Thai Journal of Mathematics Volume 9 (2011) Number 3 : 521–530

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Explicit Iteration Method for Common Fixed Points of a Finite Family of Generalized Asymptotically Nonexpansive Nonself Mappings

Orawan Tripak 1 and Sarachai Kongsiriwong

Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Songkhla 90112 Thailand Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand e-mail : orawan.s@psu.ac.th, sarachai.k@psu.ac.th

Abstract : Let $I = \{1, 2, ..., N\}$ and let $\{T_i\}_{i \in I}$ be a finite family of generalized asymptotically nonexpansive nonself mappings with a nonempty set of common fixed points where each T_i is a mapping from a nonempty closed convex subset K of a real uniformly convex Banach space X to X. Let $P : X \to K$ be a nonexpansive retraction of X onto K and let $\{\alpha_n\}$ be a sequence in [0, 1). We prove strong and weak convergence theorems for $\{T_i\}_{i \in I}$ using the iteration generated from arbitrary $x_0 \in K$

$$x_n = P((1 - \alpha_n)x_{n-1} + \alpha_n T_n(PT_n)^{m-1}x_{n-1}), \ n \ge 1$$

where n = (m-1)N + i, $i \in I$ and $T_n = T_{n \mod N}$.

Keywords : Generalized asymptotically nonexpansive nonself mapping; Common fixed point; Strong and weak convergence; Explicit iteration.
2010 Mathematics Subject Classification : 47H09; 47H10.

¹Corresponding author email: orawan.s@psu.ac.th (O. Tripak)

Copyright \bigodot 2011 by the Mathematical Association of Thailand. All rights reserved.

1 Introduction

Let K be a nonempty subset of real Banach space X. A self-mapping $T: K \to K$ is said to be *asymptotically nonexpansive* on K if there exists a sequence $\{k_n\}$ in $[0, \infty)$ such that $k_n \to 0$ as $n \to \infty$ and

$$||T^{n}x - T^{n}y|| \le (1+k_{n})||x-y||$$

for each $x, y \in K$ and $n \ge 1$. If $k_n = 0$ for all $n \ge 1$, then T is called a *nonexpansive* mapping.

In 1972, Gobel and Kirk [1] introduced the class of asymptotically nonexpansive self-mappings. They showed that the asymptotically nonexpansive mapping $T: K \to K$ where K is a non-empty closed convex subset of a real uniform convex Banach space has a fixed point. Many authors, by using the Mann and Ishikawa iteration process ([2–5]), studied iterative techniques for approximating fixed points of nonexpansive self-mappings.

Xu and Ori [6] showed that the following implicit iteration process for a finite family of nonexpansive self-mappings $\{T_i\}_{i \in I}$, where $I = \{1, 2, ..., N\}$, converges to a common fixed-point of the finite family of nonexpansive self-mappings:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n \tag{1.1}$$

where $\{\alpha_n\}$ is a real sequence in (0, 1), x_0 is any point in K and $T_n = T_{n \mod N}$. The implicit iteration method has been used in [7–9] to study the common fixed point of a finite family of strictly pseudocontractive self-mapping, asymptotically quasi-nonexpansive self-mappings and asymptotically nonexpansive self-mappings.

In 1991, a modified Mann iteration process was introduced by Schu [10] to approximate fixed points of an asymptotically nonexpansive self-mapping in a Hilbert space as follows.

Theorem 1.1. Let H be a Hilbert space, K a nonempty closed convex and bounded subset of H. Let $T : K \to K$ be an asymptotically nonexpansive mapping with sequence $\{k_n\} \subset [1,\infty)$ for all $n \ge 1$, $\lim_{n\to\infty} k_n = 1$ and $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $\{\alpha_n\}$ be a sequence in [0,1] satisfying the condition $0 < a \le \alpha_n \le b < 1$, $n \ge 1$, for some constant a, b. Then the sequence $\{x_n\}$ generated from arbitrary $x_1 \in K$ by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \quad n \ge 1$$

$$(1.2)$$

converges strongly to some fixed point of T.

The iterations (1.1) and (1.2) have been widely used by many authors for self-mappings; however they may not well-defined for nonself-mappings.

Chidume et al. [11] introduced the generalization of asymptotically nonexpansive self-mapping, called *the asymptotically nonexpansive nonself-mapping*; this is a special case of generalized asymptotically nonexpansive nonself-mapping defined as follows.

Let $P: X \to K$ be a nonexpansive retraction of X onto K; that is, $P: X \to K$ is a nonexpansive continuous map such that P(x) = x for all $x \in K$. A nonself

mapping $T: K \to X$ is said to be generalized asymptotically nonexpansive if there exist sequences $\{k_n\}$ and $\{r_n\}$ in $[0, \infty)$ such that $k_n \to 0$ as $n \to \infty$ and

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le (1+k_n)||x-y|| + r_r$$

for all $x, y \in K$ and $n \geq 1$. If $r_n = 0$ for all $n \geq 1$, then T is said to be asymptotically nonexpansive.

They proved results on strong and weak convergence for asymptotically nonexpansive nonself-mapping in uniformly convex Banach spaces where their iteration process is

$$x_{n+1} = P((1 - \alpha_n)x_n + \alpha_n T(PT)^{n-1}x_n)$$
 and $x_1 \in K$.

In 2006, Wang [12] proved results on strong and weak convergence for common fixed points of two nonself asymptotically nonexpansive mappings in uniformly convex Banach spaces. Recently, he construct an explicit iteration scheme: for $n \ge 1$ and arbitrary $x_0 \in K$

$$x_n = P((1 - \alpha_n)x_{n-1} + \alpha_n T_n (PT_n)^{m-1}x_{n-1})$$
(1.3)

where n = (m-1)N + i, $T_n = T_{n \mod N} = T_i$, $i \in I$ and $\{\alpha_n\}$ is a sequence in [0, 1), to approximate a common fixed point of a finite family of nonself asymptotically nonexpansive mappings $\{T_i\}_{i \in I}$. He showed results on weak and strong convergence for such mappings [13].

Motivated by Wang's work, we prove strong and weak convergence theorems for a finite family of generalized asymptotically nonexpansive nonself-mappings using iteration (1.3).

2 Preliminaries

In this section, we recall some concepts and results which are needed to prove our main results.

Definition 2.1. Let X and Y be Banach spaces. A mapping $T: X \to Y$ is said to be *completely continuous* if, for any sequence $\{x_n\}$ in X such that $x_n \to x$ weakly, we have $||Tx_n - Tx|| \to 0$.

Definition 2.2. Let X be a Banach spaces. A mapping T with domain D and range R in X is said to be *demiclosed* at 0 if, for any sequence $\{x_n\}$ in D such that x_n converges weakly to $x \in D$ and Tx_n converges strongly to 0, we have Tx = 0.

Definition 2.3. Let X and Y be Banach spaces. A mapping $T: X \to Y$ is said to be *demicompact* if, for any sequence $\{x_n\}$ in X such that $||x_n - Tx_n|| \to 0$, there exist a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ and $x \in X$ such that $||x_{n_j} - x|| \to 0$.

Definition 2.4. A Banach space X is said to satisfy *Opial's property* if for any distinct elements x and y in X and for each sequence $\{x_n\}$ weakly convergent to x,

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

Definition 2.5. Let X be a Banach spaces and let K be a subset of X. Let $\{T_i\}_{i \in I}$ be a family of nonself mappings from K to X with a nonempty set F of common fixed points, where $I = \{1, 2, ..., N\}$. We say that $\{T_i\}_{i \in I}$ satisfies condition (\overline{A}) if there exists a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(t) > 0 for all $t \in (0, \infty)$ such that

$$\frac{1}{N}\sum_{i=1}^{N} \|x - T_i x\| \ge f(d(x, F))$$

for all $x \in K$, where $d(x, F) = \inf\{||x - p|| : p \in F\}$.

Lemma 2.6 ([14]). Let $\{x_n\}$ and $\{y_n\}$ be nonnegative sequences such that $x_{n+1} \leq x_n + y_n$ for all $n \geq 1$. If $\sum_{n=1}^{\infty} y_n < \infty$, then $\lim_{n \to \infty} x_n$ exists.

Lemma 2.7 ([10]). Let X be a real uniformly convex Banach space. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X. Let $\{\alpha_n\}$ be a sequence such that $0 for all integer <math>n \ge 1$. If $\limsup_{n \to \infty} ||x_n|| \le r$, $\limsup_{n \to \infty} ||y_n|| \le r$, and $\lim_{n \to \infty} ||\alpha_n x_n + (1 - \alpha_n)y_n|| = r$ for some $r \ge 0$, then $\lim_{n \to \infty} ||x_n - y_n|| = 0$.

Lemma 2.8 ([15]). Let X be a Banach space which satisfies Opial's condition and let $\{x_n\}$ be a sequence in X. Let $u, v \in X$ be such that $\lim_{n\to\infty} ||x_n - u||$ and $\lim_{n\to\infty} ||x_n - v||$ exist. If $\{x_{n_k}\}$ and $\{x_{n_j}\}$ are subsequences of $\{x_n\}$ which converges weakly to u and v, respectively, then u = v.

3 Main Results

In this section, we let X be a real Banach space, and let K be a nonempty closed convex subset of X which is also a nonexpansive retract of X with nonexpansive retraction P.

For each $i \in I$, we let T_i be a generalized asymptotically nonexpansive nonself mapping from K to X with respect to $\{k_n^{(i)}\}$ and $\{r_n^{(i)}\}$ such that $\sum_{n=1}^{\infty} k_n^{(i)} < \infty$ and $\sum_{n=1}^{\infty} r_n^{(i)} < \infty$.

Let F denote the set of common fixed points of $\{T_i\}_{i \in I}$; here we assume that $F \neq \emptyset$.

Let $\{\alpha_n\}$ be a sequence in [0, 1) and let x_0 be an arbitrary element in K. For $n = (m-1)N + i \ge 1, i \in I$, we let $T_n = T_i$ and

$$x_n = P[(1 - \alpha_n)x_{n-1} + \alpha_n T_n (PT_n)^{m-1}x_{n-1}].$$
(3.1)

Lemma 3.1. For each $q \in F$, $\lim_{n\to\infty} ||x_n - q||$ exists.

Proof. Let $k_n = \max\{k_n^{(1)}, k_n^{(2)}, \dots, k_n^{(N)}\}$ for each integer n. Then $0 \le k_n \le k_n^{(1)} + k_n^{(2)} + \dots + k_n^{(N)}$. Since for each $i \in I$, $\sum_{n=1}^{\infty} k_n^{(i)} < \infty$, we have $\sum_{n=1}^{\infty} k_n < \infty$. Similarly, we let $r_n = \max\{r_n^{(1)}, r_n^{(2)}, \dots, r_n^{(N)}\}$ for each integer n; thus $\sum_{n=1}^{\infty} r_n < \infty$.

From (3.1), we have, for any $q \in F$,

$$||x_{n} - q|| = ||P[(1 - \alpha_{n})x_{n-1} + \alpha_{n}T_{n}(PT_{n})^{m-1}x_{n-1}] - Pq||$$

$$\leq ||(1 - \alpha_{n})x_{n-1} + \alpha_{n}T_{n}(PT_{n})^{m-1}x_{n-1} - q||$$

$$= ||(1 - \alpha_{n})(x_{n-1} - q) + \alpha_{n}[T_{n}(PT_{n})^{m-1}x_{n-1} - T_{n}(PT_{n})^{m-1}q]||$$

$$\leq (1 - \alpha_{n})||x_{n-1} - q|| + \alpha_{n}[(1 + k_{m})||x_{n-1} - q|| + r_{m}]$$

$$= (1 + \alpha_{n}k_{m})||x_{n-1} - q|| + \alpha_{n}r_{m}$$

$$\leq (1 + k_{m})||x_{n-1} - q|| + r_{m}.$$
(3.2)

Let $s_n = (1 + k_n)^{N-1} + \dots + (1 + k_n) + 1$. Then

$$||x_N - q|| \le (1 + k_1) ||x_{N-1} - q|| + r_1$$

$$\le (1 + k_1)^2 ||x_{N-2} - q|| + (1 + k_1)r_1 + r_1$$

$$\le (1 + k_1)^3 ||x_{N-3} - q|| + (1 + k_1)^2 r_1 + (1 + k_1)r_1 + r_1$$

$$\vdots$$

$$\le (1 + k_1)^N ||x_0 - q|| + s_1 r_1.$$

Similarly, we have

$$||x_{2N} - q|| \le (1 + k_2)^N ||x_N - q|| + s_2 r_2$$

$$\le (1 + k_1)^N (1 + k_2)^N ||x_0 - q|| + (1 + k_2)^N s_1 r_1 + s_2 r_2.$$

Then, for $n = (m-1)N + i, i \in I$,

$$\begin{aligned} \|x_n - q\| &\leq (1+k_1)^N \cdots (1+k_{m-1})^N (1+k_m)^i \|x_0 - q\| \\ &+ (1+k_2)^N \cdots (1+k_{m-1})^N (1+k_m)^i s_1 r_1 \\ &+ (1+k_3)^N \cdots (1+k_{m-1})^N (1+k_m)^i s_2 r_2 \\ &+ \cdots + (1+k_m)^i s_{m-1} r_{m-1} \\ &+ [(1+k_m)^i + \cdots + (1+k_m) + 1] r_m. \end{aligned}$$

Since $1 + x \le e^x$ as $x \ge 0$, we have, for each $i \in I$,

$$(1+k_i)^N \cdots (1+k_{m-1})^N (1+k_m)^i \le [(1+k_1) \cdots (1+k_m)]^N$$
$$\le (e^{k_1} \cdots e^{k_m})^N$$
$$= e^{(k_1+\cdots+k_m)N}.$$

Since $\sum_{n=0}^{\infty} k_n < \infty$, the nonnegative sequence $\{k_n\}$ converges to 0 and hence there exists a constant $n_0 > 0$ such that $0 \le k_n \le 1$ for all $n \ge n_0$. Then, for any $n \ge n_0$,

$$s_n = (1 + k_n)^{N-1} + \dots + (1 + k_n) + 1$$

= $[(1 + k_n)^N - 1]/k_n$
= $\binom{N}{1} + \binom{N}{2}k_n + \binom{N}{3}k_n^2 + \dots + \binom{N}{N}k_n^{N-1}$
 $\leq \binom{N}{1} + \binom{N}{2} + \binom{N}{3} + \dots + \binom{N}{N}$
= $2^N - 1.$

Then there exists a positive constant C such that $s_n \leq C$ for all $n \geq 1$. Therefore

$$||x_n - q|| \le e^{(k_1 + \dots + k_m)N} (||x_0 - q|| + s_1r_1 + s_2r_2 + \dots + s_mr_m)$$

$$\le e^{(k_1 + \dots + k_m)N} [||x_0 - q|| + C(r_1 + r_2 + \dots + r_m)].$$

Since $\sum_{n=1}^{\infty} k_n < \infty$ and $\sum_{n=1}^{\infty} r_n < \infty$, we conclude that $||x_n - q||$ is bounded; that is, there exists a constant M > 0 such that $||x_n - q|| \le M$ for all $n \ge 0$. From (3.2), we have, for $n \ge 1$,

$$||x_n - q|| \le ||x_{n-1} - q|| + k_m ||x_{n-1} - q|| + r_m$$

$$\le ||x_{n-1} - q|| + k_m M + r_m.$$

By Lemma 2.6, we have that $\lim_{n\to\infty} ||x_n - q||$ exists.

Lemma 3.2. If X is uniformly convex and $\{\alpha_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0,1)$, then $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$ for each $i \in I$.

Proof. Let $q \in F$. By Lemma 3.1, $\lim_{n\to\infty} ||x_n-q||$ exists; let $c = \lim_{n\to\infty} ||x_n-q||$. By (3.2), assuming n+1 = (m-1)N + i for $i \in I$, we have

$$||x_{n+1} - q|| \le ||(1 - \alpha_{n+1})(x_n - q) + \alpha_{n+1}[T_{n+1}(PT_{n+1})^{m-1}x_n - q]|| \le (1 + k_m)||x_n - q|| + r_m$$

where $k_n = \max\{k_n^{(1)}, k_n^{(2)}, \dots, k_n^{(N)}\}$ and $r_n = \max\{r_n^{(1)}, r_n^{(2)}, \dots, r_n^{(N)}\}$ for each integer *n*. Since both $||x_{n+1} - q||$ and $(1 + k_m)||x_n - q|| + r_m$ converge to *c*, we have

$$\lim_{n \to \infty} \|(1 - \alpha_{n+1})(x_n - q) + \alpha_{n+1}[T_{n+1}(PT_{n+1})^{m-1}x_n - q]\| = c.$$

Since $||x_{n+1} - q||$ converges to c, we have

$$\limsup_{n \to \infty} \|T_{n+1}(PT_{n+1})^{m-1}x_n - q\| \le \lim_{n \to \infty} \|x_{n+1} - q\| = c$$

It follows from Lemma 2.7 that

$$\lim_{n \to \infty} \|x_n - T_{n+1} (PT_{n+1})^{m-1} x_n\| = 0.$$

Since

$$||x_{n+1} - x_n|| = ||P[(1 - \alpha_{n+1})x_n + \alpha_{n+1}T_{n+1}(PT_{n+1})^{m-1}x_n] - Px_n||$$

$$\leq ||(1 - \alpha_{n+1})x_n + \alpha_{n+1}T_{n+1}(PT_{n+1})^{m-1}x_n - x_n||$$

$$= \alpha_{n+1}||[T_{n+1}(PT_{n+1})^{m-1}x_n - x_n]||,$$

it follows that $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$. By induction, we have

$$\lim_{n \to \infty} \|x_{n+j} - x_n\| = 0$$

for any positive integer j. Since, for any $x, y \in K$ and $i \in I$,

$$||T_i x - T_i y|| \le k_1^{(i)} ||x - y|| + r_1^{(i)} \le k_1 ||x - y|| + r_1,$$

we have, for n > N,

common fixed point in F.

$$\begin{aligned} \|x_n - T_{n+1}x_n\| &\leq \|x_n - T_{n+1}(PT_{n+1})^{m-1}x_n\| + \|T_{n+1}(PT_{n+1})^{m-1}x_n - T_{n+1}Px_n\| \\ &\leq \|x_n - T_{n+1}(PT_{n+1})^{m-1}x_n\| + k_1\|(PT_{n+1})^{m-1}x_n - Px_n\| + r_1 \\ &\leq \|x_n - T_{n+1}(PT_{n+1})^{m-1}x_n\| + k_1\|T_{n+1}(PT_{n+1})^{m-2}x_n - x_n\| + r_1 \\ &\leq \|x_n - T_{n+1}(PT_{n+1})^{m-1}x_n\| \\ &+ k_1[\|T_{n+1-N}(PT_{n+1-N})^{m-2}x_n - T_{n+1-N}(PT_{n+1-N})^{m-2}x_{n-N}\| \\ &+ \|T_{n+1-N}(PT_{n+1-N})^{m-2}x_{n-N} - x_{n-N}\| + \|x_{n-N} - x_n\|] + r_1. \end{aligned}$$

Then $\lim_{n\to\infty} ||x_n - T_{n+1}x_n|| = 0$. Since, for each $i \in I$,

$$\begin{aligned} \|x_n - T_{n+i}x_n\| &\leq \|x_n - x_{n+i-1}\| + \|x_{n+i-1} - T_{n+i}x_{n+i-1}\| + \|T_{n+i}x_{n+i-1} - T_{n+i}x_n\| \\ &\leq (1+k_1)\|x_n - x_{n+i-1}\| + \|x_{n+i-1} - T_{n+i}x_{n+i-1}\| + r_1, \end{aligned}$$

we have $\lim_{n\to\infty} ||x_n - T_{n+i}x_n|| = 0$ which completes the proof.

Theorem 3.3. Suppose that X is uniformly convex and $\{\alpha_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0,1)$. If $\{T_i\}_{i \in I}$ satisfies condition (A'), then $\{x_n\}$ converges strongly to a

Proof. From the proof of Lemma 3.1, we can show that, for any positive integers n, m and N_0 with $n \ge N_0 + mN$,

$$||x_n - p|| \le M ||x_{N_0} - p|| + C \sum_{i=m}^{\infty} r_i$$

where $M = e^{N \sum_{i=1}^{\infty} k_i}$ and $C \ge (1 + k_n)^{N-1} + \dots + (1 + k_n) + 1$ for all positive integers n.

By Lemma 3.2, we have $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$ for each $i \in I$. Since $\{T_i\}_{i\in I}$ satisfies condition (A'), $\lim_{n\to\infty} d(x_n, F) = 0$. Let $\epsilon > 0$ be given. There exists

a positive integer N_0 such that $d(x_n, F) < \frac{\epsilon}{5M}$ for all $n \ge N_0$. Then there exists $p \in F$ such that

$$\|x_{N_0} - p\| < \frac{\epsilon}{4M}.$$

In addition, since $\sum_{i=1}^{\infty} r_i < \infty$, there exists a positive integer m such that

$$\sum_{i=m}^{\infty} r_i < \frac{\epsilon}{4C}.$$

Thus, for $n, k \geq N_0 + mN$,

$$||x_n - x_k|| \le ||x_n - p|| + ||x_k - p||$$

$$\le 2M ||x_{N_0} - p|| + 2C \sum_{i=m}^{\infty} r_i < \epsilon$$

Hence $\{x_n\}$ is a Cauchy sequence in K. We assume that $x_n \to q \in K$ as $n \to \infty$. By Lemma 3.2, we have $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$ for each $i \in I$; by the continuity of T_i , we conclude that q is a common fixed point of $\{T_i\}_{i\in I}$.

Theorem 3.4. Suppose that X is uniformly convex and $\{\alpha_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0,1)$. If T_k is completely continuous for some $k \in I$ and $I - T_i$ is demiclosed at zero for all $i \in I$, then $\{x_n\}$ converges strongly to a common fixed point in F.

Proof. From Lemma 3.1 and Lemma 3.2, $\{x_n\}$ is bounded and $\lim_{n\to\infty} ||x_n - T_ix_n|| = 0$ for each $i \in I$. Then $\{T_ix_n\}$ is bounded for each $i \in I$. Assume without loss of generality that T_1 is completely continuous. Then there exist an element $p \in K$ and a subsequence $\{T_1x_n\}$ such that $||T_1x_{n_i} - p|| \to 0$ as $j \to \infty$. Since

$$||x_{n_{i}} - p|| \leq ||x_{n_{i}} - T_{1}x_{n_{i}}|| + ||T_{1}x_{n_{i}} - p||,$$

we have $\lim_{j\to\infty} ||x_{n_j} - p|| = 0$. Since each $I - T_i$ is demiclosed, we have that $p \in F$. By Lemma 3.1, $\lim_{n\to\infty} ||x_n - p||$ exists and hence equals zero. Then $\{x_n\}$ converges strongly to a common fixed point in F.

Theorem 3.5. Suppose that X is uniformly convex and $\{\alpha_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0,1)$. If T_i is demicompact for some $i \in I$ and $I - T_i$ is demiclosed at zero for each i, then $\{x_n\}$ converges strongly to a common fixed point in F.

Proof. Without lost of generality, we suppose that T_1 is demicompact; by Lemma 3.1 and Lemma 3.2 we have that a sequence $\{x_n\}$ is bounded and $\lim_{n\to\infty} ||x_n - T_1x_n|| = 0$. Since T_1 is demicompact, there exist $q \in K$ and a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_j} \to q$ strongly. Moreover we have $q \in F$, by Lemma 3.2 together with the assumption that $I - T_i$ is demiclosed at zero for all $i \in I$. By Lemma 3.1, $\{x_n\}$ converges strongly to q, a common fixed point of $\{T_i\}_{i\in I}$.

Theorem 3.6. Suppose that X is uniformly convex and $\{\alpha_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0,1)$. If X satisfies Opial's property and $I - T_i$ is demiclosed at zero for each *i*, then $\{x_n\}$ converges weakly to a common fixed point in F.

Proof. It follows from Lemma 3.1 that $\lim_{n\to\infty} ||x_n - q||$ exists for all $q \in F$. To complete the proof, we have to show that a sequence $\{x_n\}$ has a unique weak subsequential limit in F. Let q_1 and q_2 be weak limits of subsequences $\{x_{n_k}\}$ and $\{x_{n_j}\}$, respectively. By Lemma 3.2 and the assumption that each $I - T_i$ is demiclosed at zero, we have $q_1, q_2 \in F$. By Lemma 2.8, $q_1 = q_2$. Therefore $\{x_n\}$ converges weakly to a common fixed point in F.

Acknowledgements : The authors would like to thank Professor Suthep Suantai for valuable suggestion and encouragement. This research is supported by the Centre of Excellence in Mathematics, Thailand.

References

- K. Goebel, W.A. Kirk, A fixed points theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171–174.
- [2] S.S. Chang, Y.J. Cho, H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean. Math. Soc. 38 (2001) 1245–1260.
- [3] S. Ishikawa, Fixed points and iteration of nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 73 (1967) 61–71.
- [4] M.O. Osilike, A. Udomene, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling 32 (2000) 1181–1191.
- [5] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991) 407–413.
- [6] H.K. Xu, R. Ori, An implicit iterative process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001) 767–773.
- [7] M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004) 73–81.
- [8] Z.H. Sun, Strong convergence of an iterative process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003) 351-358.
- [9] H.Y. Zhou, S.S. Chang, Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 23 (2002) 911–921.
- [10] J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991) 153–159.

- [11] C.E. Chidume, E.U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 280 (2003) 364–374.
- [12] L. Wang, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math. Anal. Appl. 323 (2006) 550–557.
- [13] L. Wang, Explicit iteration method for common fixed points of finite family of nonself asymptotically nonexpansive mappings, Comput. Math. Appl. 53 (2007) 1012–1019.
- [14] K.K. Tan, S.K. Xu, Approximating fixed points nonexpansive mappings by Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301–308.
- [15] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 331 (2005) 506–517.

(Received 3 March 2011) (Accepted 6 July 2011)

THAI J. MATH. Online @ http://www.math.science.cmu.ac.th/thaijournal