\phi\left(x^{*}, x_{n+1}\right) \leq & \phi\left(x^{*}, u_{n+1}\right) \leq \alpha_{n} \phi\left(x^{*}, u\right)+\beta_{n} \phi\left(x^{*}, x_{n}\right)+\gamma_{n} \phi\left(x^{*}, T_{n} x_{n}\right) \\
& -\beta_{n} \gamma_{n} g\left(\left\|J x_{n}-J T_{n} x_{n}\right\|\right) \\
\leq & \alpha_{n} \phi\left(x^{*}, u\right)+\left(1-\alpha_{n}\right) \phi\left(x^{*}, x_{n}\right)-\beta_{n} \gamma_{n} g\left(\left\|J x_{n}-J T_{n} x_{n}\right\|\right) \\
\leq & \alpha_{n} M+\phi\left(x^{*}, x_{n}\right)-\beta_{n} \gamma_{n} g\left(\left\|J x_{n}-J T_{n} x_{n}\right\|\right) . \tag{3.8}
\end{align*}
$$

This implies that

$$
\begin{align*}
0<b g\left(\left\|J x_{n}-J T_{n} x_{n}\right\|\right) & \leq \beta_{n} \gamma_{n} g\left(\left\|J x_{n}-J T_{n} x_{n}\right\|\right) \\
& \leq \alpha_{n} M+\phi\left(x^{*}, x_{n}\right)-\phi\left(x^{*}, x_{n+1}\right) . \tag{3.9}
\end{align*}
$$

Now put $z_{n}:=J^{-1}\left(\alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right), n \geq 0$. Then, we show that

$$
\limsup _{n \rightarrow \infty}\left\langle z_{n}-z, J u-J z\right\rangle \leq 0
$$

where $z:=\Pi_{\Omega} u$. To do this inequality, we choose a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle x_{n}-z, J u-J z\right\rangle=\lim _{j \rightarrow \infty}\left\langle x_{n_{j}}-z, J u-J z\right\rangle
$$

Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ that converges weakly to p. The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists $n_{0} \in \mathbb{N}$ such that $\left\{\phi\left(x^{*}, x_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is nonincreasing. Then $\left\{\phi\left(x^{*}, x_{n}\right)\right\}_{n=0}^{\infty}$ converges and $\phi\left(x^{*}, x_{n}\right)-\phi\left(x^{*}, x_{n+1}\right) \rightarrow 0, n \rightarrow \infty$. This implies from (3.9) and condition (i) that

$$
g\left(\left\|J x_{n}-J T_{n} x_{n}\right\|\right) \rightarrow 0, \quad n \rightarrow \infty
$$

By property of g, we have

$$
\left\|J x_{n}-J T_{n} x_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

Since J^{-1} is also uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\left\|x_{n}-T_{n} x_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty . \tag{3.10}
\end{equation*}
$$

This implies that

$$
\phi\left(x_{n}, T_{n} x_{n}\right) \rightarrow 0, \quad n \rightarrow \infty
$$

Since $x_{n_{j}} \rightharpoonup p$ and $\left\{T_{n}\right\}_{n=0}^{\infty}$ are uniformly closed, we have $p \in\left(\cap_{n=0}^{\infty} F\left(T_{n}\right)\right)$.
Next, we show that $p \in V I(C, B)$. From (3.5) and (3.7), we obtain

$$
\begin{align*}
\phi\left(x^{*}, x_{n}\right) \leq & \phi\left(x^{*}, u_{n}\right)-2 \alpha r_{n}\left\|B u_{n}-B x^{*}\right\|^{2}+\frac{4}{c^{2}} r_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \\
= & \phi\left(x^{*}, u_{n}\right)+2 r_{n}\left(\frac{2}{c^{2}} r_{n}-\alpha\right)\left\|B u_{n}-B x^{*}\right\|^{2} \\
\leq & \alpha_{n-1} \phi\left(x^{*}, u\right)+\left(1-\alpha_{n-1}\right) \phi\left(x^{*}, x_{n-1}\right) \\
& +2 r_{n}\left(\frac{2}{c^{2}} r_{n}-\alpha\right)\left\|B u_{n}-B x^{*}\right\|^{2} \tag{3.11}\\
\leq & \alpha_{n-1} \phi\left(x^{*}, u\right)+\phi\left(x^{*}, x_{n-1}\right)+2 r_{n}\left(\frac{2}{c^{2}} r_{n}-\alpha\right)\left\|B u_{n}-B x^{*}\right\|^{2} .
\end{align*}
$$

Hence, we obtain
$-2 r_{n}\left(\frac{2}{c^{2}} r_{n}-\alpha\right)\left\|B u_{n}-B x^{*}\right\|^{2} \leq \alpha_{n-1} \phi\left(x^{*}, u\right)+\phi\left(x^{*}, x_{n-1}\right)-\phi\left(x^{*}, x_{n}\right) \rightarrow 0$,
as $n \rightarrow \infty$. Since $0<a \leq r_{n} \leq b<\frac{c^{2} \alpha}{2}$, we obtain from the last inequality that

$$
\lim _{n \rightarrow \infty}\left\|B u_{n}-B x^{*}\right\|=0
$$

By Lemma 2.4 and (3.4), we have

$$
\begin{align*}
\phi\left(u_{n}, y_{n}\right)= & \phi\left(u_{n}, \Pi_{C} J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)\right) \leq \phi\left(u_{n}, J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)\right) \\
= & V\left(u_{n}, J u_{n}-r_{n} B u_{n}\right) \\
\leq & V\left(u_{n},\left(J u_{n}-r_{n} B u_{n}\right)+r_{n} B u_{n}\right) \\
& -2\left\langle J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-u_{n}, r_{n} B u_{n}\right\rangle \\
= & \phi\left(u_{n}, u_{n}\right)+2\left\langle J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-u_{n},-r_{n} B u_{n}\right\rangle \\
= & 2\left\langle J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)-u_{n},-r_{n} B u_{n}\right\rangle \\
\leq & \frac{4}{c^{2}} b^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \rightarrow 0, \quad n \rightarrow \infty \tag{3.12}
\end{align*}
$$

It then follows from Lemma 2.10 that $\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0$. Since J is uniformly norm-to-norm continuous on bounded sets and $\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0$, we obtain

$$
\lim _{n \rightarrow \infty}\left\|J y_{n}-J u_{n}\right\|=0
$$

Now, let $B \subset E \times E^{*}$ be an operator as follows:

$$
M v:=\left\{\begin{array}{l}
B v+N_{C}(v), \quad v \in C \\
\emptyset, \quad v \notin C .
\end{array}\right.
$$

By Lemma 2.14, M is maximal monotone and $M^{-1}(0)=V I(C, B)$. Let $(v, w) \in$ $G(M)$. Since $w \in M v=B v+N_{C}(v)$, we have $w-B v \in N_{C}(v)$. Since $y_{n} \in C$, we get

$$
\begin{equation*}
\left\langle v-y_{n}, w-B v\right\rangle \geq 0 \tag{3.13}
\end{equation*}
$$

On the other hand, from $y_{n}=\Pi_{C} J^{-1}\left(J u_{n}-r_{n} B u_{n}\right)$ and Lemma 2.2 we obtain

$$
\left\langle v-y_{n}, J y_{n}-\left(J u_{n}-r_{n} B u_{n}\right)\right\rangle \geq 0
$$

and hence

$$
\begin{equation*}
\left\langle v-y_{n}, \frac{J u_{n}-J y_{n}}{r_{n}}-B u_{n}\right\rangle \leq 0 \tag{3.14}
\end{equation*}
$$

Then, by (3.13), (3.14) and replacing n by n_{j}, we obtain that

$$
\begin{align*}
\left\langle v-y_{n_{j}}, w\right\rangle \geq & \left\langle v-y_{n_{j}}, B v\right\rangle \\
\geq & \left\langle v-y_{n_{j}}, B v\right\rangle+\left\langle v-y_{n_{j}}, \frac{J u_{n_{j}}-J y_{n_{j}}}{r_{n_{j}}}-B u_{n_{j}}\right\rangle \\
= & \left\langle v-y_{n_{j}}, B v-B u_{n_{j}}+\frac{J u_{n_{j}}-J y_{n_{j}}}{r_{n_{j}}}\right\rangle \\
= & \left\langle v-y_{n_{j}}, B v-B y_{n_{j}}\right\rangle+\left\langle v-y_{n_{j}}, B y_{n_{j}}-B u_{n_{j}}\right\rangle \\
& +\left\langle v-y_{n_{j}}, \frac{J u_{n_{j}}-J y_{n_{j}}}{r_{n_{j}}}\right\rangle \tag{3.15}\\
\geq & -\left\|v-y_{n_{j}}\right\|\left\|B y_{n_{j}}-B u_{n_{j}}\right\|-\left\|v-y_{n_{j}}\right\|\left\|\frac{J u_{n_{j}}-J y_{n_{j}}}{r_{n_{j}}}\right\| .
\end{align*}
$$

Hence, we have $\langle v-p, w\rangle \geq 0$ as $j \rightarrow \infty$, since the uniform continuity of J and B implies that the right side of (3.15) goes to 0 as $j \rightarrow \infty$. Thus, since M is maximal monotone, we have $p \in M^{-1}(0)$ and hence $p \in V I(C, B)$.

Finally, we show that $p \in E P(F)$. Now, by Lemma 2.9, (3.8) and condition (i), we obtain

$$
\begin{aligned}
\phi\left(x_{n}, y_{n}\right) & =\phi\left(T_{r_{n}} y_{n}, y_{n}\right) \\
& \leq \phi\left(x^{*}, y_{n}\right)-\phi\left(x^{*}, x_{n}\right) \\
& \leq \phi\left(x^{*}, u_{n}\right)-\phi\left(x^{*}, x_{n}\right) \\
& \leq \alpha_{n-1} M+\phi\left(x^{*}, x_{n-1}\right)-\phi\left(x^{*}, x_{n}\right) \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Using Lemma 2.10, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$. Now, since $x_{n_{j}} \rightharpoonup p$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$, we obtain that $y_{n_{j}} \rightharpoonup p$. Also, since J is uniformly norm-to-norm continuous on bounded sets and $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$, we obtain

$$
\lim _{n \rightarrow \infty}\left\|J x_{n}-J y_{n}\right\|=0
$$

Since $\liminf \lim _{n \rightarrow \infty} r_{n}>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|J x_{n}-J y_{n}\right\|}{r_{n}}=0 \tag{3.16}
\end{equation*}
$$

Since $x_{n}=T_{r_{n}} u_{n}, n \geq 0$, by Lemma 2.8, we have

$$
F\left(x_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-x_{n}, J x_{n}-J y_{n}\right\rangle \geq 0, \quad \forall y \in C
$$

Furthermore, replacing n by n_{j} in the last inequality and using (A2), we obtain

$$
\begin{equation*}
\frac{1}{r_{n_{j}}}\left\langle y-x_{n_{j}}, J x_{n_{j}}-J y_{n_{j}}\right\rangle \geq F\left(y, x_{n_{j}}\right) \tag{3.17}
\end{equation*}
$$

By $(A 4),(3.16)$ and $x_{n_{j}} \rightharpoonup p$, we have

$$
F(y, p) \leq 0, \quad \forall y \in C
$$

For fixed $y \in C$, let $z_{t, y}:=t y+(1-t) p$ for all $t \in(0,1]$. This implies that $z_{t} \in C$. This yields that $F\left(z_{t}, p\right) \leq 0$. It follows from $(A 1)$ and $(A 4)$ that

$$
\begin{aligned}
0 & =F\left(z_{t}, z_{t}\right) \leq t F\left(z_{t}, y\right)+(1-t) F\left(z_{t}, p\right) \\
& \leq t F\left(z_{t}, y\right)
\end{aligned}
$$

and hence $0 \leq F\left(z_{t}, y\right)$. From condition (A3), we obtain

$$
F(p, y) \geq 0, \quad \forall y \in C
$$

This implies that $p \in E P(F)$. Hence, we have $p \in\left(\cap_{n=0}^{\infty} F\left(T_{n}\right)\right) \cap E P(F) \cap$ $V I(C, B)=\Omega$.

Let $w_{n}:=J^{-1}\left(\frac{\beta_{n}}{1-\alpha_{n}} J x_{n}+\frac{\gamma_{n}}{1-\alpha_{n}} J T_{n} x_{n}\right), \quad n \geq 0$, then

$$
\begin{equation*}
\phi\left(x_{n}, w_{n}\right) \leq \frac{\beta_{n}}{1-\alpha_{n}} \phi\left(x_{n}, x_{n}\right)+\frac{\gamma_{n}}{1-\alpha_{n}} \phi\left(x_{n}, T_{n} x_{n}\right) \rightarrow 0, \quad n \rightarrow \infty . \tag{3.18}
\end{equation*}
$$

By Lemma 2.10, it follows that $\left\|x_{n}-w_{n}\right\| \rightarrow 0, n \rightarrow \infty$. Furthermore,

$$
\begin{align*}
\phi\left(w_{n}, z_{n}\right) & =\phi\left(w_{n}, J^{-1}\left(\alpha_{n} J u+\left(1-\alpha_{n}\right) J w_{n}\right)\right) \\
& \leq \alpha_{n} \phi\left(w_{n}, u\right)+\left(1-\alpha_{n}\right) \phi\left(w_{n}, w_{n}\right) \\
& =\alpha_{n} \phi\left(w_{n}, u\right) \rightarrow 0, \quad n \rightarrow \infty . \tag{3.19}
\end{align*}
$$

Again, by Lemma 2.10, it follows that $\left\|w_{n}-z_{n}\right\| \rightarrow 0, n \rightarrow \infty$. Then

$$
\begin{equation*}
\left\|x_{n}-z_{n}\right\| \leq\left\|w_{n}-z_{n}\right\|+\left\|x_{n}-w_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty . \tag{3.20}
\end{equation*}
$$

By (3.20), and Lemma 2.2, we obtain

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle z_{n}-z, J u-J z\right\rangle & =\limsup _{n \rightarrow \infty}\left\langle x_{n}-z, J u-J z\right\rangle \\
& =\lim _{j \rightarrow \infty}\left\langle x_{n_{j}}-z, J u-J z\right\rangle \\
& =\langle p-z, J u-J z\rangle \leq 0 . \tag{3.21}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\phi\left(z, x_{n+1}\right) \leq & \phi\left(z, J^{-1}\left(\alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right)\right) \\
= & V\left(z, \alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right) \\
\leq & V\left(z, \alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}-\alpha_{n}(J u-J z)\right) \\
& -2\left\langle J^{-1}\left(\alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right)-z,-\alpha_{n}(J u-J z)\right\rangle \\
= & V\left(z, \alpha_{n} J z+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right) \\
& +2 \alpha_{n}\left\langle z_{n}-z, J u-J z\right\rangle \\
= & \phi\left(z, J^{-1}\left(\alpha_{n} J z+\beta_{n} J x_{n}+\gamma_{n} J T_{n} x_{n}\right)\right) \\
& +2 \alpha_{n}\left\langle z_{n}-z, J u-J z\right\rangle \\
\leq & \alpha_{n} \phi(z, z)+\beta_{n} \phi\left(z, x_{n}\right)+\gamma_{n} \phi\left(z, T_{n} x_{n}\right) \\
& +2 \alpha_{n}\left\langle z_{n}-p, J u-J z\right\rangle \\
\leq & \left(1-\alpha_{n}\right) \phi\left(z, x_{n}\right)+2 \alpha_{n}\left\langle z_{n}-z, J u-J z\right\rangle . \tag{3.22}
\end{align*}
$$

Now, using (3.21), (3.22) and Lemma 2.11, we obtain $\phi\left(z, x_{n}\right) \rightarrow 0, n \rightarrow \infty$. Hence, $x_{n} \rightarrow z, n \rightarrow \infty$.

Case 2. Suppose there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that

$$
\phi\left(x^{*}, x_{n_{i}}\right)<\phi\left(x^{*}, x_{n_{i}+1}\right)
$$

for all $i \in \mathbb{N}$. Then, by Lemma 2.12, there exists a nondecreasing sequence $\left\{m_{k}\right\} \subset$ \mathbb{N} such that $m_{k} \rightarrow \infty$,

$$
\phi\left(x^{*}, x_{m_{k}}\right) \leq \phi\left(x^{*}, x_{m_{k}+1}\right) \text { and } \phi\left(x^{*}, x_{k}\right) \leq \phi\left(x^{*}, x_{m_{k}+1}\right)
$$

for all $k \in \mathbb{N}$. This together with (3.9) gives
$0<b g\left(\left\|J x_{m_{k}}-J T_{m_{k}} x_{m_{k}}\right\|\right) \leq \alpha_{m_{k}} M+\phi\left(x^{*}, x_{m_{k}}\right)-\phi\left(x^{*}, x_{m_{k}+1}\right) \leq \alpha_{m_{k}} M$
for all $k \in \mathbb{N}$. It then follows that

$$
g\left(\left\|J x_{m_{k}}-J T_{m_{k}} x_{m_{k}}\right\|\right) \rightarrow 0, \quad k \rightarrow \infty
$$

By the same arguments as in Case 1, we can show that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle z_{m_{k}}-z, J u-J z\right\rangle \leq 0 \tag{3.23}
\end{equation*}
$$

From (3.22), we have

$$
\begin{equation*}
\phi\left(z, x_{m_{k}+1}\right) \leq\left(1-\alpha_{m_{k}}\right) \phi\left(z, x_{m_{k}}\right)+2 \alpha_{m_{k}}\left\langle z_{m_{k}}-z, J u-J z\right\rangle \tag{3.24}
\end{equation*}
$$

Since $\phi\left(z, x_{m_{k}}\right) \leq \phi\left(z, x_{m_{k}+1}\right)$, we have

$$
\begin{aligned}
\alpha_{m_{k}} \phi\left(z, x_{m_{k}}\right) & \leq \phi\left(z, x_{m_{k}}\right)-\phi\left(z, x_{m_{k}+1}\right)+2 \alpha_{m_{k}}\left\langle z_{m_{k}}-z, J u-J z\right\rangle \\
& \leq 2 \alpha_{m_{k}}\left\langle z_{m_{k}}-z, J u-J z\right\rangle .
\end{aligned}
$$

In particular, since $\alpha_{m_{k}}>0$, we get

$$
\begin{equation*}
\phi\left(z, x_{m_{k}}\right) \leq 2\left\langle z_{m_{k}}-z, J u-J z\right\rangle . \tag{3.25}
\end{equation*}
$$

It then follows from (3.23) that $\phi\left(z, x_{m_{k}}\right) \rightarrow 0, k \rightarrow \infty$. From (3.25) and (3.24), we have

$$
\phi\left(z, x_{m_{k}+1}\right) \rightarrow 0, k \rightarrow \infty
$$

Since $\phi\left(z, x_{k}\right) \leq \phi\left(z, x_{m_{k}+1}\right)$ for all $k \in \mathbb{N}$, we conclude that $x_{k} \rightarrow z, k \rightarrow \infty$. This implies that $x_{n} \rightarrow z, n \rightarrow \infty$ and this completes the proof.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C \rightarrow \mathbb{R}$ satisfying ($A 1$) $-(A 4), B: C \rightarrow H$ is α-inverse strongly monotone and T a nonexpansive mapping of C into H such that $\Omega:=F(T) \cap E P(F) \cap V I(C, B) \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be sequences in $(0,1)$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$. Suppose $\left\{x_{n}\right\}_{n=0}^{\infty}$ is iteratively generated by $u, u_{0} \in E$,

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(u_{n}-r_{n} B u_{n}\right) \\
x_{n}=T_{r_{n}} y_{n} \\
u_{n+1}=P_{C}\left(\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T x_{n}\right), \quad n \geq 0
\end{array}\right.
$$

with the conditions
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<b \leq \beta_{n} \gamma_{n} \leq 1$;
(iii) $0<a \leq r_{n} \leq b<2 \alpha$.

Then, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $P_{\Omega} u$.
Next, we apply our Theorem 3.1 to convex feasibility problem. First, we introduce the following lemma which was proved by Reich [52].

Lemma 3.3 (Reich [52]). Let E be a uniformly convex Banach space with uniformly Gâteaux differentiable norm, let $\left\{C_{i}\right\}_{i=1}^{m}$ be a finite family of closed and convex subsets of E and let Π_{i} be the generalized projection from E onto C_{i} for each $i=1,2, \ldots, m$. Then

$$
\phi\left(p, \Pi_{m} \Pi_{m-1} \ldots \Pi_{2} \Pi_{1} x\right) \leq \phi(p, x)
$$

for each $p \in \widehat{F}\left(\Pi_{m} \Pi_{m-1} \ldots \Pi_{2} \Pi_{1}\right), x \in E$ and $\widehat{F}\left(\Pi_{m} \Pi_{m-1} \ldots \Pi_{2} \Pi_{1}\right)=\cap_{i=1}^{m} C_{i}$.
As direct consequence of Theorem 3.1 and Lemma 3.3, we can prove the following result.

Theorem 3.4. Let E be a 2-uniformly convex real Banach space which is also uniformly smooth. Let C be a nonempty, closed and convex subset of E. Let F be a bifunction from $C \times C \rightarrow \mathbb{R}$ satisfying $(A 1)-(A 4), B: C \rightarrow E^{*}$ an operator satisfying $(B 1)-(B 3)$ and let $\left\{C_{i}\right\}_{i=1}^{m}$ be a finite family of closed and convex subsets of E such that $\Omega:=\left(\cap_{i=1}^{m} C_{i}\right) \cap E P(F) \cap V I(C, B) \neq \emptyset$. Let $\left\{\alpha_{n}\right\}$, $\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be sequences in $(0,1)$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$. Suppose $\left\{x_{n}\right\}_{n=0}^{\infty}$ is iteratively generated by $u, u_{0} \in E$,

$$
\left\{\begin{array}{l}
y_{n}=\Pi_{C} J^{-1}\left(J u_{n}-r_{n} B u_{n}\right) \\
x_{n}=T_{r_{n}} y_{n}, \\
u_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J u+\beta_{n} J x_{n}+\gamma_{n} J \Pi_{m} \Pi_{m-1} \ldots \Pi_{2} \Pi_{1} x_{n}\right), \quad n \geq 0
\end{array}\right.
$$

with the conditions
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<b \leq \beta_{n} \gamma_{n} \leq 1$;
(iii) $0<a \leq r_{n} \leq b<\frac{c^{2} \alpha}{2}$.

Then, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $\Pi_{\Omega} u$.
Proof. Put $T:=\Pi_{m} \Pi_{m-1} \ldots \Pi_{2} \Pi_{1}$. It is clear that $F(T) \subset \widehat{F}(T)$ and $\cap_{i=1}^{m} C_{i} \subset$ $F(T)$. By Lemma 3.3, we have that T is a relatively nonexpansive mapping and $F(T)=\cap_{i=1}^{m} C_{i}$. Applying Theorem 3.1, we obtain the desired result.

Acknowledgements : We would like to thank the referee for his comments and suggestions on the manuscript.

References

[1] C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics Vol. 1965 (2009), XVII, 326p, ISBN 978-1-84882-189-7.
[2] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Applications, Yokohama Publishers Inc., Yokohama, 2000.
[3] W. Takahashi, Nonlinear functional analysis, Yokohama Publishers Inc., Yokohama, 2000.
[4] Y.I. Alber, Metric and generalized projection operator in Banach spaces: properties and applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type vol 178 of Lecture Notes in Pure and Applied Mathematics, pp 15-50, Dekker, New York, NY, USA, 1996.
[5] Y.I. Alber, S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994) 39-54.
[6] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Academic, Dordrecht, 1990.
[7] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002) 938-945.
[8] Y. Su, H.K. Xu, X. Zhang, Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications, Nonlinear Anal. 73 (2010) 3890-3906.
[9] D. Butnariu, S. Reich, A.J. Zaslavski, Asymptotic behaviour of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. 7 (2001) 151-174.
[10] D. Butnariu, S. Reich, A.J. Zaslavski, Weak convergence of orbits of nonlinear operator in reflexive Banach spaces, Numer. Funct. Anal. Optim. 24 (2003) 489-508.
[11] Y. Censor, S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996) 323-339.
[12] S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in Banach spaces, J. Approx. Theory 134 (2005) 257266.
[13] X. Qin, Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007) 1958-1965.
[14] W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Applications, Vol. 2008, Article ID 528476, 11 pages.
[15] W. Nilsrakoo, S. Saejung, Strong convergence to common fixed points of countable relatively quasi-nonexpansive mappings, Fixed Point Theory and Applications, Vol. 2008, Article ID 312454, 19 pages.
[16] X. Qin, Y.J. Cho, S.M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009) 20-30.
[17] A. Chinchuluun, P.M. Pardalos, A. Migdalas, L. Pitsoulis, Pareto Optimality, Game Theory and Equilibria Springer-Verlag Series: Optimization and Its Applications, Vol. 17, 2008.
[18] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136.
[19] C.A. Floudas, A. Christodoulos, P.M. Pardalos, Encyclopedia of Optimization - 2ND EDITION, Springer, (2009), XXXIV, 4626 p. 613 illus., ISBN 978-0-387-74760-6.
[20] F. Giannessi, A. Maugeri, P.M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Springer Vol. 58 (2002), ISBN 978-1-4020-0161-1.
[21] L. Lin, System of generalized vector quasi-equilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mappings, J. Global Optim. 34 (1) (2006) 15-32.
[22] Y. Liu, A general iterative method for equilibrium problems and strict pseudocontractions in Hilbert spaces, Nonlinear Anal. 71 (2009) 4852-4861.
[23] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. 9 (2008) 37-43.
[24] P.M. Pardalos, T.M. Rassias, A.A. Khan, Nonlinear Analysis and Variational Problems, Springer, 2010.
[25] S. Plubtieng, R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Appl. Math. Comput. 197 (2008) 548-558.
[26] X. Qin, M. Shang, Y. Su, Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math. Com. Model. 48 (2008) 1033-1046.
[27] Y. Su, M. Shang, X. Qin, An iterative method of solution for equilibrium and optimization problems, Nonlinear Anal. 69 (2008) 2709-2719.
[28] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506-518.
[29] R. Wangkeeree, An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, Fixed Point Theory and Applications, Vol. 2008, Article ID 134148, 17 pages.
[30] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145.
[31] D. Kinderlehrer, G. Stampaccia, An introduction to variational inequalities and their applications, Academic Press, New York, 1984.
[32] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
[33] A. Genel, J. Lindenstrauss, An example concerning fixed points, Isreal J. Math. 22 (1975) 81-86.
[34] S. Matsushita, W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings in a Banach space, Fixed Point Theory and Applications, Vol. 2004, 37-47.
[35] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003) 417428.
[36] H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005) 341-350.
[37] H. Iiduka, W. Takahashi Strong convergence studied by a hybrid type method for monotone operators in a Banach space, Nonlinear Anal. 68 (12) 3679-3688.
[38] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 3 (1967) 957-961.
[39] P.L. Lion, Approximation de points fixes de contractions, C. R. Acad. Sci. sér. A-B Paris 284 (1977) 1357-1359.
[40] R. Wittmann, Approximation of fixed points of nonexpasive mappings, Arch. Math. Soc. 59 (1992) 486-491.
[41] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287-292.
[42] S. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997) 3641-3645.
[43] S. Plubtieng, K. Ungchittrakool, Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space, J. Approx. Theory 149 (2007) 103-115.
[44] F. Kohsaka, W. Takahashi, Strong convergence of an iterative sequence for maximal monotone operators in a Banach space, Abstract and Applied Analysis, Vol. 2004, 239-249.
[45] W. Nilsrakoo, S. Saejung, Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput. 217 (2011) 6577-6586.
[46] S. Chang, J.K. Kim, X.R. Wang, Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, Journal of Inequalities and Applications, Vol. 2010, Article ID 869684, 14 pages.
[47] W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70 (2009) 45-57.
[48] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2) (2002) 240-256.
[49] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008) 899912.
[50] B. Beauzamy, Introduction to Banach spaces and their geometry, Second Ed. North-Holland, 1985.
[51] R.T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898.
[52] S. Reich, Constructive techniques for accretive and monotone operators, in Applied Nonlinear Analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335345, Academic Press, New York, NY, USA, 1979.
(Received 3 May 2011)
(Accepted 20 May 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: deltanougt2006@yahoo.com (Y. Shehu)
 Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.

