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1 Introduction

Let K be a nonempty subset of real Banach space X . A self-mapping T : K →
K is said to be asymptotically nonexpansive on K if there exists a sequence {kn}
in [0,∞) such that kn → 0 as n → ∞ and

‖T nx − T ny‖ ≤ (1 + kn)‖x − y‖

for each x, y ∈ K and n ≥ 1. If kn = 0 for all n ≥ 1, then T is called a nonexpansive
mapping.

In 1972, Gobel and Kirk [1] introduced the class of asymptotically nonexpan-
sive self-mappings. They showed that the asymptotically nonexpansive mapping
T : K → K where K is a non-empty closed convex subset of a real uniform convex
Banach space has a fixed point. Many authors, by using the Mann and Ishikawa it-
eration process ([2–5]), studied iterative techniques for approximating fixed points
of nonexpansive self-mappings.

Xu and Ori [6] showed that the following implicit iteration process for a finite
family of nonexpansive self-mappings {Ti}i∈I , where I = {1, 2, . . . , N}, converges
to a commmon fixed-point of the finite family of nonexpansive self-mappings:

xn = αnxn−1 + (1 − αn)Tnxn (1.1)

where {αn} is a real sequence in (0, 1), x0 is any point in K and Tn = Tn modN .
The implicit iteration method has been used in [7–9] to study the common fixed
point of a finite family of strictly pseudocontractive self-mapping, asymptotically
quasi-nonexpansive self-mappings and asymptotically nonexpansive self-mappings.

In 1991, a modified Mann iteration process was introduced by Schu [10] to
approximate fixed points of an asymptotically nonexpansive self-mapping in a
Hilbert space as follows.

Theorem 1.1. Let H be a Hilbert space, K a nonempty closed convex and bounded
subset of H. Let T : K → K be an asymptotically nonexpansive mapping with
sequence {kn} ⊂ [1,∞) for all n ≥ 1, limn→∞ kn = 1 and

∑

∞

n=1(k
2
n−1) < ∞. Let

{αn} be a sequence in [0, 1] satisfying the condition 0 < a ≤ αn ≤ b < 1, n ≥ 1,
for some constant a, b. Then the sequence {xn} generated from arbitrary x1 ∈ K
by

xn+1 = (1 − αn)xn + αnT nxn, n ≥ 1 (1.2)

converges strongly to some fixed point of T .

The iterations (1.1) and (1.2) have been widely used by many authors for
self-mappings; however they may not well-defined for nonself-mappings.

Chidume et al. [11] introduced the generalization of asymptotically nonexpan-
sive self-mapping, called the asymptotically nonexpansive nonself-mapping; this is
a special case of generalized asymptotically nonexpansive nonself-mapping defined
as follows.

Let P : X → K be a nonexpansive retraction of X onto K; that is, P : X → K
is a nonexpansive continuous map such that P (x) = x for all x ∈ K. A nonself
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mapping T : K → X is said to be generalized asymptotically nonexpansive if there
exist sequences {kn} and {rn} in [0,∞) such that kn → 0 as n → ∞ and

‖T (PT )n−1x − T (PT )n−1y‖ ≤ (1 + kn)‖x − y‖ + rn

for all x, y ∈ K and n ≥ 1. If rn = 0 for all n ≥ 1, then T is said to be
asymptotically nonexpansive.

They proved results on strong and weak convergence for asymptotically nonex-
pansive nonself-mapping in uniformly convex Banach spaces where their iteration
process is

xn+1 = P ((1 − αn)xn + αnT (PT )n−1xn) and x1 ∈ K.

In 2006, Wang [12] proved results on strong and weak convergence for common
fixed points of two nonself asymptotically nonexpansive mappings in uniformly
convex Banach spaces. Recently, he construct an explicit iteration scheme: for
n ≥ 1 and arbitrary x0 ∈ K

xn = P ((1 − αn)xn−1 + αnTn(PTn)m−1xn−1) (1.3)

where n = (m − 1)N + i, Tn = Tn modN = Ti, i ∈ I and {αn} is a sequence in
[0, 1), to approximate a common fixed point of a finite family of nonself asymp-
totically nonexpansive mappings {Ti}i∈I . He showed results on weak and strong
convergence for such mappings [13].

Motivated by Wang’s work, we prove strong and weak convergence theorems
for a finite family of generalized asymptotically nonexpansive nonself-mappings
using iteration (1.3).

2 Preliminaries

In this section, we recall some concepts and results which are needed to prove
our main results.

Definition 2.1. Let X and Y be Banach spaces. A mapping T : X → Y is said to
be completely continuous if, for any sequence {xn} in X such that xn → x weakly,
we have ‖Txn − Tx‖ → 0.

Definition 2.2. Let X be a Banach spaces. A mapping T with domain D and
range R in X is said to be demiclosed at 0 if, for any sequence {xn} in D such that
xn converges weakly to x ∈ D and Txn converges strongly to 0, we have Tx = 0.

Definition 2.3. Let X and Y be Banach spaces. A mapping T : X → Y is said
to be demicompact if, for any sequence {xn} in X such that ‖xn − Txn‖ → 0,
there exist a subsequence {xnj

} of {xn} and x ∈ X such that ‖xnj
− x‖ → 0.
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Definition 2.4. A Banach space X is said to satisfy Opial’s property if for any
distinct elements x and y in X and for each sequence {xn} weakly convergent to
x,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

Definition 2.5. Let X be a Banach spaces and let K be a subset of X . Let
{Ti}i∈I be a family of nonself mappings from K to X with a nonempty set F
of common fixed points, where I = {1, 2, . . . , N}. We say that {Ti}i∈I satisfies
condition (Ā) if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that

1

N

N
∑

i=1

‖x − Tix‖ ≥ f(d(x, F ))

for all x ∈ K, where d(x, F ) = inf{‖x− p‖ : p ∈ F}.

Lemma 2.6 ([14]). Let {xn} and {yn} be nonnegative sequences such that xn+1 ≤
xn + yn for all n ≥ 1. If

∑

∞

n=1 yn < ∞, then limn→∞ xn exists.

Lemma 2.7 ([10]). Let X be a real uniformly convex Banach space. Let {xn}
and {yn} be sequences in X. Let {αn} be a sequence such that 0 < p ≤ αn ≤
q < 1 for all integer n ≥ 1. If lim supn→∞

‖xn‖ ≤ r, lim supn→∞
‖yn‖ ≤ r, and

limn→∞ ‖αnxn + (1 − αn)yn‖ = r for some r ≥ 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.8 ([15]). Let X be a Banach space which satisfies Opial’s condition
and let {xn} be a sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn − u‖
and limn→∞ ‖xn − v‖ exist. If {xnk

} and {xnj
} are subsequences of {xn} which

converges weakly to u and v, respectively, then u = v.

3 Main Results

In this section, we let X be a real Banach space, and let K be a nonempty
closed convex subset of X which is also a nonexpansive retract of X with nonex-
pansive retraction P .

For each i ∈ I, we let Ti be a generalized asymptotically nonexpansive nonself

mapping from K to X with respect to {k
(i)
n } and {r

(i)
n } such that

∑

∞

n=1 k
(i)
n < ∞

and
∑

∞

n=1 r
(i)
n < ∞.

Let F denote the set of common fixed points of {Ti}i∈I ; here we assume that
F 6= ∅.

Let {αn} be a sequence in [0, 1) and let x0 be an arbitrary element in K. For
n = (m − 1)N + i ≥ 1, i ∈ I, we let Tn = Ti and

xn = P [(1 − αn)xn−1 + αnTn(PTn)m−1xn−1]. (3.1)

Lemma 3.1. For each q ∈ F , limn→∞ ‖xn − q‖ exists.
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Proof. Let kn = max{k
(1)
n , k

(2)
n , . . . , k

(N)
n } for each integer n. Then 0 ≤ kn ≤

k
(1)
n +k

(2)
n +· · ·+k

(N)
n . Since for each i ∈ I,

∑

∞

n=1 k
(i)
n < ∞, we have

∑

∞

n=1 kn < ∞.

Similarly, we let rn = max{r
(1)
n , r

(2)
n , . . . , r

(N)
n } for each integer n; thus

∑

∞

n=1 rn <
∞.

From (3.1), we have, for any q ∈ F ,

‖xn − q‖ = ‖P [(1 − αn)xn−1 + αnTn(PTn)m−1xn−1] − Pq‖

≤ ‖(1 − αn)xn−1 + αnTn(PTn)m−1xn−1 − q‖

= ‖(1 − αn)(xn−1 − q) + αn[Tn(PTn)m−1xn−1 − Tn(PTn)m−1q]‖

≤ (1 − αn)‖xn−1 − q‖ + αn[(1 + km)‖xn−1 − q‖ + rm]

= (1 + αnkm)‖xn−1 − q‖ + αnrm

≤ (1 + km)‖xn−1 − q‖ + rm. (3.2)

Let sn = (1 + kn)N−1 + · · · + (1 + kn) + 1. Then

‖xN − q‖ ≤ (1 + k1)‖xN−1 − q‖ + r1

≤ (1 + k1)
2‖xN−2 − q‖ + (1 + k1)r1 + r1

≤ (1 + k1)
3‖xN−3 − q‖ + (1 + k1)

2r1 + (1 + k1)r1 + r1

...

≤ (1 + k1)
N‖x0 − q‖ + s1r1.

Similarly, we have

‖x2N − q‖ ≤ (1 + k2)
N‖xN − q‖ + s2r2

≤ (1 + k1)
N (1 + k2)

N‖x0 − q‖ + (1 + k2)
Ns1r1 + s2r2.

Then, for n = (m − 1)N + i, i ∈ I,

‖xn − q‖ ≤(1 + k1)
N · · · (1 + km−1)

N (1 + km)i‖x0 − q‖

+ (1 + k2)
N · · · (1 + km−1)

N (1 + km)is1r1

+ (1 + k3)
N · · · (1 + km−1)

N (1 + km)is2r2

+ · · · + (1 + km)ism−1rm−1

+ [(1 + km)i + · · · + (1 + km) + 1]rm.

Since 1 + x ≤ ex as x ≥ 0, we have, for each i ∈ I,

(1 + ki)
N · · · (1 + km−1)

N (1 + km)i ≤ [(1 + k1) · · · (1 + km)]N

≤ (ek1 · · · ekm)N

= e(k1+···+km)N .
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Since
∑

∞

n=0 kn < ∞, the nonnegative sequence {kn} converges to 0 and hence
there exists a constant n0 > 0 such that 0 ≤ kn ≤ 1 for all n ≥ n0. Then, for any
n ≥ n0,

sn = (1 + kn)N−1 + · · · + (1 + kn) + 1

= [(1 + kn)N − 1]/kn

=
(

N
1

)

+
(

N
2

)

kn +
(

N
3

)

k2
n + · · · +

(

N
N

)

kN−1
n

≤
(

N

1

)

+
(

N

2

)

+
(

N

3

)

+ · · · +
(

N

N

)

= 2N − 1.

Then there exists a positive constant C such that sn ≤ C for all n ≥ 1. Therefore

‖xn − q‖ ≤ e(k1+···+km)N (‖x0 − q‖ + s1r1 + s2r2 + · · · + smrm)

≤ e(k1+···+km)N [‖x0 − q‖ + C(r1 + r2 + · · · + rm)].

Since
∑

∞

n=1 kn < ∞ and
∑

∞

n=1 rn < ∞, we conclude that ‖xn − q‖ is bounded;
that is, there exists a constant M > 0 such that ‖xn − q‖ ≤ M for all n ≥ 0. From
(3.2), we have, for n ≥ 1,

‖xn − q‖ ≤ ‖xn−1 − q‖ + km‖xn−1 − q‖ + rm

≤ ‖xn−1 − q‖ + kmM + rm.

By Lemma 2.6, we have that limn→∞ ‖xn − q‖ exists.

Lemma 3.2. If X is uniformly convex and {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1),
then limn→∞ ‖xn − Tixn‖ = 0 for each i ∈ I.

Proof. Let q ∈ F . By Lemma 3.1, limn→∞ ‖xn−q‖ exists; let c = limn→∞ ‖xn−q‖.
By (3.2), assuming n + 1 = (m − 1)N + i for i ∈ I, we have

‖xn+1 − q‖ ≤ ‖(1 − αn+1)(xn − q) + αn+1[Tn+1(PTn+1)
m−1xn − q]‖

≤ (1 + km)‖xn − q‖ + rm

where kn = max{k
(1)
n , k

(2)
n , . . . , k

(N)
n } and rn = max{r

(1)
n , r

(2)
n , . . . , r

(N)
n } for each

integer n. Since both ‖xn+1 − q‖ and (1 + km)‖xn − q‖ + rm converge to c, we
have

lim
n→∞

‖(1 − αn+1)(xn − q) + αn+1[Tn+1(PTn+1)
m−1xn − q]‖ = c.

Since ‖xn+1 − q‖ converges to c, we have

lim sup
n→∞

‖Tn+1(PTn+1)
m−1xn − q‖ ≤ lim

n→∞

‖xn+1 − q‖ = c.

It follows from Lemma 2.7 that

lim
n→∞

‖xn − Tn+1(PTn+1)
m−1xn‖ = 0.
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Since

‖xn+1 − xn‖ = ‖P [(1 − αn+1)xn + αn+1Tn+1(PTn+1)
m−1xn] − Pxn‖

≤ ‖(1 − αn+1)xn + αn+1Tn+1(PTn+1)
m−1xn − xn‖

= αn+1‖[Tn+1(PTn+1)
m−1xn − xn]‖,

it follows that limn→∞ ‖xn+1 − xn‖ = 0. By induction, we have

lim
n→∞

‖xn+j − xn‖ = 0

for any positive integer j. Since, for any x, y ∈ K and i ∈ I,

‖Tix − Tiy‖ ≤ k
(i)
1 ‖x − y‖ + r

(i)
1 ≤ k1‖x − y‖ + r1,

we have, for n > N ,

‖xn − Tn+1xn‖ ≤ ‖xn − Tn+1(PTn+1)
m−1xn‖ + ‖Tn+1(PTn+1)

m−1xn − Tn+1Pxn‖

≤ ‖xn − Tn+1(PTn+1)
m−1xn‖ + k1‖(PTn+1)

m−1xn − Pxn‖ + r1

≤ ‖xn − Tn+1(PTn+1)
m−1xn‖ + k1‖Tn+1(PTn+1)

m−2xn − xn‖ + r1

≤ ‖xn − Tn+1(PTn+1)
m−1xn‖

+ k1[‖Tn+1−N(PTn+1−N )m−2xn − Tn+1−N (PTn+1−N)m−2xn−N‖

+ ‖Tn+1−N(PTn+1−N)m−2xn−N − xn−N‖ + ‖xn−N − xn‖] + r1.

Then limn→∞ ‖xn − Tn+1xn‖ = 0. Since, for each i ∈ I,

‖xn − Tn+ixn‖ ≤ ‖xn − xn+i−1‖ + ‖xn+i−1 − Tn+ixn+i−1‖ + ‖Tn+ixn+i−1 − Tn+ixn‖

≤ (1 + k1)‖xn − xn+i−1‖ + ‖xn+i−1 − Tn+ixn+i−1‖ + r1,

we have limn→∞ ‖xn − Tn+ixn‖ = 0 which completes the proof.

Theorem 3.3. Suppose that X is uniformly convex and {αn} ⊂ [δ, 1−δ] for some
δ ∈ (0, 1). If {Ti}i∈I satisfies condition (A′), then {xn} converges strongly to a
common fixed point in F .

Proof. From the proof of Lemma 3.1, we can show that, for any positive integers
n, m and N0 with n ≥ N0 + mN ,

‖xn − p‖ ≤ M‖xN0
− p‖ + C

∞
∑

i=m

ri

where M = eN
P
∞

i=1
ki and C ≥ (1 + kn)N−1 + · · · + (1 + kn) + 1 for all positive

integers n.
By Lemma 3.2, we have limn→∞ ‖xn −Tixn‖ = 0 for each i ∈ I. Since {Ti}i∈I

satisfies condition (A′), limn→∞ d(xn, F ) = 0. Let ǫ > 0 be given. There exists
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a positive integer N0 such that d(xn, F ) < ǫ
5M

for all n ≥ N0. Then there exists
p ∈ F such that

‖xN0
− p‖ <

ǫ

4M
.

In addition, since
∑

∞

i=1 ri < ∞, there exists a positive integer m such that

∞
∑

i=m

ri <
ǫ

4C
.

Thus, for n, k ≥ N0 + mN ,

‖xn − xk‖ ≤ ‖xn − p‖ + ‖xk − p‖

≤ 2M‖xN0
− p‖ + 2C

∞
∑

i=m

ri < ǫ.

Hence {xn} is a Cauchy sequence in K. We assume that xn → q ∈ K as n → ∞.
By Lemma 3.2, we have limn→∞ ‖xn −Tixn‖ = 0 for each i ∈ I; by the continuity
of Ti, we conclude that q is a common fixed point of {Ti}i∈I .

Theorem 3.4. Suppose that X is uniformly convex and {αn} ⊂ [δ, 1−δ] for some
δ ∈ (0, 1). If Tk is completely continuous for some k ∈ I and I − Ti is demiclosed
at zero for all i ∈ I, then {xn} converges strongly to a common fixed point in F .

Proof. From Lemma 3.1 and Lemma 3.2, {xn} is bounded and limn→∞ ‖xn −
Tixn‖ = 0 for each i ∈ I. Then {Tixn} is bounded for each i ∈ I. Assume without
loss of generality that T1 is completely continuous. Then there exist an element
p ∈ K and a subsequence {T1xnj

} such that ‖T1xnj
− p‖ → 0 as j → ∞. Since

‖xnj
− p‖ ≤ ‖xnj

− T1xnj
‖ + ‖T1xnj

− p‖,

we have limj→∞ ‖xnj
− p‖ = 0. Since each I − Ti is demiclosed, we have that

p ∈ F . By Lemma 3.1, limn→∞ ‖xn − p‖ exists and hence equals zero. Then {xn}
converges strongly to a common fixed point in F .

Theorem 3.5. Suppose that X is uniformly convex and {αn} ⊂ [δ, 1−δ] for some
δ ∈ (0, 1). If Ti is demicompact for some i ∈ I and I − Ti is demiclosed at zero
for each i, then {xn} converges strongly to a common fixed point in F .

Proof. Without lost of generality, we suppose that T1 is demicompact; by Lemma 3.1
and Lemma 3.2 we have that a sequence {xn} is bounded and limn→∞ ‖xn −
T1xn‖ = 0. Since T1 is demicompact, there exist q ∈ K and a subsequence {xnj

}
of {xn} such that xnj

→ q strongly. Moreover we have q ∈ F , by Lemma 3.2
together with the assumption that I − Ti is demiclosed at zero for all i ∈ I. By
Lemma 3.1, {xn} converges strongly to q, a common fixed point of {Ti}i∈I .

Theorem 3.6. Suppose that X is uniformly convex and {αn} ⊂ [δ, 1−δ] for some
δ ∈ (0, 1). If X satisfies Opial’s property and I −Ti is demiclosed at zero for each
i, then {xn} converges weakly to a common fixed point in F .
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Proof. It follows from Lemma 3.1 that limn→∞ ‖xn − q‖ exists for all q ∈ F . To
complete the proof, we have to show that a sequence {xn} has a unique weak
subsequential limit in F . Let q1 and q2 be weak limits of subsequences {xnk

}
and {xnj

}, respectively. By Lemma 3.2 and the assumption that each I − Ti is
demiclosed at zero, we have q1, q2 ∈ F . By Lemma 2.8, q1 = q2. Therefore {xn}
converges weakly to a common fixed point in F .
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