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Abstract : Let I = {1,2,..., N} and let {T;};cs be a finite family of generalized
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a real uniformly convex Banach space X to X. Let P : X — K be a nonexpansive
retraction of X onto K and let {a,} be a sequence in [0,1). We prove strong
and weak convergence theorems for {T;};c; using the iteration generated from
arbitrary xgp € K

x, = P(1 — ap)xp_1 + anTn(PT)™ 2, 1), n>1

where n =(m —1)N +i,i €1 and T), = T mod N-
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1 Introduction

Let K be a nonempty subset of real Banach space X. A self-mapping T : K —
K is said to be asymptotically nonexpansive on K if there exists a sequence {k,}
in [0, 00) such that k, — 0 as n — oo and

[Tz = T"y[| < (14 kn)llz =yl

foreachz,y € K andn > 1. If k, = 0for alln > 1, then T is called a nonexpansive
mapping.

In 1972, Gobel and Kirk [1] introduced the class of asymptotically nonexpan-
sive self-mappings. They showed that the asymptotically nonexpansive mapping
T : K — K where K is a non-empty closed convex subset of a real uniform convex
Banach space has a fixed point. Many authors, by using the Mann and Ishikawa it-
eration process ([2-5]), studied iterative techniques for approximating fixed points
of nonexpansive self-mappings.

Xu and Ori [6] showed that the following implicit iteration process for a finite
family of nonexpansive self-mappings {T;};cr, where I = {1,2,..., N}, converges
to a commmon fixed-point of the finite family of nonexpansive self-mappings:

Tp = nZp-1 + (1 — ap)Tha, (1.1)

where {a,} is a real sequence in (0,1), z¢ is any point in K and T}, = T mod N-
The implicit iteration method has been used in [7-9] to study the common fixed
point of a finite family of strictly pseudocontractive self-mapping, asymptotically
quasi-nonexpansive self-mappings and asymptotically nonexpansive self-mappings.

In 1991, a modified Mann iteration process was introduced by Schu [10] to
approximate fixed points of an asymptotically nonexpansive self-mapping in a
Hilbert space as follows.

Theorem 1.1. Let H be a Hilbert space, K a nonempty closed convex and bounded
subset of H. Let T : K — K be an asymptotically nonexpansive mapping with
sequence {ky} C [1,00) for alln > 1, limy, oo kn = 1 and > o~ (k2 —1) < co. Let
{an} be a sequence in [0,1] satisfying the condition 0 < a < a, < b < 1, n>1,
for some constant a,b. Then the sequence {x,} generated from arbitrary v1 € K
by

Tnt1 = (1 —ap)zy + T2, n>1 (1.2)

converges strongly to some fixed point of T'.

The iterations (1.1) and (1.2) have been widely used by many authors for
self-mappings; however they may not well-defined for nonself-mappings.

Chidume et al. [11] introduced the generalization of asymptotically nonexpan-
sive self-mapping, called the asymptotically nonexpansive nonself-mapping; this is
a special case of generalized asymptotically nonexpansive nonself-mapping defined
as follows.

Let P: X — K be a nonexpansive retraction of X onto K; thatis, P: X — K
is a nonexpansive continuous map such that P(x) = z for all z € K. A nonself
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mapping T : K — X is said to be generalized asymptotically nonexpansive if there
exist sequences {k,} and {r,} in [0, c0) such that k,, — 0 as n — oo and

IT(PT)" e = T(PT)" 'yl < (1 + kn)llz — yll +

for all z,y € K and n > 1. If r, = 0 for all n > 1, then T is said to be
asymptotically nonexrpansive.

They proved results on strong and weak convergence for asymptotically nonex-
pansive nonself-mapping in uniformly convex Banach spaces where their iteration
process is

Tny1 = P((1 = ap)zn + o, T(PT)" '2,) and 2, € K.

In 2006, Wang [12] proved results on strong and weak convergence for common
fixed points of two nonself asymptotically nonexpansive mappings in uniformly
convex Banach spaces. Recently, he construct an explicit iteration scheme: for
n > 1 and arbitrary z¢p € K

T = P((1 — ap)wp_1 + anTn(PT,)™ toy 1) (1.3)

where n = (m — 1)N 4+ 4, T, = Thmodan = T;, @ € I and {«,} is a sequence in
[0,1), to approximate a common fixed point of a finite family of nonself asymp-
totically nonexpansive mappings {T;};c;. He showed results on weak and strong
convergence for such mappings [13].

Motivated by Wang’s work, we prove strong and weak convergence theorems
for a finite family of generalized asymptotically nonexpansive nonself-mappings
using iteration (1.3).

2 Preliminaries

In this section, we recall some concepts and results which are needed to prove
our main results.

Definition 2.1. Let X and Y be Banach spaces. A mapping T': X — Y is said to
be completely continuous if, for any sequence {z,} in X such that z,, — = weakly,
we have | Tx, — Tz| — 0.

Definition 2.2. Let X be a Banach spaces. A mapping T with domain D and
range R in X is said to be demiclosed at 0 if, for any sequence {x,,} in D such that
xy, converges weakly to x € D and T'x,, converges strongly to 0, we have T'x = 0.

Definition 2.3. Let X and Y be Banach spaces. A mapping T : X — Y is said
to be demicompact if, for any sequence {z,} in X such that ||z, — Tz,| — 0,
there exist a subsequence {x,,} of {z,} and 2 € X such that |z, —z| — 0.
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Definition 2.4. A Banach space X is said to satisfy Opial’s property if for any
distinct elements z and y in X and for each sequence {x,} weakly convergent to
x?

liminf ||z, — z|| < liminf ||z, — y|.

n—o0 n—oo

Definition 2.5. Let X be a Banach spaces and let K be a subset of X. Let
{T;}icr be a family of nonself mappings from K to X with a nonempty set F
of common fixed points, where I = {1,2,...,N}. We say that {T;}ics satisfies

condition (A) if there exists a nondecreasing function f : [0,00) — [0,00) with
f(0)=0and f(t) >0 for all ¢t € (0,00) such that

1 N
N >z = Tiz|| > f(d(=, F))
=1

for all x € K, where d(z, F) = inf{||jz — p|| : p € F}.

Lemma 2.6 ([14)). Let {z,} and {yn} be nonnegative sequences such that rp41 <
Ty + Yp for alln > 1. If Zzo:l Yn < 00, then lim,, .o x, exists.

Lemma 2.7 ([10]). Let X be a real uniformly convex Banach space. Let {x,}
and {yn} be sequences in X. Let {ca,} be a sequence such that 0 < p < a;, <
q < 1 for all integer n > 1. If limsup,,_, . ||zn| < r, limsup,,_ ||ynl|l < 7, and
lim, 00 ||an@n + (1 — an)ynl| = r for some r > 0, then lim,, o |2, — yn|| = 0.

Lemma 2.8 ([15]). Let X be a Banach space which satisfies Opial’s condition
and let {x,} be a sequence in X. Let u,v € X be such that lim,_, ||zn — ul|
and limy, oo |2y, — v|| exist. If {xy,} and {x,,;} are subsequences of {xn} which
converges weakly to u and v, respectively, then u = v.

3 Main Results

In this section, we let X be a real Banach space, and let K be a nonempty
closed convex subset of X which is also a nonexpansive retract of X with nonex-
pansive retraction P.

For each i € I, we let T; be a generalized asymptotically nonexpansive nonself
mapping from K to X with respect to {k,(f)} and {r,(f)} such that Y07 | kD < 0o
and Y ri¥) < oo

Let F denote the set of common fixed points of {T;};cr; here we assume that
F+o.

Let {ay} be a sequence in [0, 1) and let zg be an arbitrary element in K. For
n=m-1)N+i>1,i€l, welet T, =T; and

Ty = P[(1 — ap)rp_1 + anTn(PT)™ twy 1] (3.1)

Lemma 3.1. For each g € F, lim,,_, ||xn, — ql| exists.
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Proof. Let k,, = max{k,(zl),k,(f),...,k,gv)} for each integer n. Then 0 < k, <
kg)—i-kg)—i—- . -+/€7(1N). Since for eachi € I, Y07 | k,(f) < 00, we have > | k,, < oo.

(2)

Similarly, we let r,, = max{r,(zl) N ,7‘7(1N)} for each integer n; thus > 7

00.
From (3.1), we have, for any g € F,

lzn —qll = [|P[(1 — an)wp—1 + anTn(PTn)m_lxnfl] — Pq|
<A = an)zn—1+ anTn(PTn)m71$n71 —ql

1Tn <

= ||(1 - O‘n)(xn—l - Q) + an[Tn(PTn)m_lxn—l - Tn(PTn)m_1Q]||

< (1 =ap)llzn—1 =gl + an[(1 + km) | Tn-1 — qll + 7]
= (1 + ankm)l|Tn-1 —q|| + anrm
< (A +En)llzn—1 —qll + m.

Let s, = (14 k)1 +++-4+ (1 +k,) + 1. Then

<A +k)|en-1 —qll +7m
<(A+k)?|lan—2 —qll+ L+ ki)r + 1
<A +k)3len—s —qll + (L4 k)?r1 + (L4 k)r + 71

ey —qll

< (1+ k)N @0 — gl + s1r1.
Similarly, we have

2 — gl < (1 + ko) [lan — ql| + sor2
< (L4 k)N (1 + k)N |zo — gl + (14 ko) s1r1 + sara.

Then, forn = (m —1)N +4,i € I,

lzn = all L+ k)N - (L4 k)N (L4 K)o — g
F (14 Ek)N o (14 k)N (1 + k) st
+ (L4 kg)V oo (1 )N (14 o) o7
+ oo+ (14 k) S 1Tm1
A+ k) 4 (L k) + 1.

Since 1 4+ x < e” as x > 0, we have, for each i € I,

A4k (T4 k)N A4 k) < [A 4 k1) - (14 k)Y
S (ekl X ”ekm)N

— e(lir"'Jrkm)N_

(3.2)
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Since Y7 o kn < 0o, the nonnegative sequence {k,} converges to 0 and hence
there exists a constant ng > 0 such that 0 < k,, <1 for all n > ng. Then, for any
n > no,

[(1+ k)™ = 1)/kn

= () (Vo + (V)2 4+ (V)Y
<M+ +E)+ -+ @)
=2V 1.

Then there exists a positive constant C' such that s,, < C' for all n > 1. Therefore

Btk )N (

|20 — q|| < e o — q|| + 5171 + S272 + -+ + SmTim)

< el N g — | + Clra 72+ oo+ 7))
Since > >7 1k, < 00 and Y o r, < 00, we conclude that ||z, — ¢|| is bounded;
that is, there exists a constant M > 0 such that ||z, —¢q|| < M for all n > 0. From
(3.2), we have, for n > 1,
zn — gl < llzn-1 — qll + kmllzn-1 — qll + rm
<lwn—1 =gl + km M + 1.

By Lemma 2.6, we have that lim,,_, ||z, — ¢|| exists. O

Lemma 3.2. If X is uniformly conver and {a,} C [6,1 — §] for some § € (0,1),
then lim, o0 ||2n — Tixy|| = 0 for each i € I.

Proof. Let g € F. By Lemma 3.1, lim,, . ||z, —q|| exists; let ¢ = lim,, o0 ||2n—¢]].
By (3.2), assuming n+ 1= (m — 1)N + i for ¢ € I, we have

||xn+1 - QH < H(l - O‘n+1)($n —q)+ an+1[Tn+1 (PTn-i-l)milxn - Q]”
< (U4 k) llzn — gl +7m

where k,, = max{k,(zl), kg), o kSIN)} and 7, = max{r,(zl),r,(f), . ,r,(zN)} for each

integer n. Since both ||z,11 — ¢|| and (1 + k) ||z — ¢|| + 7m converge to ¢, we
have

lim |[(1 - apt1)(zn —q) + O‘n+1[Tn+l(PTn+1)milxn —dql| =c

n—oo

Since ||xp+1 — ¢|| converges to ¢, we have

limsup || Ty, 41(PTyi1)" '@, — qf| < Jim Jzni1 =gl =

n—oo

It follows from Lemma 2.7 that

lim ||z, — Tn+1(PTn+1)m_133n|| =0.

n—oo
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Since
|Znt1 — znl = [|P[(1 — atpnt1)on + an+1Tn+1(PTn+1)m71In] — Pz, ||
<1 = ang1)wn + O‘n+1Tn+l(PTn+1)m_lxn |
= an+1||[Tn+1(PTn+1)milxn - :En]H,
it follows that lim, 0 ||Zn4+1 — zn|| = 0. By induction, we have

lim |zp1; — 2nll =0
n—oo
for any positive integer j. Since, for any x,y € K and i € I,
Tz — Tyl < k7o =yl + 1" < kalle =y + 1,
we have, for n > N,

||xn - Tn+1xn|| < Hxn - Tn-‘rl(PTn-i-l)m_lxn” + ||Tn+l(PTn+l)m_lxn - n+1pxn||
< Hxn - Tn+1(PTn+1)m_len” + k1||(PTn+1)m_1In - PfEn” + 71
< Hxn - Tn-‘rl(PTn-i-l)milxn” + kl||Tn+1(PTn+1)mi2xn - xn” + 7
< Hxn - n+1(PTn+l)m_lxn||
+ kl[||Tn+lfN(PTn+1fN)m72In - n+1fN(PTn+lfN)m7233n*N”

+ 1T 1N (PTrg1-N)" " 2Tn-n — T || + |Tan — zall] + 71
Then lim,, o |27 — Tht12,|| = 0. Since, for each i € I,

||xn - n+ixn|| S Hxn - xn—i—i—l” + ||xn+i—1 - Tn-i—ixn—i-i—lH + ||Tn+ixn+i—l - Tn-l—ixn”
<A HE)zn = il F |Tnpic1 — Tagingiall + 71,

we have lim, o ||€n — Thtizn| = 0 which completes the proof. O

Theorem 3.3. Suppose that X is uniformly conver and {ay} C [§,1— 0] for some
§ € (0,1). If {T;}ier satisfies condition (A’), then {z,} converges strongly to a
common fized point in F.

Proof. From the proof of Lemma 3.1, we can show that, for any positive integers
n, m and Ng with n > Ny + mN,

oo
|z = pll < My, = pll +C D7

i=m

where M = eV 21k and C > (1 + k)N "1+ -+~ + (1 4+ k,) + 1 for all positive
integers n.

By Lemma 3.2, we have lim,,_,o |2, — T;@,|| = 0 for each i € I. Since {T;}iecr
satisfies condition (A’), lim, oo d(2n, F') = 0. Let € > 0 be given. There exists
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a positive integer Ny such that d(z,, F) < 5LM for all n > Ng. Then there exists

p € F such that
€
4M’
In addition, since >, r; < 0o, there exists a positive integer m such that

27} < %

[, = pll <

Thus, for n,k > Ng+ mN,
[2n — k|l < [l2n —pll + [lzx — P

< 2M||xn, — Pl —l—QCZri < e

i=m

Hence {z,} is a Cauchy sequence in K. We assume that z,, — ¢ € K as n — oo.
By Lemma 3.2, we have lim,, o ||, — T;2, || = 0 for each i € I; by the continuity
of T;, we conclude that ¢ is a common fixed point of {T;}c;. O

Theorem 3.4. Suppose that X is uniformly convex and {ay,} C [§,1—4] for some
6 € (0,1). If Ty, is completely continuous for some k € I and I — T; is demiclosed
at zero for alli € I, then {x,} converges strongly to a common fized point in F.

Proof. From Lemma 3.1 and Lemma 3.2, {z,} is bounded and lim, . ||z, —
T;x,| = 0 for each ¢ € I. Then {T;z,} is bounded for each i € I. Assume without
loss of generality that 77 is completely continuous. Then there exist an element
p € K and a subsequence {Tx,,} such that ||T1z,; —p|| — 0 as j — oc. Since

[2n; =Pl < ll2n; = Tazn, || + [|Trn; —pll,

we have lim; o ||zn; — p|| = 0. Since each I — T; is demiclosed, we have that
p € F. By Lemma 3.1, lim,,_, ||, — p|| exists and hence equals zero. Then {x,,}
converges strongly to a common fixed point in F'. O

Theorem 3.5. Suppose that X is uniformly convex and {ay,} C [§,1—46] for some
d € (0,1). If T; is demicompact for some i € I and I —T; is demiclosed at zero
for each i, then {x,} converges strongly to a common fized point in F.

Proof. Without lost of generality, we suppose that T3 is demicompact; by Lemma 3.1
and Lemma 3.2 we have that a sequence {z,} is bounded and lim, ., ||z, —
Ty, || = 0. Since Ty is demicompact, there exist ¢ € K and a subsequence {z,,, }
of {x,} such that x,, — ¢ strongly. Moreover we have ¢ € F, by Lemma 3.2
together with the assumption that I — T; is demiclosed at zero for all i € I. By
Lemma 3.1, {z,, } converges strongly to ¢, a common fixed point of {T;};c;. O

Theorem 3.6. Suppose that X is uniformly conver and {ay,} C [§,1—46] for some
§ € (0,1). If X satisfies Opial’s property and I —T; is demiclosed at zero for each
i, then {x,} converges weakly to a common fized point in F.
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Proof. Tt follows from Lemma 3.1 that lim,, .« ||z, — ¢| exists for all ¢ € F. To
complete the proof, we have to show that a sequence {z,} has a unique weak
subsequential limit in F. Let ¢; and g2 be weak limits of subsequences {z,, }
and {z,, }, respectively. By Lemma 3.2 and the assumption that each I — T; is
demiclosed at zero, we have q1,qg2 € F. By Lemma 2.8, g1 = ¢2. Therefore {z,}
converges weakly to a common fixed point in F. O
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