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1 Introduction

Let E be a real Banach space with dual E∗ and C be nonempty, closed and
convex subset of E. A mapping T : C → C is called nonexpansive if

||Tx − Ty|| ≤ ||x − y||, ∀x, y ∈ C. (1.1)

A point x ∈ C is called a fixed point of T if Tx = x. The set of fixed points of T
is denoted by F (T ) := {x ∈ C : Tx = x}.
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The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(t) := sup

{
1

2
(||x + y|| + ||x − y||) − 1 : ||x|| ≤ 1, ||y|| ≤ t

}
.

E is uniformly smooth if and only if

lim
t→0

ρE(t)

t
= 0.

Let dimE ≥ 2. The modulus of convexity of E is the function δE : (0, 2] → [0, 1]
defined by

δE(ǫ) := inf
{
1 −

∣∣∣
∣∣∣
x + y

2

∣∣∣
∣∣∣ : ||x|| = ||y|| = 1; ǫ = ||x − y||

}
.

E is uniformly convex if for any ǫ ∈ (0, 2], there exists a δ = δ(ǫ) > 0 such that
if x, y ∈ E with ||x|| ≤ 1, ||y|| ≤ 1 and ||x − y|| ≥ ǫ, then ||12 (x + y)|| ≤ 1 − δ.
Equivalently, E is uniformly convex if and only if δE(ǫ) > 0 for all ǫ ∈ (0, 2]. A
normed space E is called strictly convex if for all x, y ∈ E, x 6= y, ||x|| = ||y|| = 1,
we have ||λx + (1 − λ)y|| < 1, ∀λ ∈ (0, 1).

We denote by J the normalized duality mapping from E to 2E∗

defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ||x||2 = ||f ||2}.

The following properties of J are well known (The reader can consult [1–3] for
more details):

1. If E is uniformly smooth, then J is norm-to-norm uniformly continuous on
each bounded subset of E.

2. J(x) 6= ∅, x ∈ E.

3. If E is reflexive, then J is a mapping from E onto E∗.

4. If E is smooth, then J is single valued.

Let E be a smooth, strictly convex and reflexive real Banach space and let C
be a nonempty, closed and convex subset of E. Following Alber [4], the generalized
projection ΠC from E onto C is defined by

ΠC(x) := argmin
y∈C

φ(y, x), ∀x ∈ E.

The existence and uniqueness of ΠC follows from the property of the functional
φ(x, y) and strict monotonicity of the mapping J (see, for example, [3–7]). If E is
a Hilbert space, then ΠC is the metric projection of H onto C.

Throughout this paper, we denote by φ, the functional on E × E defined by

φ(x, y) = ||x||2 − 2〈x, J(y)〉 + ||y||2, ∀x, y ∈ E. (1.2)
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It is obvious from (1.2) that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x|| + ||y||)2, ∀x, y ∈ E (1.3)

and

φ
(
x, J−1

( n∑

i=1

λiJxi

))
≤

n∑

i=1

λiφ(x, xi) (1.4)

for all λi ∈ [0, 1] and x, xi ∈ E, ∀i = 1, 2, . . . , n such that
∑n

i=1 λi = 1.

Definition 1.1. Let C be a nonempty subset of E and let {Tn}
∞

n=0 be a countable
family of mappings from C into E. A point p ∈ C is said to be an asymptotic fixed
point of {Tn}∞n=0 if C contains a sequence {xn}∞n=0 which converges weakly to p and
limn→∞ ||xn−Tnxn|| = 0. The set of asymptotic fixed points of {Tn}∞n=0 is denoted

by F̂ ({Tn}∞n=0). We say that {Tn}∞n=0 is countable family of relatively nonexpansive
mappings (see, for example, [8]) if the following conditions are satisfied:

(R1) F ({Tn}∞n=0) 6= ∅;

(R2) φ(p, Tnx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (Tn), n ≥ 0;

(R3) ∩∞

n=0F (Tn) = F̂ ({Tn}∞n=0).

Definition 1.2. A point p ∈ C is said to be an asymptotic fixed point of T if
C contains a sequence {xn}∞n=0 which converges weakly to p and limn→∞ ||xn −

Txn|| = 0. The set of asymptotic fixed points of T is denoted by F̂ (T ). We
say that a mapping T is relatively nonexpansive (see, for example, [9–14]) if the
following conditions are satisfied:

(R1) F (T ) 6= ∅;

(R2) φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T );

(R3) F (T ) = F̂ (T ).

Definition 1.2 is a special form of Definition 1.1 as Tn ≡ T, ∀n ≥ 0. If T satisfies
(R1) and (R2), then T is said to be relatively quasi-nonexpansive. It is easy to
see that the class of relatively quasi-nonexpansive mappings contains the class of
relatively nonexpansive mappings. Many authors have studied the methods of
approximating the fixed points of relatively quasi-nonexpansive mappings (see, for
example, [15, 16] the references contained therein). Clearly, in Hilbert space H ,
relatively quasi-nonexpansive mappings and quasi-nonexpansive mappings are the
same, for φ(x, y) = ||x − y||2, ∀x, y ∈ H and this implies that

φ(p, Tx) ≤ φ(p, x) ⇔ ||Tx − p|| ≤ ||x − p||, ∀x ∈ C, p ∈ F (T ).

It is known that the generalized projection mapping ΠC is relatively quasi-nonexpansive
and F (ΠC) = C (see, for example, [16]).
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Let F be a bifunction of C × C into R. The equilibrium problem (see, for
example, [17–29]) is to find x∗ ∈ C such that

F (x∗, y) ≥ 0, ∀y ∈ C. (1.5)

We shall denote the solutions set of (1.5) by EP (F ). Numerous problems in
Physics, optimization and economics reduce to find a solution of problem (1.5).
The equilibrium problems include fixed point problems, optimization problems
and variational inequality problems as special cases (see, for example, [30]).
For solving the equilibrium problem for a bifunction F : C×C → R, let us assume
that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y,∈ C;

(A3) for each x, y ∈ C, limn→∞ F (tz + (1 − t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

An operator B : C → E∗ is called α-inverse-strongly monotone, if there exists
a positive real number α such that

〈x − y, Bx − By〉 ≥ α||Bx − By||2, ∀x, y ∈ C, (1.6)

and A is said to be monotone if

〈x − y, Bx − By〉 ≥ 0, ∀x, y ∈ C. (1.7)

Let B be a monotone operator from C into E∗, the classical variational inequality
(see, for example, [31]), denoted by V I(C, B), is to find x∗ ∈ C such that

〈y − x∗, Bx∗〉 ≥ 0, ∀y ∈ C. (1.8)

The variational inequality (1.8) is connected with the convex minimization prob-
lem, the complementarity problem, the problem of finding a point x∗ ∈ E such
that Bx∗ = 0 and so on.

It is well known that for a nonexpansive mapping T with F (T ) 6= ∅, the clas-
sical Picard iteration sequence xn+1 = Txn, x1 ∈ D(T ) does not always converge.
An iterative process commonly used for finding fixed points of nonexpansive map-
pings is the following: For a convex subset C of a Banach space E and T : C → C,
the sequence {xn}∞n=1 is defined iteratively by x1 ∈ C,

xn+1 = (1 − αn)xn + αnTxn, n ≥ 1, (1.9)

where {αn}∞n=1 is a sequence in [0, 1] satisfying the following conditions:
(i) limn→∞ αn = 0; (ii)

∑
∞

n=1 αn = ∞. The sequence of (1.9) is generally referred
to as the Mann sequence in the light of [32]. It is generally known that the Mann
iterative sequence (1.9) converges weakly to a fixed point of T (see, for example,
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[33]). Motivated by (1.9), Matsushita and Takahashi [34] considered the following
iterative scheme: x0 ∈ C,

xn+1 = ΠCJ−1(αnJxn + (1 − αn)JTxn)), n ≥ 0 (1.10)

and proved weak convergence theorems for approximation of a fixed point of
relatively nonexpansive mapping T in uniformly convex and uniformly smooth
Banach space under appropriate conditions. In order to obtain strong convergence,
Matsushita and Takahashi [12] introduced a hybrid iterative scheme for approxi-
mation of fixed points of relatively nonexpansive mapping T in a uniformly convex
real Banach space which is also uniformly smooth: x0 ∈ C,






yn = J−1(αnJxn + (1 − αn)JTxn),
Hn = {w ∈ C : φ(w, yn) ≤ φ(w, xn)},
Wn = {w ∈ C : 〈xn − w, Jx0 − Jxn〉,
xn+1 = ΠHn∩Wn

x0, n ≥ 0.

(1.11)

They proved that {xn}∞n=0 converges strongly to ΠF (T )x0, where F (T ) 6= ∅.
One method for solving a point x∗ ∈ V I(C, B) is using the projection algorithm

which starts with any x1 = x ∈ C and

xn+1 = PC(xn − λnBxn), n ≥ 1,

PC is the metric projection from real Hilbert H onto C and {λn}∞n=1 is a sequence
of positive real numbers. For finding an element of F (T ) ∩ V I(C, B), Takahashi
and Toyoda [35] introduced the following iterative scheme: x1 ∈ C, and

xn+1 = αnxn + (1 − αn)TPC(xn − λnBxn), n ≥ 1

and obtained a weak convergence theorem in a Hilbert space. Recently, Iiduka
and Takahashi [36] proposed a new iterative scheme: x1 = x ∈ C and

xn+1 = αnx + (1 − αn)TPC(xn − λnBxn), n ≥ 1

and obtained a strong convergence theorem in a Hilbert space. In the case when
the space is a Banach space E, for finding a unique solution V I(C, B), Alber [4]
introduced the following iterative scheme:x1 = x ∈ E, and

xn+1 = ΠCJ−1(Jxn − λnBxn), n ≥ 1.

He proved that {xn}∞n=1 converges strongly to a unique element of z of V I(C, B).
Motivated by Alber [4], Iiduka and Takahashi [37] introduced the following

iterative scheme for finding a zero point of an inverse-strongly monotone operator
B in a 2-uniformly convex and uniformly smooth Banach space:






x1 = x ∈ E,
yn = J−1(Jxn − λnBxn),
Hn = {w ∈ E : φ(w, yn) ≤ φ(w, xn)},
Wn = {w ∈ E : 〈xn − w, Jx − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn

x0, n ≥ 1.
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They proved strong convergence theorem of the scheme under the conditions that
B is α-inverse-strongly monotone and A−10 6= ∅.

In [34], Matsushita and Takahashi considered the following iterative scheme:
x0 ∈ C,

xn+1 = ΠCJ−1(αnJxn + (1 − αn)JTxn)), n ≥ 0 (1.12)

and proved weak convergence theorems for approximation of a fixed point of rela-
tively nonexpansive mapping T in uniformly convex and uniformly smooth Banach
space under appropriate conditions.

In [14], Takahashi and Zembayashi introduced the following hybrid iterative
scheme for approximation of fixed point of relatively nonexpansive mapping which
is also a solution to an equilibrium problem in a uniformly convex real Banach
space which is also uniformly smooth: x0 ∈ C, C1 = C, x1 = ΠC1

x0,






yn = J−1(αnJxn + (1 − αn)JTxn),
F (un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {w ∈ Cn : φ(w, un) ≤ φ(w, xn)},
xn+1 = ΠCn+1

x0, n ≥ 1,

where J is the duality mapping on E. Then, they proved that {xn}∞n=0 converges
strongly to ΠΩx0, where Ω = EP (F ) ∩ F (T ) 6= ∅.

Another iteration process which has been found to be successful for approx-
imating fixed points of nonexpansive maps is the Halpern iteration process (see,
for example, [38]). Let C be a nonempty, closed and convex subset of a Hilbert
space and T : C → C be a nonexpansive mapping. Assume that F (T ) 6= ∅. For
fixed u ∈ C, let the sequence {xn}

∞

n=1 be generated by x1 ∈ C,

xn+1 = αnu + (1 − αn)Txn, (1.13)

for all n ≥ 1. He proved strong convergence of the sequence {xn}∞n=1 to a fixed
point of T , where αn := n−a, a ∈ (0, 1). He pointed out that the conditions
(C1) : limn→∞ αn = 0 and (C2) :

∑
∞

n=1 αn = ∞ are necessary for the convergence
of the Halpern iteration (1.13) to a fixed point of T . The iteration process (1.13)
has been proved to be strongly convergent for nonexpansive mapping T both in
Hilbert spaces [38–40] and uniformly smooth Banach spaces [41, 42] when the
sequence {αn} satisfies the conditions:

(i) limn→∞ αn = 0;

(ii)
∑

∞

n=1 αn = ∞ and

(iii) either
∑

∞

n=1 |αn+1 − αn| < ∞ or limn→∞
αn

αn+1
= 1.

In [43], Plubtieng and Ungchittrakool introduced the following hybrid projec-



A New Approximation Method for Equilibrium, Variational Inequality ... 537

tion algorithm for a pair of relatively nonexpansive mappings T and S: x0 ∈ C,






zn = J−1(β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn)

yn = J−1(αnJx0 + (1 − αn)Jzn)
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn) + αn(||x0||2 + 2〈w, Jxn − Jx0〉)}
Qn = {z ∈ C : 〈xn − z, Jxn − Jx0〉 ≤ 0}
xn+1 = PCn∩Qn

x0,

(1.14)

where {αn}, {β
(1)
n }, {β

(2)
n } and {β

(3)
n } are sequences in (0, 1) satisfying β

(1)
n +β

(2)
n +

β
(3)
n = 1 and T and S are relatively nonexpansive mappings and J is the single-

valued duality mapping on E. They proved under the appropriate conditions on
the parameters that the sequence {xn} generated by (1.14) converges strongly to
a common fixed point of T and S.

Motivated by (1.13), Kohsaka and Takahashi, [44] introduced and studied the
following iterative scheme: x = x0 ∈ E,

xn+1 = J−1(αnJx + (1 − αn)JJrn
xn), n ≥ 0 (1.15)

where J is the duality mapping and Jr = (J + rA)−1J for all r > 0. They proved
that if A−10 6= ∅, limn→∞ αn = 0,

∑
∞

n=0 αn = ∞ and limn→∞ rn = ∞, then the
sequence generated by (1.15) converges strongly to an element of A−10.

Quite recently, Nilsrakoo and Saejung, [45] proved the following strong conver-
gence theorem for approximation of fixed point of relatively nonexpansive mapping
in a uniformly convex and uniformly smooth Banach space.

Theorem 1.3 (Nilsrakoo and Saejung [45]). Let C be a nonempty, closed and
convex subset of a uniformly convex and uniformly smooth Banach space E and
T be a relatively nonexpansive mapping from C into E. Let {αn} and {βn} be se-
quences in (0, 1) satisfying: (i) limn→∞ αn = 0, (ii)

∑
∞

n=1 αn = ∞ and (iii) 0 <
lim infn→∞ βn ≤ lim supn→∞

βn < 1. Then {xn} defined by u ∈ E, x1 ∈ C,

xn+1 = ΠCJ−1(αnJu + (1 − αn)(βnJxn + (1 − βn)JTxn)), n ≥ 1 (1.16)

converges strongly to ΠF (T )u, where ΠF (T ) is the generalized projection of E onto
F (T ).

Motivated by the above mentioned results and the on-going research, it is our
purpose in this paper to introduce a new iterative scheme and prove strong conver-
gence theorem for a countable family of relatively nonexpansive mappings which
is also a common solution to an equilibrium and variational inequality problems
in a 2-uniformly convex and uniformly smooth real Banach space. We also apply
our result to convex feasibility problem.

2 Preliminaries

We know that the following lemmas hold for generalized projections.
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Lemma 2.1 (Alber [4], Kamimura and Takahashi [7]). Let C be a nonempty
closed convex subset of a smooth, strictly convex and reflexive Banach space E.
Then

φ(x, ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C, ∀y ∈ E.

Lemma 2.2 (Alber [4], Kamimura and Takahashi [7]). Let C be a nonempty
closed convex subset of a smooth, strictly convex and reflexive Banach space E.
Let x ∈ E and z ∈ C. Then

z = ΠCx ⇔ 〈y − z, J(x) − J(z)〉 ≤ 0, ∀y ∈ C.

Lemma 2.3 (Matsushita and Takahashi [12]). Let C be a nonempty, closed and
convex subset of a smooth, strictly convex Banach space E. Let T be a relatively
nonexpansive mapping of C into itself. Then F (T ) is closed and convex.

Let C be a nonempty, closed and convex subset of a smooth, uniformly convex
Banach space E and J be the duality mapping from E into E∗. Then J−1 is
single-valued, one-one and surjective and it is the duality mapping from E∗ into
E. We make use of the following function V as studied by Alber [4]:

V (x, x∗) = ||x||2 − 2〈x, x∗〉 + ||y||2 (2.1)

for all x ∈ E and x∗ ∈ E∗. Thus, V (x, x∗) = φ(x, J−1(x∗)) for all x ∈ E and
x∗ ∈ E∗. We know the following lemma from Alber [4].

Lemma 2.4 (Alber [4]). Let E be a real reflexive, strictly convex and Banach
space and V be as in (2.1). Then

V (x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Also, this following lemma holds in a uniformly convex real Banach space.

Lemma 2.5 (Chang et al. [46]). Let E be a uniformly convex real Banach space.
For arbitrary r > 0, let Br(0) := {x ∈ E : ||x|| ≤ r}. Then, for any given sequence
{xn}∞n=1 ⊂ Br(0) and for any given sequence {λn}∞n=1 of positive numbers such
that

∑
∞

i=1 λi = 1, there exists a continuous strictly increasing convex function

g : [0, 2r] → R, g(0) = 0

such that for any positive integers i, j with i < j, the following inequality holds:

∣∣∣
∣∣∣

∞∑

n=1

λnxn

∣∣∣
∣∣∣
2

≤
∞∑

n=1

λn||xn||
2 − λiλjg(||xi − xj ||).

The following lemma is an analogue of Lemma 2.5 with respect to φ.
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Lemma 2.6. Let E be a uniformly convex real Banach space. For arbitrary r > 0,
let Br(0) := {x ∈ E : ||x|| ≤ r}. Then, for any given sequence {xn}∞n=1 ⊂ Br(0)
and for any given sequence {λn}

∞

n=1 of positive numbers such that
∑

∞

i=1 λi = 1,
there exists a continuous strictly increasing convex function

g : [0, 2r] → R, g(0) = 0

such that for any positive integers i, j with i < j, the following inequality holds:

φ

(
x, J−1

(
∞∑

n=1

λnJxn

))
≤

∞∑

n=1

λnφ(x, xn) − λiλjg(||Jxi − Jxj ||).

It is easy to see that if {xn} and {yn} are bounded sequences of a smooth Banach
space E, then xn − yn → 0, n → ∞ implies that φ(xn, yn) → 0, n → ∞.

Lemma 2.7 (Blum and Oettli [30]). Let C be a nonempty closed convex subset of
a smooth, strictly convex and reflexive Banach space E and let F be a bifunction
of C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ E. Then, there exists
z ∈ C such that

F (z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0 for all y ∈ C.

Lemma 2.8 (Takahashi and Zembayashi [47]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E. Assume that
F : C × C → R satisfies (A1)-(A4). For r > 0 and x ∈ E, define a mapping
Tr : E → C as follows:

Tr(x) =

{
z ∈ C : F (z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}

for all z ∈ E. Then, the following hold:

1. Tr is single-valued;

2. Tr is firmly nonexpansive-type mapping, i.e., for any x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

3. F (Tr) = EP (F );

4. EP (F ) is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [47]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E. Assume that
F : C × C → R satisfies (A1) − (A4) and let r > 0. Then for each x ∈ E and
q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).
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Also, this following lemma will be used in the sequel.

Lemma 2.10 (Kamimura and Takahashi [7]). Let C be a nonempty closed con-
vex subset of a smooth, uniformly convex Banach space E. Let {xn}∞n=1 and
{yn}∞n=1 be sequences in E such that either {xn}∞n=1 or {yn}∞n=1 is bounded. If
limn→∞ φ(xn, yn) = 0, then limn→∞ ||xn − yn|| = 0.

Lemma 2.11 (Xu [48]). Let {an} be a sequence of nonnegative real numbers
satisfying the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,

where, (i) {αn} ⊂ [0, 1],
∑

αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),∑
γn < ∞. Then, an → 0 as n → ∞.

Lemma 2.12 (Mainge [49]). Let {an} be a sequence of real numbers such that
there exists a subsequence {ni} of {n} such that ani

< ani+1 for all i ∈ N. Then
there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the
following properties are satisfied by all (sufficiently large) numbers k ∈ N :

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.13 (Beauzamy [50]). Let E be a 2-uniformly convex Banach space, then
for all x, y from any bounded set of E and jx ∈ Jx, jy ∈ Jy, we have

〈x − y, jx − jy〉 ≥
c2

2
||x − y||2,

where 1
c

is the 2-uniformly constant of E.

Lemma 2.14 (Rockafellar [51]). Let C be a nonempty, closed and convex subset
of a Banach space E and let B be a monotone and hemicontinuous operator of C
into E∗ with C = D(A). Let B ⊂ E × E∗ be an operator defined as follows:

Mv :=

{
Bv + NC(v), v ∈ C
∅, v /∈ C.

Then M is maximal monotone and M−1(0) = V I(C, B).

In this paper, we shall assume that

(B1) B is α-inverse strongly monotone;

(B2) ||By|| ≤ ||By − Bu|| for all y ∈ C and u ∈ V I(C, B);

(B3) V I(C, B) 6= ∅.
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3 Main Results

Theorem 3.1. Let E be a 2-uniformly convex real Banach space which is also
uniformly smooth. Let C be a nonempty, closed and convex subset of E. Let F be
a bifunction from C × C → R satisfying (A1) − (A4), B : C → E∗ an operator
satisfying (B1) − (B3) and {Tn}∞n=0 a countable family of relatively nonexpansive
mappings of C into E such that Ω := (∩∞

n=0F (Tn)) ∩EP (F )∩ V I(C, B) 6= ∅. Let
{αn}, {βn} and {γn} be sequences in (0, 1) such that αn + βn + γn = 1. Suppose
{xn}∞n=0 is iteratively generated by u, u0 ∈ E,






yn = ΠCJ−1(Jun − rnBun),
xn = Trn

yn,
un+1 = ΠCJ−1(αnJu + βnJxn + γnJTnxn), n ≥ 0,

(3.1)

with the conditions

(i) limn→∞ αn = 0,
∑

∞

n=0 αn = ∞;

(ii) 0 < b ≤ βnγn ≤ 1;

(iii) 0 < a ≤ rn ≤ b < c2α
2 .

Then, {xn}
∞

n=0 converges strongly to ΠΩu.

Proof. Let x∗ ∈ Ω. Then, we obtain

φ(x∗, yn) = φ(x∗, ΠCJ−1(Jun − rnBun))

≤ φ(x∗, J−1(Jun − rnBun))

= V (x∗, Jun − rnBun)

≤ V (x∗, (Jun − rnBun) + rnBun)

− 2〈J−1(Jun − rnBun) − x∗, rnBun〉

= V (x∗, Jun) − 2rn〈J
−1(Jun − rnBun) − x∗, Bun〉

= φ(x∗, un) − 2rn〈un − x∗, Bun〉

+ 2〈J−1(Jun − rnBun) − un,−rnBun〉. (3.2)

From condition (B1) and x∗ ∈ V I(C, B), we obtain

−2rn〈un − x∗, Bun〉 = −2rn〈un − x∗, Bun − Bx∗〉 − 2rn〈un − x∗, Bx∗〉

≤ −2αrn||Bun − Bx∗||2. (3.3)

By Lemma 2.13 and condition (B2), we also obtain
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2〈J−1(Jun − rnBun) − un,−rnBun〉

= 2〈J−1(Jun − rnBun) − J−1(Jun),−rnBun〉

≤ 2||J−1(Jun − rnBun) − J−1(Jun)||||rnBun||

≤
4

c2
||(Jun − rnBun) − (Jun)||||rnBun||

=
4

c2
r2
n||Bun||

2

≤
4

c2
r2
n||Bun − Bx∗||2. (3.4)

Combining (3.2), (3.3) and (3.4) and 0 < a ≤ rn ≤ b < c2α
2 , we obtain

φ(x∗, yn) ≤ φ(x∗, un) − 2αrn||Bun − Bx∗||2 +
4

c2
r2
n||Bun − Bx∗||2. (3.5)

From (3.5), we have that

φ(x∗, yn) ≤ φ(x∗, un) + 2rn

( 2

c2
rn − α

)
||Bun − Bx∗||2

≤ φ(x∗, un). (3.6)

Using (3.1), (3.6) and the fact that Trn
is relatively quasi-nonexpansive, we have

φ(x∗, xn+1) = φ(x∗, Trn+1
yn+1) ≤ φ(x∗, yn+1) ≤ φ(x∗, un+1) (3.7)

= φ(x∗, J−1(αnJu + βnJxn + γnJTnxn))

≤ αnφ(x∗, u) + βnφ(x∗, xn) + γnφ(x∗, Tnxn)

≤ αnφ(x∗, u) + βnφ(x∗, xn) + γnφ(x∗, xn)

= αnφ(x∗, u) + (1 − αn)φ(x∗, xn)

≤ max{φ(x∗, u), φ(x∗, xn)}

...

≤ max{φ(x∗, u), φ(x∗, x0)}.

Hence, {xn}∞n=0 is bounded and also is {Tnxn}∞n=0. Since E is uniformly smooth,
E∗ is uniformly convex. Then from Lemma 2.6, we have for some M > 0 that

φ(x∗, xn+1) ≤ φ(x∗, un+1) ≤ αnφ(x∗, u) + βnφ(x∗, xn) + γnφ(x∗, Tnxn)

− βnγng(||Jxn − JTnxn||)

≤ αnφ(x∗, u) + (1 − αn)φ(x∗, xn) − βnγng(||Jxn − JTnxn||)

≤ αnM + φ(x∗, xn) − βnγng(||Jxn − JTnxn||). (3.8)

This implies that

0 < bg(||Jxn − JTnxn||) ≤ βnγng(||Jxn − JTnxn||)

≤ αnM + φ(x∗, xn) − φ(x∗, xn+1). (3.9)
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Now put zn := J−1(αnJu + βnJxn + γnJTnxn), n ≥ 0. Then, we show that

lim sup
n→∞

〈zn − z, Ju − Jz〉 ≤ 0,

where z := ΠΩu. To do this inequality, we choose a subsequence {xnj
} of {xn}

such that
lim sup

n→∞

〈xn − z, Ju − Jz〉 = lim
j→∞

〈xnj
− z, Ju − Jz〉.

Since {xn} is bounded, there exists a subsequence {xnj
} of {xn} that converges

weakly to p. The rest of the proof will be divided into two parts.
Case 1. Suppose that there exists n0 ∈ N such that {φ(x∗, xn)}∞n=n0

is nonin-
creasing. Then {φ(x∗, xn)}∞n=0 converges and φ(x∗, xn)−φ(x∗, xn+1) → 0, n → ∞.
This implies from (3.9) and condition (i) that

g(||Jxn − JTnxn||) → 0, n → ∞.

By property of g, we have

||Jxn − JTnxn|| → 0, n → ∞.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have

||xn − Tnxn|| → 0, n → ∞. (3.10)

This implies that
φ(xn, Tnxn) → 0, n → ∞.

Since xnj
⇀ p and {Tn}∞n=0 are uniformly closed, we have p ∈ (∩∞

n=0F (Tn)).
Next, we show that p ∈ V I(C, B). From (3.5) and (3.7), we obtain

φ(x∗, xn) ≤ φ(x∗, un) − 2αrn||Bun − Bx∗||2 +
4

c2
r2
n||Bun − Bx∗||2

= φ(x∗, un) + 2rn

( 2

c2
rn − α

)
||Bun − Bx∗||2

≤ αn−1φ(x∗, u) + (1 − αn−1)φ(x∗, xn−1)

+ 2rn

( 2

c2
rn − α

)
||Bun − Bx∗||2 (3.11)

≤ αn−1φ(x∗, u) + φ(x∗, xn−1) + 2rn

( 2

c2
rn − α

)
||Bun − Bx∗||2.

Hence, we obtain

−2rn

( 2

c2
rn − α

)
||Bun − Bx∗||2 ≤ αn−1φ(x∗, u) + φ(x∗, xn−1) − φ(x∗, xn) → 0,

as n → ∞. Since 0 < a ≤ rn ≤ b < c2α
2 , we obtain from the last inequality that

lim
n→∞

||Bun − Bx∗|| = 0.
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By Lemma 2.4 and (3.4), we have

φ(un, yn) = φ(un, ΠCJ−1(Jun − rnBun)) ≤ φ(un, J−1(Jun − rnBun))

= V (un, Jun − rnBun)

≤ V (un, (Jun − rnBun) + rnBun)

− 2
〈
J−1(Jun − rnBun) − un, rnBun

〉

= φ(un, un) + 2〈J−1(Jun − rnBun) − un,−rnBun〉

= 2〈J−1(Jun − rnBun) − un,−rnBun〉

≤
4

c2
b2||Bun − Bx∗||2 → 0, n → ∞. (3.12)

It then follows from Lemma 2.10 that limn→∞ ||yn−un|| = 0. Since J is uniformly
norm-to-norm continuous on bounded sets and limn→∞ ||yn − un|| = 0, we obtain

lim
n→∞

||Jyn − Jun|| = 0.

Now, let B ⊂ E × E∗ be an operator as follows:

Mv :=

{
Bv + NC(v), v ∈ C
∅, v /∈ C.

By Lemma 2.14, M is maximal monotone and M−1(0) = V I(C, B). Let (v, w) ∈
G(M). Since w ∈ Mv = Bv + NC(v), we have w−Bv ∈ NC(v). Since yn ∈ C, we
get

〈v − yn, w − Bv〉 ≥ 0. (3.13)

On the other hand, from yn = ΠCJ−1(Jun − rnBun) and Lemma 2.2 we obtain

〈v − yn, Jyn − (Jun − rnBun)〉 ≥ 0,

and hence
〈
v − yn,

Jun − Jyn

rn

− Bun

〉
≤ 0. (3.14)

Then, by (3.13), (3.14) and replacing n by nj , we obtain that

〈v − ynj
, w〉 ≥ 〈v − ynj

, Bv〉

≥ 〈v − ynj
, Bv〉 +

〈
v − ynj

,
Junj

− Jynj

rnj

− Bunj

〉

=
〈
v − ynj

, Bv − Bunj
+

Junj
− Jynj

rnj

〉

= 〈v − ynj
, Bv − Bynj

〉 + 〈v − ynj
, Bynj

− Bunj
〉

+
〈
v − ynj

,
Junj

− Jynj

rnj

〉
(3.15)

≥ −||v − ynj
||||Bynj

− Bunj
|| − ||v − ynj

||
∣∣∣
∣∣∣
Junj

− Jynj

rnj

∣∣∣
∣∣∣.
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Hence, we have 〈v − p, w〉 ≥ 0 as j → ∞, since the uniform continuity of J and B
implies that the right side of (3.15) goes to 0 as j → ∞. Thus, since M is maximal
monotone, we have p ∈ M−1(0) and hence p ∈ V I(C, B).

Finally, we show that p ∈ EP (F ). Now, by Lemma 2.9, (3.8) and condition
(i), we obtain

φ(xn, yn) = φ(Trn
yn, yn)

≤ φ(x∗, yn) − φ(x∗, xn)

≤ φ(x∗, un) − φ(x∗, xn)

≤ αn−1M + φ(x∗, xn−1) − φ(x∗, xn) → 0, n → ∞.

Using Lemma 2.10, we have limn→∞ ||xn − yn|| = 0. Now, since xnj
⇀ p and

limn→∞ ||xn − yn|| = 0, we obtain that ynj
⇀ p. Also, since J is uniformly

norm-to-norm continuous on bounded sets and limn→∞ ||xn − yn|| = 0, we obtain

lim
n→∞

||Jxn − Jyn|| = 0.

Since lim infn→∞ rn > 0,

lim
n→∞

||Jxn − Jyn||

rn

= 0. (3.16)

Since xn = Trn
un, n ≥ 0, by Lemma 2.8, we have

F (xn, y) +
1

rn

〈y − xn, Jxn − Jyn〉 ≥ 0, ∀y ∈ C.

Furthermore, replacing n by nj in the last inequality and using (A2), we obtain

1

rnj

〈y − xnj
, Jxnj

− Jynj
〉 ≥ F (y, xnj

). (3.17)

By (A4), (3.16) and xnj
⇀ p, we have

F (y, p) ≤ 0, ∀y ∈ C.

For fixed y ∈ C, let zt,y := ty + (1− t)p for all t ∈ (0, 1]. This implies that zt ∈ C.
This yields that F (zt, p) ≤ 0. It follows from (A1) and (A4) that

0 = F (zt, zt) ≤ tF (zt, y) + (1 − t)F (zt, p)

≤ tF (zt, y)

and hence 0 ≤ F (zt, y). From condition (A3), we obtain

F (p, y) ≥ 0, ∀y ∈ C.

This implies that p ∈ EP (F ). Hence, we have p ∈ (∩∞

n=0F (Tn)) ∩ EP (F ) ∩
V I(C, B) = Ω.
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Let wn := J−1
(

βn

1−αn
Jxn + γn

1−αn
JTnxn

)
, n ≥ 0, then

φ(xn, wn) ≤
βn

1 − αn

φ(xn, xn) +
γn

1 − αn

φ(xn, Tnxn) → 0, n → ∞. (3.18)

By Lemma 2.10, it follows that ||xn − wn|| → 0, n → ∞. Furthermore,

φ(wn, zn) = φ(wn, J−1(αnJu + (1 − αn)Jwn))

≤ αnφ(wn, u) + (1 − αn)φ(wn, wn)

= αnφ(wn, u) → 0, n → ∞. (3.19)

Again, by Lemma 2.10, it follows that ||wn − zn|| → 0, n → ∞. Then

||xn − zn|| ≤ ||wn − zn|| + ||xn − wn|| → 0, n → ∞. (3.20)

By (3.20), and Lemma 2.2, we obtain

lim sup
n→∞

〈zn − z, Ju − Jz〉 = lim sup
n→∞

〈xn − z, Ju − Jz〉

= lim
j→∞

〈xnj
− z, Ju − Jz〉

= 〈p − z, Ju − Jz〉 ≤ 0. (3.21)

Therefore,

φ(z, xn+1) ≤ φ(z, J−1(αnJu + βnJxn + γnJTnxn))

= V (z, αnJu + βnJxn + γnJTnxn)

≤ V (z, αnJu + βnJxn + γnJTnxn − αn(Ju − Jz))

− 2〈J−1(αnJu + βnJxn + γnJTnxn) − z,−αn(Ju − Jz)〉

= V (z, αnJz + βnJxn + γnJTnxn)

+ 2αn〈zn − z, Ju − Jz〉

= φ(z, J−1(αnJz + βnJxn + γnJTnxn))

+ 2αn〈zn − z, Ju − Jz〉

≤ αnφ(z, z) + βnφ(z, xn) + γnφ(z, Tnxn)

+ 2αn〈zn − p, Ju − Jz〉

≤ (1 − αn)φ(z, xn) + 2αn〈zn − z, Ju − Jz〉. (3.22)

Now, using (3.21), (3.22) and Lemma 2.11, we obtain φ(z, xn) → 0, n → ∞.
Hence, xn → z, n → ∞.

Case 2. Suppose there exists a subsequence {ni} of {n} such that

φ(x∗, xni
) < φ(x∗, xni+1)

for all i ∈ N. Then, by Lemma 2.12, there exists a nondecreasing sequence {mk} ⊂
N such that mk → ∞,

φ(x∗, xmk
) ≤ φ(x∗, xmk+1) and φ(x∗, xk) ≤ φ(x∗, xmk+1)
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for all k ∈ N. This together with (3.9) gives

0 < bg(||Jxmk
− JTmk

xmk
||) ≤ αmk

M + φ(x∗, xmk
) − φ(x∗, xmk+1) ≤ αmk

M

for all k ∈ N. It then follows that

g(||Jxmk
− JTmk

xmk
||) → 0, k → ∞.

By the same arguments as in Case 1, we can show that

lim sup
k→∞

〈zmk
− z, Ju − Jz〉 ≤ 0. (3.23)

From (3.22), we have

φ(z, xmk+1) ≤ (1 − αmk
)φ(z, xmk

) + 2αmk
〈zmk

− z, Ju − Jz〉. (3.24)

Since φ(z, xmk
) ≤ φ(z, xmk+1), we have

αmk
φ(z, xmk

) ≤ φ(z, xmk
) − φ(z, xmk+1) + 2αmk

〈zmk
− z, Ju − Jz〉

≤ 2αmk
〈zmk

− z, Ju − Jz〉.

In particular, since αmk
> 0, we get

φ(z, xmk
) ≤ 2〈zmk

− z, Ju − Jz〉. (3.25)

It then follows from (3.23) that φ(z, xmk
) → 0, k → ∞. From (3.25) and (3.24),

we have
φ(z, xmk+1) → 0, k → ∞.

Since φ(z, xk) ≤ φ(z, xmk+1) for all k ∈ N, we conclude that xk → z, k → ∞.
This implies that xn → z, n → ∞ and this completes the proof.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let F be a bifunction from C×C → R satisfying (A1)−(A4), B : C → H
is α-inverse strongly monotone and T a nonexpansive mapping of C into H such
that Ω := F (T ) ∩ EP (F ) ∩ V I(C, B) 6= ∅. Let {αn}, {βn} and {γn} be sequences
in (0, 1) such that αn + βn + γn = 1. Suppose {xn}

∞

n=0 is iteratively generated by
u, u0 ∈ E,






yn = PC(un − rnBun),
xn = Trn

yn,
un+1 = PC(αnu + βnxn + γnTxn), n ≥ 0,

with the conditions

(i) limn→∞ αn = 0,
∑

∞

n=0 αn = ∞;

(ii) 0 < b ≤ βnγn ≤ 1;

(iii) 0 < a ≤ rn ≤ b < 2α.
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Then, {xn}∞n=0 converges strongly to PΩu.

Next, we apply our Theorem 3.1 to convex feasibility problem. First, we
introduce the following lemma which was proved by Reich [52].

Lemma 3.3 (Reich [52]). Let E be a uniformly convex Banach space with uni-
formly Gâteaux differentiable norm, let {Ci}m

i=1 be a finite family of closed and
convex subsets of E and let Πi be the generalized projection from E onto Ci for
each i = 1, 2, . . . , m. Then

φ(p, ΠmΠm−1 . . . Π2Π1x) ≤ φ(p, x)

for each p ∈ F̂ (ΠmΠm−1 . . . Π2Π1), x ∈ E and F̂ (ΠmΠm−1 . . .Π2Π1) = ∩m
i=1Ci.

As direct consequence of Theorem 3.1 and Lemma 3.3, we can prove the
following result.

Theorem 3.4. Let E be a 2-uniformly convex real Banach space which is also
uniformly smooth. Let C be a nonempty, closed and convex subset of E. Let F be
a bifunction from C × C → R satisfying (A1) − (A4), B : C → E∗ an operator
satisfying (B1) − (B3) and let {Ci}m

i=1 be a finite family of closed and convex
subsets of E such that Ω := (∩m

i=1Ci) ∩ EP (F ) ∩ V I(C, B) 6= ∅. Let {αn}, {βn}
and {γn} be sequences in (0, 1) such that αn + βn + γn = 1. Suppose {xn}

∞

n=0 is
iteratively generated by u, u0 ∈ E,






yn = ΠCJ−1(Jun − rnBun),
xn = Trn

yn,
un+1 = ΠCJ−1(αnJu + βnJxn + γnJΠmΠm−1 . . .Π2Π1xn), n ≥ 0,

with the conditions

(i) limn→∞ αn = 0,
∑

∞

n=0 αn = ∞;

(ii) 0 < b ≤ βnγn ≤ 1;

(iii) 0 < a ≤ rn ≤ b < c2α
2 .

Then, {xn}∞n=0 converges strongly to ΠΩu.

Proof. Put T := ΠmΠm−1 . . .Π2Π1. It is clear that F (T ) ⊂ F̂ (T ) and ∩m
i=1Ci ⊂

F (T ). By Lemma 3.3, we have that T is a relatively nonexpansive mapping and
F (T ) = ∩m

i=1Ci. Applying Theorem 3.1, we obtain the desired result.
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