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1 Introduction

Let E be a real Banach space with dual £* and C be nonempty, closed and
convex subset of E. A mapping T : C — C is called nonexpansive if

A point z € C is called a fized point of T if Tx = x. The set of fixed points of T
is denoted by F(T') :={x € C : Tz = z}.
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The modulus of smoothness of E is the function pg : [0,00) — [0, 00) defined by

1
pi(t) = sup {5l + 31l + i =yl = L+ ol < Llll] <.

E is uniformly smooth if and only if

t
lim pe(t)
t—0 t

=0.
Let dimFE > 2. The modulus of converity of E is the function ég : (0,2] — [0, 1]
defined by

Tty
2

om(e) = inf {1 - ||| llzll = llyll = Lse = [|l= — yil}-

E is uniformly convez if for any e¢ € (0,2], there exists a § = d(¢) > 0 such that
if 2,y € B with ||z]| <1, [jy|]| <1 and ||z —y|| > ¢, then |[(z +y)[| <1-6.
Equivalently, E is uniformly convex if and only if dg(e) > 0 for all € € (0,2]. A
normed space E is called strictly convez ifforallx,y € E, = #vy, ||z|| = |ly|| =1,
we have |[Axz + (1 — Ny|| <1, VA€ (0,1).

We denote by J the normalized duality mapping from F to 2P defined by

J(@) ={f € E": (x, f) = ||l=I]* = [|£II*}-

The following properties of J are well known (The reader can consult [1-3] for
more details):

1. If F is uniformly smooth, then J is norm-to-norm uniformly continuous on
each bounded subset of E.

2. J(z) #0, x € E.
3. If FE is reflexive, then J is a mapping from F onto E*.
4. If E is smooth, then J is single valued.

Let E be a smooth, strictly convex and reflexive real Banach space and let C'
be a nonempty, closed and convex subset of E. Following Alber [4], the generalized
projection Il from E onto C is defined by

e (z) == argming(y, x), Vz € E.
yeC

The existence and uniqueness of Il follows from the property of the functional
¢(z,y) and strict monotonicity of the mapping J (see, for example, [3-7]). If E is
a Hilbert space, then ¢ is the metric projection of H onto C.

Throughout this paper, we denote by ¢, the functional on E x E defined by

$(a,y) = ||2|* = 2{w, J()) + llylI*, Yo,y € E. (1.2)
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It is obvious from (1.2) that

(lll = [ly1D* < ¢z, ) < (o]l +[ly[D?, Yo,y € B (1.3)

and

o(,77 (zn: ;) ) < zn: Nio(x, ;) (1.4)
i=1 =1

for all \; € [0,1] and z,2; € E, Vi=1,2,...,nsuch that ) . A\ =1.

Definition 1.1. Let C be a nonempty subset of E and let {T},}5%, be a countable
family of mappings from C into E. A point p € C is said to be an asymptotic fized
point of {T,,}5, if C' contains a sequence {xy }52, which converges weakly to p and
limy, o0 ||Zn—Th2n|| = 0. The set of asymptotic fixed points of {7}, }22 , is denoted
by ﬁ({Tn};’f:O). We say that {T7,}52, is countable family of relatively nonexpansive
mappings (see, for example, [8]) if the following conditions are satisfied:

(R1) F{Tn}3o) # s
(R2) ¢(puTn$) < (b(pv LL’), Vr € 07 pe F(Tn)7 n > 0;
(R3) M3 F(Tn) = F({Tn}3%)-

Definition 1.2. A point p € C is said to be an asymptotic fized point of T if
C' contains a sequence {z, }52, which converges weakly to p and lim, . ||zn —
Ta,|| = 0. The set of asymptotic fixed points of T is denoted by F(T). We
say that a mapping T is relatively nonexpansive (see, for example, [9-14]) if the
following conditions are satisfied:

(R1) F(T) # 0;
(R2) o(p,Tz) < ¢(p, ), Vo € C, pe F(T);
(R3) F(T) = F(T).

Definition 1.2 is a special form of Definition 1.1 as T,, =T, Vn > 0. If T satisfies
(R1) and (R2), then T is said to be relatively quasi-nonezpansive. It is easy to
see that the class of relatively quasi-nonexpansive mappings contains the class of
relatively nonexpansive mappings. Many authors have studied the methods of
approximating the fixed points of relatively quasi-nonexpansive mappings (see, for
example, [15, 16] the references contained therein). Clearly, in Hilbert space H,
relatively quasi-nonexpansive mappings and quasi-nonexpansive mappings are the
same, for ¢(z,y) = ||z —y||>, Vx,y € H and this implies that

o(p, Tz) < ¢(p,v) & ||[Tx —p|| < ||z —pl[, VoeC, peF(T).

It is known that the generalized projection mapping Il is relatively quasi-nonexpansive
and F(Il¢) = C (see, for example, [16]).
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Let F be a bifunction of C' x C into R. The equilibrium problem (see, for
example, [17-29]) is to find =* € C such that

F(z*,y) >0, YyeC. (1.5)

We shall denote the solutions set of (1.5) by EP(F). Numerous problems in
Physics, optimization and economics reduce to find a solution of problem (1.5).
The equilibrium problems include fixed point problems, optimization problems
and variational inequality problems as special cases (see, for example, [30]).

For solving the equilibrium problem for a bifunction F': C'x C' — R, let us assume
that F' satisfies the following conditions:

(Al) F(z,z) =0 for all x € C;

(A2) F is monotone, i.e., F(x,y) + F(y,z) <0 for all z,y, € C;

(A3) for each z,y € C, lim, oo F(tz + (1 —t)z,y) < F(z,y);

(A4) for each z € C, y+— F(z,y) is convex and lower semicontinuous.

An operator B : C — E* is called a-inverse-strongly monotone, if there exists
a positive real number a such that

(x —y, Bx — By) > o||Bx — By||*, Vz,y€C, (1.6)
and A is said to be monotone if
(x —y,Bx — By) >0, Vz,yeC. (1)

Let B be a monotone operator from C' into E*, the classical variational inequality
(see, for example, [31]), denoted by VI(C, B), is to find 2* € C such that

(y—x*,Bz*) >0, VyeC. (1.8)

The variational inequality (1.8) is connected with the convex minimization prob-
lem, the complementarity problem, the problem of finding a point x* € E such
that Bz* = 0 and so on.

It is well known that for a nonexpansive mapping T' with F(T') # ), the clas-
sical Picard iteration sequence xp41 = Ty, 1 € D(T) does not always converge.
An iterative process commonly used for finding fixed points of nonexpansive map-
pings is the following: For a convex subset C' of a Banach space F and T : C' — C,
the sequence {z,,}°2  is defined iteratively by x1 € C,

Tn+l1 = (1 - an)xn + O‘nTxnu n > 17 (19)

where {a,, }52, is a sequence in [0, 1] satisfying the following conditions:

(4) limp— oo o, = 05 (i) >0~ ; o, = 00. The sequence of (1.9) is generally referred
to as the Mann sequence in the light of [32]. It is generally known that the Mann
iterative sequence (1.9) converges weakly to a fixed point of T (see, for example,
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[33]). Motivated by (1.9), Matsushita and Takahashi [34] considered the following
iterative scheme: xy € C,

Tpal = HcJ_l(anJCEn + (1 —an)JTzy,)), n>0 (1.10)

and proved weak convergence theorems for approximation of a fixed point of
relatively nonexpansive mapping 7" in uniformly convex and uniformly smooth
Banach space under appropriate conditions. In order to obtain strong convergence,
Matsushita and Takahashi [12] introduced a hybrid iterative scheme for approxi-
mation of fixed points of relatively nonexpansive mapping 7" in a uniformly convex
real Banach space which is also uniformly smooth: zy € C,

Yn = J YanJz, + (1 — ap)JTxy,),
Hy, ={w € C:d(w,yn) < ¢p(w, )},
Wp={weC:(x, —w,Jrg — Ja,),
ZTnt+1 = g, nw, o, n=>0.

(1.11)

They proved that {x,}7>, converges strongly to IIp(p)xo, where F(T') # 0.
One method for solving a point z* € VI(C, B) is using the projection algorithm
which starts with any ;7 =2 € C and

Tnt1 = Po(xn — ApyBxy), n>1,

Pc is the metric projection from real Hilbert H onto C' and {A,}52; is a sequence
of positive real numbers. For finding an element of F(T) N VI(C, B), Takahashi
and Toyoda [35] introduced the following iterative scheme: z; € C, and

ZTpt1 = @y + (1 — apn)TPo(xn — AnBxy), n>1

and obtained a weak convergence theorem in a Hilbert space. Recently, Iiduka
and Takahashi [36] proposed a new iterative scheme: z1 =z € C and

ZTpt1 = an2 + (1 — ay)TPo(2, — ApBxy), n>1

and obtained a strong convergence theorem in a Hilbert space. In the case when
the space is a Banach space E, for finding a unique solution VI(C, B), Alber [4]
introduced the following iterative scheme:z; = x € E, and

Tpt1 = ch—l(an — /\ann), n>1.

He proved that {z,}52; converges strongly to a unique element of z of VI(C, B).

Motivated by Alber [4], Iiduka and Takahashi [37] introduced the following
iterative scheme for finding a zero point of an inverse-strongly monotone operator
B in a 2-uniformly convex and uniformly smooth Banach space:

r1=x €k,

Yn = J_l(an - )\ann)u

Hy, ={we€ E:¢(w,yn) < ¢p(w, zn)},
W,={w e E: (x, —w,Jor— Jx,) > 0},
Tn+1 = g, nw,x0, n>1.
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They proved strong convergence theorem of the scheme under the conditions that
B is a-inverse-strongly monotone and A~10 # (.

In [34], Matsushita and Takahashi considered the following iterative scheme:
xg € C,

Tpy1 = e HanJz, + (1 —a,)JTz,)), n>0 (1.12)

and proved weak convergence theorems for approximation of a fixed point of rela-
tively nonexpansive mapping 7" in uniformly convex and uniformly smooth Banach
space under appropriate conditions.

In [14], Takahashi and Zembayashi introduced the following hybrid iterative
scheme for approximation of fixed point of relatively nonexpansive mapping which
is also a solution to an equilibrium problem in a uniformly convex real Banach
space which is also uniformly smooth: xg € C, C1 = C, z1 = Il¢, 20,

Yn = J YanJr, + (1 —ap)JT,),

F(un,y) + %(y = Up, Jup — Jyn) > 0,Vy € C,
Cry1 ={w € Cn : p(w,un) < P(w, zn)},

Tny1 =g, 70, n>1,

where J is the duality mapping on E. Then, they proved that {z,}52, converges
strongly to llgzg, where Q = EP(F) N F(T) # 0.

Another iteration process which has been found to be successful for approx-
imating fixed points of nonexpansive maps is the Halpern iteration process (see,
for example, [38]). Let C' be a nonempty, closed and convex subset of a Hilbert
space and T : C — C be a nonexpansive mapping. Assume that F(T) # (. For
fixed u € C, let the sequence {z,}72, be generated by z; € C,

Tnt1 = apu+ (1 — )Ty, (1.13)

for all n > 1. He proved strong convergence of the sequence {z,}52; to a fixed
point of T, where «,, := n~%a € (0,1). He pointed out that the conditions
(C1) : limy, o0 @ty = 0 and (C2) : Y07 | v, = 00 are necessary for the convergence
of the Halpern iteration (1.13) to a fixed point of T. The iteration process (1.13)
has been proved to be strongly convergent for nonexpansive mapping 7" both in
Hilbert spaces [38-40] and uniformly smooth Banach spaces [41, 42] when the
sequence {a,} satisfies the conditions:

(i) limp— o0 oy = 05
(ii) Y07 ay = 00 and

(iil) either "7 | |1 — a| < 00 or limy, oo S =1

In [43], Plubtieng and Ungchittrakool introduced the following hybrid projec-
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tion algorithm for a pair of relatively nonexpansive mappings 7" and S: xg € C,

2 = J VBV T, + B IT2, + B TS2,)

Yn = J HanJzo + (1 — an)Jz,)

Cn=1{2€0C:9(z,yn) < d(z,20) + an(||zo||* + 2(w, Jz,, — Jz0))} (1.14)
Qn={z€C:{xy —2,Jx, — Jrg) <0}

Tnt1 = PC,anilfo,

where {a,, }, {6,(11)}, {67(12)} and {67(13)} are sequences in (0, 1) satisfying BV +82 +
7(13) =1 and T and S are relatively nonexpansive mappings and J is the single-
valued duality mapping on E. They proved under the appropriate conditions on
the parameters that the sequence {z,} generated by (1.14) converges strongly to
a common fixed point of 7" and S.
Motivated by (1.13), Kohsaka and Takahashi, [44] introduced and studied the

following iterative scheme: x = 29 € F,
Tpi1=J HanJr + (1 —ap)JJ. x,), n>0 (1.15)

where J is the duality mapping and J,. = (J +rA)~1J for all » > 0. They proved
that if A710 # 0,lim,—oo @y = 0,307 gy = 00 and lim, oo 7, = 00, then the
sequence generated by (1.15) converges strongly to an element of A~10.

Quite recently, Nilsrakoo and Saejung, [45] proved the following strong conver-
gence theorem for approximation of fixed point of relatively nonexpansive mapping
in a uniformly convex and uniformly smooth Banach space.

Theorem 1.3 (Nilsrakoo and Saejung [45]). Let C be a nonempty, closed and
convex subset of a uniformly conver and uniformly smooth Banach space E and
T be a relatively nonexpansive mapping from C into E. Let {a,} and {B,} be se-
quences in (0,1) satisfying: (i) lim, o oy, =0, (id) Y02 | @y = 00 and (iii) 0 <
liminf, o Bn < limsup,,_,. Bn < 1. Then {z,} defined by u € E, 21 € C,

Tpy1 = Mo HanJu+ (1 = an)(BuJz, + (1= Bo)JT2,)), n>1  (1.16)

converges strongly to Upryu, where Ilp(y is the generalized projection of E onto
F(T).

Motivated by the above mentioned results and the on-going research, it is our
purpose in this paper to introduce a new iterative scheme and prove strong conver-
gence theorem for a countable family of relatively nonexpansive mappings which
is also a common solution to an equilibrium and variational inequality problems
in a 2-uniformly convex and uniformly smooth real Banach space. We also apply
our result to convex feasibility problem.

2 Preliminaries

We know that the following lemmas hold for generalized projections.
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Lemma 2.1 (Alber [4], Kamimura and Takahashi [7]). Let C' be a nonempty
closed convex subset of a smooth, strictly conver and reflexive Banach space E.
Then

o(z, ey) + oMy, y) < d(z,y), VoeeC, Vy e E.

Lemma 2.2 (Alber [4], Kamimura and Takahashi [7]). Let C' be a nonempty
closed convex subset of a smooth, strictly conver and reflexive Banach space E.
Let x € E and z € C. Then

z=lcx e (y—2zJ(x)—J(z)) <0, VyeC.

Lemma 2.3 (Matsushita and Takahashi [12]). Let C be a nonempty, closed and
convex subset of a smooth, strictly convex Banach space E. Let T be a relatively
nonezxpansive mapping of C into itself. Then F(T) is closed and convez.

Let C be a nonempty, closed and convex subset of a smooth, uniformly convex
Banach space E and J be the duality mapping from F into E*. Then J~! is
single-valued, one-one and surjective and it is the duality mapping from E* into
E. We make use of the following function V as studied by Alber [4]:

V(z,2%) = [Ja]]* — 2{z,2") + [y (2.1)

for all € E and 2* € E*. Thus, V(z,2%) = ¢(x,J (z*)) for all z € E and
x* € E*. We know the following lemma from Alber [4].

Lemma 2.4 (Alber [4]). Let E be a real reflexive, strictly conver and Banach
space and V' be as in (2.1). Then

V(e,a®) + 271" - 2,y") < Viw,a® +y°)
forallx € E and x*,y* € E*.
Also, this following lemma holds in a uniformly convex real Banach space.
Lemma 2.5 (Chang et al. [46]). Let E be a uniformly convex real Banach space.
For arbitrary r > 0, let B-(0) := {z € E : ||z|| <r}. Then, for any given sequence
{zn}52, C Br(0) and for any given sequence {A,}32 1 of positive numbers such
that Y ;0 X\i = 1, there exists a continuous strictly increasing convez function

g:10,2r] = R, ¢(0)=0

such that for any positive integers i,j with i < j, the following inequality holds:

s

The following lemma is an analogue of Lemma 2.5 with respect to ¢.

2 oo
< Aalleall® = Mgl — 25)).
n=1
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Lemma 2.6. Let E be a uniformly convez real Banach space. For arbitrary r > 0,
let B-(0) :={xz € E :||z|| < r}. Then, for any given sequence {x,}>°; C B,(0)
and for any giwen sequence {\,}72, of positive numbers such that Y = \; = 1,
there exists a continuous strictly increasing conver function

g:10,2r] = R, ¢(0)=0

such that for any positive integers i, with i < j, the following inequality holds:

1) <x, J 1 <Z AnJa:n)) < Z Az, 20) — NX\jg(|| Tz — Jxjl]).
n=1 n=1

It is easy to see that if {z,} and {y,} are bounded sequences of a smooth Banach
space E, then z,, — y, — 0, n — oo implies that ¢(z,,y,) — 0, n — oco.

Lemma 2.7 (Blum and Oettli [30]). Let C be a nonempty closed convex subset of
a smooth, strictly conver and reflexive Banach space E and let F' be a bifunction
of C x C into R satisfying (A1)-(A4). Let r > 0 and © € E. Then, there exists
z € C such that

1
F(z,y)+ —(y—2z,Jz—Jzx) >0 forally e C.
7

Lemma 2.8 (Takahashi and Zembayashi [47]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E. Assume that
F : C x C — R satisfies (A1)-(A4). Forr > 0 and © € E, define a mapping
T, : E— C as follows:

1
T.(z) = {zeC:F(z,y)—l—;(y—z,Jz—J@ EO,VyEC}

for all z € E. Then, the following hold:
1. T, is single-valued;

2. T, is firmly nonexpansive-type mapping, i.e., for any x,y € E,

(Trx — Ty, JTyx — JTy)y < (Trx — Ty, Jx — Jy);

3. F(T,) = EP(F);
4. EP(F) is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [47]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E. Assume that
F : C x C — R satisfies (A1) — (A4) and let v > 0. Then for each x € E and
q € F(T}),

¢(q, Trw) + (T, x) < ¢(g, ).
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Also, this following lemma will be used in the sequel.

Lemma 2.10 (Kamimura and Takahashi [7]). Let C' be a nonempty closed con-
ver subset of a smooth, uniformly conver Banach space E. Let {x,}22, and
{yn}2, be sequences in E such that either {x,}52, or {yn}S2, is bounded. If
limy, 00 @(Zn, yn) = 0, then lim, o0 |25 — yn|| = 0.

Lemma 2.11 (Xu [48]). Let {a,} be a sequence of nonnegative real numbers
satisfying the following relation:

An+1 < (1 - an)an + anop + Yn, N > 07

where, (i) {an} C[0,1], >, = o0; (i4) limsup o, < 0; (4i7) v, > 0; (n > 0),
> An < 00. Then, a, — 0 as n — oo.

Lemma 2.12 (Mainge [49]). Let {a,} be a sequence of real numbers such that
there exists a subsequence {n;} of {n} such that a,, < an,+1 for all i € N. Then
there exists a nondecreasing sequence {my} C N such that mi — oo and the
following properties are satisfied by all (sufficiently large) numbers k € N :

Amy, < my+1 and ap < Qpyg1-
In fact, mi = max{j <k:aj; < ajt1}

Lemma 2.13 (Beauzamy [50]). Let E be a 2-uniformly convex Banach space, then
for all x,y from any bounded set of E and jx € Jx, jy € Jy, we have

2
2

(x —y,jz —jy) > =z —yl]?,

where % 1s the 2-uniformly constant of E.

Lemma 2.14 (Rockafellar [51]). Let C be a nonempty, closed and convex subset
of a Banach space E and let B be a monotone and hemicontinuous operator of C
into E* with C = D(A). Let B C E x E* be an operator defined as follows:

| Buv+N¢(v), veCl
Mv.—{ 0, veC.

Then M is mazimal monotone and M~*(0) = VI(C, B).
In this paper, we shall assume that

(B1) B is a-inverse strongly monotone;

(B2) ||Byl| <||By — Bul| for all y € C and u € VI(C, B);
(B3) VI(C,B) # 0.
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3 Main Results

Theorem 3.1. Let E be a 2-uniformly convex real Banach space which is also
uniformly smooth. Let C' be a nonempty, closed and convex subset of E. Let F be
a bifunction from C x C — R satisfying (A1) — (A4), B : C — E* an operator
satisfying (B1) — (B3) and {T,,}22, a countable family of relatively nonexpansive
mappings of C into E such that Q := (NS F(T,,)) N EP(F)NVI(C,B) # 0. Let
{an}, {Bn} and {v,} be sequences in (0,1) such that a, + Bn + v = 1. Suppose
{zn}22, is iteratively generated by u, ug € E,

yn = o Y (Juy — 7 Buy,),
T =Ty Yn, (3.1)
Unt1 = Hed HanJu+ Bpd oy + i Thxs), n >0,

with the conditions
(i) im0 ap =0, EZO:O Qp = 005
(i) 0 <b< By <15
2
(iii) 0 <a<r, <b< 2.
Then, {x,}5%, converges strongly to Tqu.

Proof. Let z* € Q). Then, we obtain

o(z*, yn) qS(:v*,HcJ_l(Jun — r, Buy,))

Pz, Jﬁl(‘]un —rnBuy,))

V(
V(

IN

x*, Ju, — rpBuy,)
x*, (Juy — r Buy) + 1 Buy,)
—2(J Y (Juy — 7 Buy) — ¥, rn Buy,)
=V(z*, Jun) — 2rn(J " (Jun — rnBu,) — ¥, Buy,)
= ¢z, un) — 2rp(uy — x*, Buy,)

+ 2(J " (Juy, — 7 Bup) — tp, —1rn Buy,). (3.2)

IN

From condition (B1) and z* € VI(C, B), we obtain

—2rp{u, — 2, Bu,) = —2r,(u, — 2", Bu,, — Bz*) — 2r,{u,, — z*, Bx™)

< —2ar,||Bu, — Bx*||*. (3.3)

By Lemma 2.13 and condition (B2), we also obtain
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2<J71(Ju77f - T’ﬂBu’ﬂ) — Un, _rnBun>
= 2(J Y Juy — rnBuy) — J N (Juy), —rn, Buy,)
<2 N Juy — o Buy) — J 7 (Jun)| ||| Bua||

4
_2||(Jun — rnBun) — (Jun)|||[rn Bun||

A

4
2Bl

| /\

| Bu,, — Bx*||*. (3.4)

7l
Combining (3.2), (3.3) and (3.4) and 0 < a <1, <b < &2, we obtain

65", yn) < O(z*,un) — 20rm||[Bun — Ba*||2 + irnnBun B2 (3.5)
From (3.5), we have that

2
O(x* yn) < 6(a" un) + 2 (7 — ) | Bun — Ba*|*

< o(x", up). (3.6)
Using (3.1), (3.6) and the fact that T, is relatively quasi-nonexpansive, we have
o(@", xpi1) =A@, Ty Ynt1) <A@, Ynt1) < O(2", ung1) (3.7)
= ¢(a*, T HanJu + BpnJxn + YuJTpry))
< and(x®,u) + Bud(z™, xn) + V(2" Trwy)
< and(z™,u) + Bnd(a™, xy) + nd(a”, )
= apd(z™,u) + (1 — an)o(x™, xy,)

< max{¢(z",u), p(z", zn )}

< max{¢(z", u), p(z", o)}
Hence, {z,}52, is bounded and also is {T,z,}02,. Since E is uniformly smooth,
E* is uniformly convex. Then from Lemma 2.6, we have for some M > 0 that
O(@", Tny1) < Q@7 un1) < and(@”, u) + Bnd(z”, zn) + (", Tnan)
= Bamg([Jzn — JThznl])

< ang(z®,u) + (1 — an)d(@”, zn) — Buyng(|[J2n — JThan|])

<anM + ¢ 2n) = Buyng(||[J2n — JTpanl]). (3.8)
This implies that

0 < bg(||[Jn — JThwnl|) < Bavng(||Jon — JThwn|])
< anM + ¢(z*,x) — Oz, Tpy1). (3.9)
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Now put z, := J Y anJu + BnJrn + Y JTnay), n > 0. Then, we show that

limsup(z, — 2z, Ju — Jz) <0,

n—oo

where z := Ilqu. To do this inequality, we choose a subsequence {z,,} of {z,}
such that
limsup(z,, — 2, Ju — Jz) = lim (z,, — 2, Ju — Jz).

n—oo J— o0

Since {z,} is bounded, there exists a subsequence {xy;} of {z,} that converges
weakly to p. The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists ng € N such that {¢(z*,z,)}5%,,, is nonin-
creasing. Then {¢(z*, z,,)}22, converges and ¢(z*, ) —d(x*, Tpy1) — 0, n — 0.
This implies from (3.9) and condition (i) that

g(|Jxn — JThay,||) — 0, n — oo.
By property of g, we have
|Jzn — JThan|] — 0, n— oco.
Since J~! is also uniformly norm-to-norm continuous on bounded sets, we have
[|xn — Thanl| — 0, n— co. (3.10)

This implies that
Oz, Tnxyn) — 0, n— oo,

Since z,,; — p and {T},};2, are uniformly closed, we have p € (N7 F (Ty)).
Next, we show that p € VI(C, B). From (3.5) and (3.7), we obtain

o(x*, 1) < p(*, un) — 2ar,||Buy, — Bx*||* + ériHBun — Bz*||?
= @(z*,uy) + 2Tn(c%rn — a) ||Bu,, — Bz*||?
< ap_19(x*,u) + (1 — an—1)p(a*, zp_1)
+ 2rn(6%rn - a)||Bun — Bz*||? (3.11)
< ap_19(x*,u) + dla™, xp_1) + 27“”(0327“" — a) ||Bu,, — Bx*||?.
Hence, we obtain

2 * * * *
—27“"(0—27“" - a) ||Bu, — Bx ||2 < apo1o(z*,u) + o(z*, xp_1) — o(a™, 2,) — 0,

asn — 00. Since0<a<r, <b< CZTO‘, we obtain from the last inequality that

lim ||Bu, — Bz*|| = 0.
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By Lemma 2.4 and (3.4), we have
(b(unu yn) = (b(una HCJ_I(Jun - rnBun)) < ¢(unu J_l(Jun - TnBun))
= V(un, Jun — rnBuy)
< V(up, (Juy — rnBuy) + mBuy,)
— 2<J_1(Jun — rpBuy) — un,rnBun>
= ¢(tn, tun) + 2(JH(Jup — rpBuiy) — tp, —7nBuy,)
= 2(J Y Jup — roBuy) — Un, =7y Buy,)

4
< —2b2||Bun—B:10*||2 — 0, n— oo. (3.12)

c
It then follows from Lemma 2.10 that lim, o ||yn — un|| = 0. Since J is uniformly
norm-to-norm continuous on bounded sets and lim,, . ||yn — un|| = 0, we obtain

lim ||Jy, — Juy,|| = 0.
Now, let B C E x E* be an operator as follows:

[ Bv+N¢(v), veC
Mv .—{ 0, véC.

By Lemma 2.14, M is maximal monotone and M ~1(0) = VI(C, B). Let (v,w) €
G(M). Since w € Mv = Bv+ N¢(v), we have w — Bv € N (v). Since y,, € C, we
get

(v = Yn, w — Bv) > 0. (3.13)
On the other hand, from y,, = HcJ 1 (Ju, — r,Buy,) and Lemma 2.2 we obtain
(0= Y Ty — (St — 1 Buy)) = 0,
and hence

<U—yn,M —Bun> <0. (3.14)

n

Then, by (3.13), (3.14) and replacing n by n;, we obtain that

<v_ynj’w> > <v_ynijv>

Jun; — JYn,

Z<U_ynj7Bv>+<v_ynju _Bunj>

T,
JUn; — JYn, >

Tn,

= <1) - yn].,Bv - Byn1> + <’U - ynjaBynj - Bun]>
JUnp; —Jynj>

Tn].

= <v—ynj,Bv—Bunj +

+ <v — Y, (3.15)

Jup, — Jyn.
> |0 = yn |11 Byn, — Butm, || = l[o = g || =22
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Hence, we have (v — p,w) > 0 as j — 00, since the uniform continuity of J and B
implies that the right side of (3.15) goes to 0 as j — oo. Thus, since M is maximal
monotone, we have p € M ~!(0) and hence p € VI(C, B).

Finally, we show that p € EP(F). Now, by Lemma 2.9, (3.8) and condition
(1), we obtain

(b(zmyn) = Qb( Tnymyn)

< ¢( 7y7l) (CL'*,,'E")

< (a un) — oz, Ty)

< oy 1M—|— d(x*, xp—1) — O(x*,x,) — 0, N — 0.
Using Lemma 2.10, we have lim, . |[|[2n — yn|| = 0. Now, since x,, — p and
lim,, o0 [|Tn — yn|| = 0, we obtain that y,, — p. Also, since J is uniformly
norm-to-norm continuous on bounded sets and lim,, . ||Z — yn|| = 0, we obtain

lim ||J2, — Jyn|| = 0.

Since liminf,, .o ry, > 0,

o 120 = Tyl

n— o0 Tn

=0. (3.16)
Since z,, = T} un, n > 0, by Lemma 2.8, we have

1
F(xp,y)+ — W —an, Jo, —Jyn) 20, VyeC.

n
Furthermore, replacing n by n; in the last inequality and using (A2), we obtain

1
— Y = Xy STy, — JYn;) = F(y, Tn,). (3.17)

Tn,
By (A4), (3.16) and x,,, — p, we have
F(y,p) <0, YyeC.

For fixed y € C, let 2, :=ty+ (1 —¢)p for all ¢ € (0,1]. This implies that z;, € C.
This yields that F(z¢,p) < 0. It follows from (A1) and (A4) that

0= F(z,2) <tF(z,y) + (1 —t)F (2, p)
<tF(z,y)

and hence 0 < F(z,y). From condition (A43), we obtain
F(p,y) >0, VyeC.

This implies that p € EP(F). Hence, we have p € (N3L,F(T,)) N EP(F) N
VI(C,B) = Q.
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Let w,, := J! (%J%n + o JTnxn), n > 0, then

1—an,
Bn Tn
1-— an¢($n’$") T Qi

O(xp,wy) < O (xn, Tpryn) — 0, n— oo. (3.18)

By Lemma 2.10, it follows that ||x,, — w,|| — 0, n — co. Furthermore,

¢(wn7 Zn) = ¢(wn7 J_l(an‘]u + (1 - an)’]w"))
S and)(wna U) + (1 - an)¢(wn; wn)
= apd(wn,u) — 0, N — oo. (3.19)

Again, by Lemma 2.10, it follows that ||w, — z,|| — 0, n — co. Then
zn — 2znl| < |lwn = 2nl| + [|2n —wn|] = 0, n — . (3.20)
By (3.20), and Lemma 2.2, we obtain

limsup(z, — z, Ju — Jz) = limsup(z,, — z, Ju — Jz)

n—oo n—oo

= lim (zn; — 2, Ju— Jz)

J—

={p-zJu—Jz) <0. (3.21)
Therefore,

A2, Tn1) < Oz, T HanJu + BpJan + Ynd Tpry))
=V(z,anJu+ BpJxn + YnJTny)
<V(z,anJu+ pnJan, + v JThxy — an(Ju — Jz))
— 2 NanJu+ BpJxn + Y Tnty) — 2, —an(Ju — J2))
=V(z,anJz + BnJxn + YnJTntn)
+ 20 (zn — 2z, Ju — Jz)
= ¢(z, T HanJz + Budxn + Y Tntn))
+ 20 (zn — 2, Ju — Jz)
< (2, 2) + Bnd(2, 2n) + (2, Tntn)
+ 20 (zn — p, Ju — Jz)
< (1 —an)d(z,xn) + 20 (20 — 2, Ju — Jz). (3.22)
Now, using (3.21), (3.22) and Lemma 2.11, we obtain ¢(z,z,) — 0, n — oo.

Hence, xz,, — 2z, n — oo.
Case 2. Suppose there exists a subsequence {n;} of {n} such that

¢(I*7xn1) < (b(x*v'rnﬂrl)

for all i € N. Then, by Lemma 2.12, there exists a nondecreasing sequence {my} C
N such that my — oo,

¢(I*’Imk) < ¢(I*;Imk+1) and (b(x*vxk) < (b(x*vxkarl)
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for all k € N. This together with (3.9) gives
0 < bg([|Jxm,, — JTmy@my ) < am M+ $(a", 2ny) = G2, Ty 1) < my M
for all £ € N. It then follows that

I(|Txm, — T Tm,||) — 0, k — oo.

By the same arguments as in Case 1, we can show that

lim sup(zm, — 2, Ju — Jz) < 0. (3.23)
k—o0
From (3.22), we have
(2, Tmyt1) < (1= amy, )0(2, Tmy,) + 20m,, (2m, — 2, Ju — J2). (3.24)

Since ¢(z, Tm, ) < O(2, Tm,+1), we have

amk¢(z7xmk) < ¢(z’xmk) - ¢(27xmk+1) + 2amk<zmk - Z,JU— ‘]Z>
< 200m, (2m, — 2, Ju — Jz).

In particular, since o, > 0, we get
D2, Zmy) < 2{zm,, — 2, Ju — Jz). (3.25)

It then follows from (3.23) that ¢(z,xm,) — 0, k — oco. From (3.25) and (3.24),
we have
¢(Z,Imk+1) - 07 k — oco.

Since ¢(z,xk) < P(z,Tm,+1) for all k € N, we conclude that z; — z, k — .
This implies that z,, — z, n — oo and this completes the proof. O

Corollary 3.2. Let C' be a nonempty, closed and convex subset of a real Hilbert
space H. Let F be a bifunction from CxC — R satisfying (A1)—(4A4), B:C — H
is a-inverse strongly monotone and T a nonexpansive mapping of C' into H such
that Q.= F(T)NEP(F)NVI(C,B) # 0. Let {a}, {Bn} and {yn} be sequences
in (0,1) such that apn + Bn + v = 1. Suppose {x,}52 is iteratively generated by
u,ug € F,

Yn = PC(un - rnBun)a
Tn = Trnyna
Unt1 = Po(anpu + Bnan + wTxn), n >0,

with the conditions
(i) im0 @ =0, EZO:O Qp = 005
(ii) 0 <b < Bpyn <1;
(i) 0 <a<r, <b<2a.
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Then, {x,}52, converges strongly to Pou.

Next, we apply our Theorem 3.1 to convex feasibility problem. First, we
introduce the following lemma which was proved by Reich [52].

Lemma 3.3 (Reich [52]). Let E be a uniformly convexr Banach space with uni-
formly Gateauz: differentiable norm, let {C;}™, be a finite family of closed and
convex subsets of E and let I1; be the generalized projection from E onto C; for
eachi=1,2,...,m. Then

o(p, Iy -1 .. IIiz) < ¢(p, @)
for each p € F(WyIly_q .. . o0L), @ € E and F(I, 1L,y .. . T,11) = 0™, C;.

As direct consequence of Theorem 3.1 and Lemma 3.3, we can prove the
following result.

Theorem 3.4. Let E be a 2-uniformly convex real Banach space which is also
uniformly smooth. Let C' be a nonempty, closed and convexr subset of E. Let F' be
a bifunction from C x C — R satisfying (Al) — (A4), B : C — E* an operator
satisfying (B1) — (B3) and let {C;}, be a finite family of closed and convex
subsets of E such that  := (N, C;) NEP(F)NVI(C,B) # 0. Let {an}, {0n}
and {yn} be sequences in (0,1) such that o, + Bn + v = 1. Suppose {x,}22, is
iteratively generated by u, ug € F,

Yn = Hed " H(Jup — 7 Buy),
Tp = Trnyna
Unr1 = HoJ HapnJu+ Bndan + YW, .. Holliz,), n >0,

with the conditions
(i) limy oo 0y =0, Y7 5 ot = 00;
(ii) 0 <b< Bnyn <1;
02(1
(iii) 0 <a<r, <b< SE.

Then, {x,}52, converges strongly to Iqu.

Proof. Put T := 11, 11,;,—1 .. . I211;. Tt is clear that F(T) C ﬁ(T) and N2, C; C
F(T). By Lemma 3.3, we have that T is a relatively nonexpansive mapping and
F(T)=n,C;. Applying Theorem 3.1, we obtain the desired result. O
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