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1 Introduction

Let D be a nonempty and convex subset of a Banach spaces E. The set D is
called proximinal if for each x ∈ E, there exists an element y ∈ D such that ‖x−
y‖ = d(x, D), where d(x, D) = inf{‖x− z‖ : z ∈ D}. Let CB(D), CCB(D), K(D)
and P (D) denote the families of nonempty closed bounded subsets, nonempty
closed convex bounded subsets, nonempty compact subsets, and nonempty prox-
iminal bounded subsets of D, respectively. The Hausdorff metric on CB(D) is
defined by

H(A, B) = max

{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}

for A, B ∈ CB(D). A single-valued map T : D → D is called nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ D. A multi-valued mapping T : D → CB(D)
is called nonexpansive if H(Tx, T y) ≤ ‖x − y‖ for all x, y ∈ D. An element
p ∈ D is called a fixed point of T : D → D (respectively, T : D → CB(D)) if
p = Tp (respectively, p ∈ Tp). The set of fixed points of T is denoted by F (T ).
The mapping T : D → CB(D) is called quasi-nonexpansive [1] if F (T ) 6= ∅ and
H(Tx, Tp) ≤ ‖x − p‖ for all x ∈ D and all p ∈ F (T ). It is clear that every
nonexpansive multi-valued mapping T with F (T ) 6= ∅ is quasi-nonexpansive. But
there exist quasi-nonexpansive mappings that are not nonexpansive (see [2]). It
is known that if T is a quasi-nonexpansive multi-valued mapping, then F (T ) is
closed.

Throughout this paper, we denote the weak convergence and the strong con-
vergence by ⇀ and →, respectively. The mapping T : D → CB(D) is called
hemicompact if, for any sequence {xn} in D such that d(xn, Txn) → 0 as n → ∞,
there exists a subsequence {xnk

} of {xn} such that xnk
→ p ∈ D. We note that if

D is compact, then every multi-valued mapping T : D → CB(D) is hemicompact.
A Banach space E is said to satisfy Opial’s condition [3] if for each x ∈ E

and a sequence {xn} in E such that xn ⇀ x, the following condition holds for all
x 6= y:

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

The mapping T : D → CB(D) is called demi-closed if for every sequence {xn} ⊂ D

and any yn ∈ Txn such that xn ⇀ x and yn → y, we have x ∈ D and y ∈ Tx.

Remark 1.1 ([4]). If the space E satisfies Opial’s condition, then I − T is demi-
closed at 0, where T : D → K(D) is a nonexpansive multi-valued mapping.

For a single-valued case, in 1953, Mann [5] introduced the following iterative
procedure to approximate a fixed point of a nonexpansive mapping T in a real
Hilbert space H :

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N, (1.1)

where the initial point x1 is taken in D arbitrarily and {αn} is a sequence in (0, 1).
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However, we note that Mann’s iteration process (1.1) has only weak conver-
gence, in general; for instance, see [6–8].

Since 1953, Mann’s iteration has extensively been studied by many authors
(see, for examples, [9–18]). However, the studying of multivalued nonexpansive
mappings is harder than that of single-valued nonexpansive mappings in both
Hilbert spaces and Banach spaces. The result of fixed points for multi-valued con-
tractions and nonexpansive mappings by using the Hausdorff metric was initiated
by Markin [19]. Later, different iterative processes have been used to approximate
fixed points of multi-valued nonexpansive mappings (see also [1, 20–26]).

In 2009, Song and Wang [26] proved strong and weak convergence theorems
for Mann’s iteration of a multi-valued nonexpansive mapping T in a Banach space.
They studied strong convergence of the modified Mann iteration which is indepen-
dent of the implicit anchor-like continuous path zt ∈ tu + (1 − t)Tzt.

Let D be a nonempty and closed subset of a Banach space E, {βn} ⊂ [0, 1],
{αn} ⊂ [0, 1] and {γn} ⊂ (0, +∞) such that limn→∞ γn = 0.

(A) Choose x0 ∈ D,

xn+1 = (1 − αn)xn + αnyn, ∀n ≥ 0,

where yn ∈ Txn such that ‖yn+1 − yn‖ ≤ H(Txn+1, Txn) + γn.
(B) For fixed u ∈ D, the sequence of modified Mann iteration is defined by

x0 ∈ D,
xn+1 = βnu + αnxn + (1 − αn − βn)yn, ∀n ≥ 0,

where yn ∈ Txn such that ‖yn+1 − yn‖ ≤ H(Txn+1, Txn) + γn.
Very recently, Shahzad and Zegeye [2] obtained the strong convergence the-

orems for a quasi-nonexpansive multi-valued mapping. They relaxed the com-
pactness of domain of T and constructed an iterative scheme which removes the
restriction of T namely Tp = {p} for any p ∈ F (T ). The results provided an affir-
mative answer to some questions raised in [21]. In fact, they introduced iterations
as follows:

Let D be a nonempty and convex subset of a Banach space E, let T : D →
CB(D) and let {αn}, {α′

n} ⊂ [0, 1].
(C) The sequence of Ishikawa’s iteration is defined by x0 ∈ D,

yn = α′

nz′n + (1 − α′

n)xn,

xn+1 = αnzn + (1 − αn)xn, ∀n ≥ 0,

where z′n ∈ Txn and zn ∈ Tyn.
(D) Let T : D → P (D) and PT x = {y ∈ Tx : ‖x−y‖ = d(x, Tx)}, where PT is

the best approximation operator. The sequence of Ishikawa’s iteration is defined
by x0 ∈ D,

yn = α′

nz′n + (1 − α′

n)xn,

xn+1 = αnzn + (1 − αn)xn, ∀n ≥ 0,

where z′n ∈ PT xn and zn ∈ PT yn.
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It is remarked that Hussain and Khan [27], in 2003, employed the best approx-
imation operator PT to study fixed points of *-nonexpansive multi-valued mapping
T and strong convergence of its iterates to a fixed point of T defined on a closed
and convex subset of a real Hilbert space.

Let D be a nonempty, closed and convex subset of a Banach space E. Let
{Tn}∞n=1 be a family of multi-valued mappings from D into 2D and let PTn

x =
{yn ∈ Tnx : ‖x − yn‖ = d(x, Tnx)}, n ≥ 1. Let {αn} be a sequence in (0, 1).

(E) The sequence of the modified Mann’s iteration is defined by x1 ∈ D and

xn+1 ∈ αnxn + (1 − αn)PTn
xn, ∀n ≥ 1. (1.2)

In this paper, we modify Mann’s iteration by using the best approximation
operator PTn

, n ≥ 1 to find common fixed points of a countable family of nonex-
pansive multi-valued mappings {Tn}∞n=1, n ≥ 1. Then we prove weak and strong
convergence theorems for a countable family of multi-valued mappings in Banach
spaces. Finally, we apply our main result to the problem of finding a common
fixed point of a family of nonexpansive multi-valued mappings.

2 Preliminaries

In this section, we give some characterizations and properties of the metric
projection in a real Hilbert space.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let D

be a closed and convex subset of H . If, for any point x ∈ H , there exists a unique
nearest point in D, denoted by PDx, such that

‖x − PDx‖ ≤ ‖x − y‖, ∀y ∈ D,

then PD is called the metric projection of H onto D. We know that PD is a
nonexpansive mapping of H onto D.

Lemma 2.1 ([28]). Let D be a closed and convex subset of a real Hilbert space H

and PD be the metric projection from H onto D. Then, for any x ∈ H and z ∈ D,
z = PDx if and only if the following holds:

〈x − z, y − z〉 ≤ 0, ∀y ∈ D.

Using the proof line in Lemma 3.1.3 of [28], we obtain the following result.

Proposition 2.2. Let D be a closed and convex subset of a real Hilbert space H.
Let T : D → CCB(D) be a multi-valued mapping and PT the best approximation
operator. Then, for any x ∈ D, z ∈ PT x if and only if the following holds:

〈x − z, y − z〉 ≤ 0, ∀y ∈ Tx.

Lemma 2.3 ([28]). Let H be a real Hilbert space. Then the following equations
hold:
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(1) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 for all x, y ∈ H;

(2) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2 for all t ∈ [0, 1]
and x, y ∈ H.

We next show that PT is nonexpansive under some suitable conditions imposed
on T .

Remark 2.4. Let D be a closed and convex subset of a real Hilbert space H. Let
T : D → CCB(D) be a multi-valued mapping. If Tx = Ty, ∀x, y ∈ D, then PT is
a nonexpansive multi-valued mapping.

In fact, let x, y ∈ D. For each a ∈ PT x, we have

d(a, PT y) ≤ ‖a − b‖, ∀b ∈ PT y. (2.1)

From Proposition 2.2, we have

〈x − y − (a − b), a − b〉 = 〈x − a, a − b〉 + 〈y − b, b − a〉 ≥ 0.

It follows that

‖a − b‖2 = 〈x − y, a − b〉 + 〈a − b − (x − y), a − b〉

≤ 〈x − y, a − b〉

≤ ‖x − y‖‖a− b‖. (2.2)

This implies that
‖a − b‖ ≤ ‖x − y‖. (2.3)

From (2.1) and (2.3), we obtain

d(a, PT y) ≤ ‖x − y‖

for every a ∈ PT x. Hence supa∈PT x d(a, PT y) ≤ ‖x − y‖. Similarly, we can show
that supb∈PT y d(PT x, b) ≤ ‖x − y‖. Therefore H(PT x, PT y) ≤ ‖x − y‖.

It is clear that if a nonexpansive multi-valued mapping T satisfies the condition
that Tx = Ty, ∀x, y ∈ D, then PT is nonexpansive. The following example shows
that if T is a nonexpansive multi-valued mapping satisfying the property that
Tx = Ty, ∀x, y ∈ D, then Tx is not a singleton for all x ∈ D.

Example 2.5. Consider D = [0, 1] with the usual norm. Define T : D → K(D)
by

Tx = [0, a], a ∈ (0, 1].

For x, y ∈ D, we have H(Tx, T y) = 0 ≤ ‖x − y‖. Hence T is nonexpansive
and F (T ) = [0, a].

Next, we show that there exists a nonexpansive multi-valued mapping T which
PT is nonexpansive but Tx 6= Ty, ∀x, y ∈ D, x 6= y.
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Example 2.6. Consider D = [0, 1] with the usual norm. Define T : D → K(D)
by

Tx = [0, x].

For x, y ∈ D, x 6= y, we have PT x = {x} and PT y = {y}. Then H(Tx, T y) =
‖x − y‖ = H(PT x, PT y). Hence T and PT are nonexpansive.

Question: Can we remove the assumption that PT is nonexpansive?

Now, we give an example which T is not nonexpansive, but PT is nonexpansive.

Example 2.7. Consider D = [0, 1] with the usual norm. Define T : D → K(D)
by

Tx =

{

[0, x] , x ∈ [0, 1

2
],

{ 1

2
} , x ∈ (1

2
, 1].

Since H(T (1

5
), T (3

5
)) = H([0, 1

5
], { 1

2
}) = 1

2
> 2

5
= ‖ 1

5
− 3

5
‖, T is not nonexpan-

sive. However, PT is nonexpansive. In fact,

Case 1: if x, y ∈ [0, 1

2
] then H(PT x, PT y) = ‖x − y‖.

Case 2: if x ∈ [0, 1

2
] and y ∈ (1

2
, 1] then H(PT x, PT y) = ‖x − 1

2
‖ ≤ ‖x − y‖.

Case 3: if x, y ∈ (1

2
, 1] then H(PT x, PT y) = 0.

It would be interesting to study the convergence of a multivalued mapping T

by using the best approximation operator PT .
In order to deal with a family of mappings, we consider the following condi-

tions. Let E be a Banach space and D a subset of E.
(1) Let {Tn} and τ be two families of mappings of D into itself with ∅ 6=

F (τ) =
⋂

∞

n=1
F (Tn), where F (Tn) is the set of all fixed points of Tn and F (τ)

is the set of all common fixed points of τ . The family {Tn} is said to satisfy the
NST-condition [29] with respect to τ if, for each bounded sequence {zn} in C,

lim
n→∞

‖zn − Tnzn‖ = 0 =⇒ lim
n→∞

‖zn − Tzn‖ = 0, ∀T ∈ τ.

(2) Let {Tn} and τ be two families of multi-valued mappings of D into 2D

with ∅ 6= F (τ) =
⋂

∞

n=1
F (Tn), where F (Tn) is the set of all fixed points of Tn and

F (τ) is the set of all common fixed points of τ . The family {Tn} is said to satisfy
the SC-condition with respect to τ if, for each bounded sequence {zn} in D and
sn ∈ Tnzn,

lim
n→∞

‖zn − sn‖ = 0 =⇒ lim
n→∞

‖zn − cn‖ = 0, ∃cn ∈ Tzn, ∀T ∈ τ.

It is easy to see that, if the family {Tn} of nonexpansive mappings satisfies the
NST − condition, then {Tn} satisfies the SC − condition for single-valued map-
pings.

(3) Let T be a multi-valued mapping from D into 2D with F (T ) 6= ∅. The
mapping T is said to satisfy Condition I if there is a nondecreasing function
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f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that d(x, Tx) ≥
f(d(x, F (T ))) for all x ∈ D.

The following result can be found in [30].

Lemma 2.8 ([30]). Let D be a bounded and closed subset of a Banach space E.
Suppose that a nonexpansive multi-valued mapping T : D → P (D) has a nonempty
fixed point set. If I − T is closed, then T satisfies Condition I on D.

(4) Let {Tn} and τ be two families of multi-valued mappings of D into 2D with
∅ 6= F (τ) =

⋂

∞

n=1
F (Tn), where F (Tn) is the set of all fixed points of Tn and F (τ) is

the set of all common fixed points of τ . The family {Tn} is said to satisfy Condition
(A) if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0
for r ∈ (0,∞) such that there exists T ∈ τ , d(x, Tx) ≥ f(d(x, F (τ))) for all x ∈ D.

We will give examples of a sequence mappings {Tn} which satisfy the SC-
condition and Condition (A) in the last section.

Now, we need the following lemmas to prove our main results.

Lemma 2.9 ([31]). Let X be uniformly convex Banach space and Br(0) be a closed
ball of X. Then there exists a continuous, strictly increasing and convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + (1 − λ)y‖2 ≤ λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)g(‖x − y‖)

for all x, y ∈ Br(0) and λ ∈ [0, 1].

Lemma 2.10 ([32]). Let E be a uniformly convex Banach space and Br(0) =
{x ∈ E : ‖x‖ ≤ r} be a closed ball of E. Then there exists a continuous, strictly
increasing and convex function g : [0,∞) → [0,∞) with g(0) = 0 such that, for
any j ∈ {1, 2, ..., m},

∥

∥

∥

m
∑

i=1

αixi

∥

∥

∥

2

≤
m

∑

i=1

αi‖xi‖
2 −

αj

m − 1

(

m
∑

i=1

αig(‖xj − xi‖)
)

for all m ∈ N, xi ∈ Br(0) and αi ∈ [0, 1] for all i = 1, 2, ..., m with
∑m

i=1
αi = 1.

3 Strong and Weak Convergence of the Modified

Mann’s Iteration in Banach Spaces

In this section, we first prove a strong convergence theorem for a countable
family of multi-valued mappings under the SC-condition and Condition (A) and
then prove a weak convergence theorem under the SC-condition in Banach spaces.

Theorem 3.1. Let D be a closed and convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition. Let {Tn} and τ be two families of multi-
valued mappings from D into P (D) with F (τ) = ∩∞

n=1F (Tn) 6= ∅. Let {αn} be a
sequence in (0, 1) such that 0 < lim infn→∞ αn ≤ lim supn→∞

αn < 1. Let {xn}
be generated by (1.2). Assume that
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(A1) for each n ∈ N, H(PTn
x, PTn

p) ≤ ‖x − p‖, ∀x ∈ D, p ∈ F (τ);

(A2) I − T is demi-closed at 0 for all T ∈ τ .

If {Tn} satisfies the SC-condition, then {xn} converges weakly to an element in
F (τ).

Proof. Since xn+1 ∈ αnxn + (1 − αn)PTn
xn, there exists zn ∈ PTn

xn such that
xn+1 = αnxn + (1 − αn)zn. We note that PTn

p = {p} for all p ∈ F (τ) and n ∈ N.
It follows from (A1) that

‖xn+1 − p‖ ≤ αn‖xn − p‖ + (1 − αn)‖zn − p‖

= αn‖xn − p‖ + (1 − αn)d(zn, PTn
p)

≤ αn‖xn − p‖ + (1 − αn)H(PTn
xn, PTn

p)

≤ ‖xn − p‖ (3.1)

for every p ∈ F (τ). Then {‖xn−p‖} is a decreasing sequence and hence limn→∞ ‖xn−
p‖ exists for every p ∈ F (τ). For p ∈ F (τ), since {xn} and {zn} are bounded,
by Lemma 2.9, there exists a continuous, strictly increasing and convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

‖xn+1 − p‖2 = ‖αn(xn − p) + (1 − αn)(zn − p)‖2

≤ αn‖xn − p‖2 + (1 − αn)‖zn − p‖2 − αn(1 − αn)g(‖xn − zn‖)

= αn‖xn − p‖2 + (1 − αn)d(zn, PTn
p)2 − αn(1 − αn)g(‖xn − zn‖)

≤ αn‖xn − p‖2 + (1 − αn)H(PTn
xn, PTn

p)2 − αn(1 − αn)g(‖xn − zn‖)

≤ ‖xn − p‖2 − αn(1 − αn)g(‖xn − zn‖).

It follows that

αn(1 − αn)g(‖xn − zn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Since limn→∞ ‖xn − p‖ exists and 0 < lim infn→∞ αn ≤ lim supn→∞
αn < 1,

lim
n→∞

g(‖xn − zn‖) = 0.

By the properties of g, we can conclude that

lim
n→∞

‖xn − zn‖ = 0.

Since {Tn} satisfies the SC-condition, there exists cn ∈ Txn such that

lim
n→∞

‖xn − cn‖ = 0 (3.2)

for every T ∈ τ . Since {xn} is bounded, there exists a subsequence {xnk
} of {xn}

converges weakly to some q1 ∈ D. It follows from (A2) and (3.2) that q1 ∈ Tq1

for every T ∈ τ . Next, we show that {xn} converges weakly to q1, take another
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subsequence {xmk
} of {xn} converging weakly to some q2 ∈ D. Again, as above,

we can conclude that q2 ∈ Tq2 for every T ∈ τ . Finally, we show that q1 = q2.
Assume q1 6= q2. Then by the Opial’s condition of E, we have

lim
n→∞

‖xn − q1‖ = lim
k→∞

‖xnk
− q1‖

< lim
k→∞

‖xnk
− q2‖

= lim
n→∞

‖xn − q2‖

= lim
k→∞

‖xmk
− q2‖

< lim
k→∞

‖xmk
− q1‖

= lim
n→∞

‖xn − q1‖,

which is a contradiction. Therefore q1 = q2. This shows that {xn} converges
weakly to a fixed point of T for every T ∈ τ . This completes the proof.

Using the above results and Remark 1.1, we obtain the following:

Corollary 3.2. Let D be a closed and convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition. Let {Tn} and τ be two families of non-
expansive multi-valued mappings from D into K(D) with F (τ) = ∩∞

n=1F (Tn) 6= ∅.
Let {αn} be a sequence in (0, 1) such that 0 < lim infn→∞ αn ≤ lim supn→∞

αn <

1. Let {xn} be generated by (1.2). Assume that for each n ∈ N,

H(PTn
x, PTn

p) ≤ ‖x − p‖,

∀x ∈ D, p ∈ F (τ). If {Tn} satisfies the SC-condition, then {xn} converges weakly
to an element in F (τ).

Theorem 3.3. Let D be a closed and convex subset of a uniformly convex Banach
space E. Let {Tn} and τ be two families of multi-valued mappings from D into
P (D) with F (τ) = ∩∞

n=1F (Tn) 6= ∅. Let {αn} be a sequence in (0, 1) such that
0 < lim infn→∞ αn ≤ lim supn→∞

αn < 1. Let {xn} be generated by (1.2). Assume
that

(B1) for each n ∈ N, H(PTn
x, PTn

p) ≤ ‖x − p‖, ∀x ∈ D, p ∈ F (τ);

(B2) the best approximation operator PT is nonexpansive for every T ∈ τ ;

(B3) F (τ) is closed.

If {Tn} satisfies the SC-condition and Condition (A), then {xn} converges strongly
to an element in F (τ).

Proof. It follows from the proof of Theorem 3.1 that limn→∞ ‖xn − p‖ exists for
every p ∈ F (τ) and limn→∞ ‖xn − zn‖ = 0 where zn ∈ PTn

xn. Since {Tn} satisfies
the SC-condition, there exists cn ∈ Txn such that

lim
n→∞

‖xn − cn‖ = 0
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for every T ∈ τ . This implies that

lim
n→∞

d(xn, Txn) ≤ lim
n→∞

d(xn, PT xn) ≤ lim
n→∞

‖xn − cn‖ = 0

for every T ∈ τ . Since that {Tn} satisfies Condition (A), we have limn→∞ d(xn, F (τ)) =
0. It follows from (B3), there is subsequence {xnk

} of {xn} and a sequence
{pk} ⊂ F (τ) such that

‖xnk
− pk‖ <

1

2k
(3.3)

for all k. From (3.1), we obtain

‖xnk+1
− p‖ ≤ ‖xnk+1−1 − p‖

≤ ‖xnk+1−2 − p‖

...

≤ ‖xnk
− p‖

for all p ∈ F (τ). This implies that

‖xnk+1
− pk‖ ≤ ‖xnk

− pk‖ <
1

2k
. (3.4)

Next, we show that {pk} is a Cauchy sequence in D. From (3.3) and (3.4), we
have

‖pk+1 − pk‖ ≤ ‖pk+1 − xnk+1
‖ + ‖xnk+1

− pk‖

<
1

2k−1
. (3.5)

This implies that {pk} is a Cauchy sequence in D and thus converges to q ∈ D.
Since PT is nonexpansive for every T ∈ τ ,

d(pk, T q) ≤ d(pk, PT q) ≤ H(PT pk, PT q) ≤ ‖pk − q‖ (3.6)

for every T ∈ τ . It follows that d(q, T q) = 0 for every T ∈ τ and thus q ∈ F (τ). It
implies by (3.3) that {xnk

} converges strongly to q. Since limn→∞ ‖xn − q‖ exists,
it follows that {xn} converges strongly to q. This completes the proof.

We know that if T is a quasi-nonexpansive multi-valued mapping, then F (T )
is closed. So we have the following result:

Corollary 3.4. Let D be a closed and convex subset of a uniformly convex Banach
space E. Let {Tn} and τ be two families of nonexpansive multi-valued mappings
from D into P (D) with F (τ) = ∩∞

n=1F (Tn) 6= ∅. Let {αn} be a sequence in (0, 1)
such that 0 < lim infn→∞ αn ≤ lim supn→∞

αn < 1. Let {xn} be generated by
(1.2). Assume that for each n ∈ N, H(PTn

x, PTn
p) ≤ ‖x − p‖, ∀x ∈ D, p ∈ F (τ)

and the best approximation operator PT is nonexpansive for every T ∈ τ .
If {Tn} satisfies the SC-condition and Condition (A), then {xn} converges

strongly to an element in F (τ).
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4 Application

Let E be a Banach space and D a nonempty, closed and convex subset of E.
Let {Ti}N

i=0 be a family of nonexpansive multi-valued mappings of D into CB(D)

and let {βi,n} ⊂ [0, 1] be such that
∑N

i=0
βi,n = 1 for all n ∈ N. We define the

mapping Sn : D → 2D as follows:

Sn =

N
∑

i=0

βi,nPTi
, (4.1)

where T0 = I the identity mapping. We also show that the mapping Sn defined
by (4.1) satisfies the condition imposed on our main theorem.

Lemma 4.1. Let D be a closed and convex subset of a uniformly convex Banach
space E. Let {Ti}N

i=1 be a family of nonexpansive multi-valued mappings of D

into P (D) and let {βi,n}
N
i=0 be sequences in (0, 1) such that 0 < lim infn→∞ βi,n ≤

lim supn→∞
βi,n < 1 for all i ∈ {0, 1, ..., N} and

∑N

i=0
βi,n = 1 for all n ∈ N.

For all n ∈ N, let Sn be the mapping defined by (4.1). Assume that the best
approximation operator PTi

is nonexpansive for all i ∈ {1, 2, ..., N}. Then the
followings hold:

(1) ∩∞

n=1F (Sn) = ∩N
i=0F (Ti);

(2) {Sn} satisfies the SC-condition;

(3) for each n ∈ N, H(PSn
x, PSn

p) ≤ ‖x− p‖ for all x ∈ D and p ∈ ∩N
i=0F (Ti).

Proof. (1) It is easy to see that ∩N
i=0F (Ti) ⊂ ∩∞

n=1F (Sn). Next, we show that
∩∞

n=1F (Sn) ⊂ ∩N
i=1F (Ti). Let p ∈ ∩∞

n=1F (Sn) and x∗ ∈ ∩N
i=0F (Ti). Then there

exists zi ∈ PTi
p such that p = β0,np +

∑N

i=1
βi,nzi for all n ∈ N. From Lemma

2.10, there exists a continuous, strictly increasing and convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that

‖p− x∗‖2 = ‖β0,n(p − x∗) +

N
∑

i=1

βi,n(zi − x∗)‖2

≤ β0,n‖p − x∗‖2 +

N
∑

i=1

βi,n‖zi − x∗‖2 −
β0,n

N

(

N
∑

i=1

βi,ng(‖zi − p‖)
)

= β0,n‖p − x∗‖2 +
N

∑

i=1

βi,nd(zi, PTi
x∗)2 −

β0,n

N

(

N
∑

i=1

βi,ng(‖zi − p‖)
)

≤ β0,n‖p − x∗‖2 +

N
∑

i=1

βi,nH(PTi
p, PTi

x∗)2 −
β0,n

N

(

N
∑

i=1

βi,ng(‖zi − p‖)
)

≤ ‖p − x∗‖2 −
β0,n

N

(

N
∑

i=1

βi,ng(‖zi − p‖)
)

.
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By the properties of g, we can conclude that

zi = p, ∀i = 1, 2, ..., N.

Hence p ∈ ∩N
i=1F (Ti). This completes the proof.

(2) Let {vn} ⊂ D be a bounded sequence and an ∈ Snvn be such that
limn→∞ ‖an − vn‖ = 0. Then there exists zi,n ∈ PTi

vn, i = 1, 2, ..., N such

that an = β0,nvn +
∑N

i=1
βi,nzi,n. Since {vn} and {zi,n} are bounded, by Lemma

2.10, there exists a continuous, strictly increasing and convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that

‖an − p‖2 = ‖β0,n(vn − p) +

N
∑

i=1

βi,n(zi,n − p)‖2

≤ β0,n‖vn − p‖2 +

N
∑

i=1

βi,n‖zi,n − p‖2 −
β0,n

N

(

N
∑

i=1

βi,ng(‖zi,n − vn‖)
)

= β0,n‖vn − p‖2 +

N
∑

i=1

βi,nd(zi,n, PTi
p)2 −

β0,n

N

(

N
∑

i=1

βi,ng(‖zi,n − vn‖)
)

≤ β0,n‖vn − p‖2 +
N

∑

i=1

βi,nH(PTi
vn, PTi

p)2 −
β0,n

N

(

N
∑

i=1

βi,ng(‖zi,n − vn‖)
)

≤ ‖vn − p‖2 −
β0,n

N

(

N
∑

i=1

βi,ng(‖zi,n − vn‖)
)

, ∀p ∈ ∩N
i=1F (Ti).

This implies that

β0,n

N

(

N
∑

i=1

βi,ng(‖zi,n − vn‖)
)

≤ ‖vn − an‖
(

‖vn − p‖+ ‖an− p‖
)

, ∀p ∈ ∩N
i=1F (Ti).

By assumptions, we get limn→∞ g(‖zi,n − vn‖) = 0 for all i = 1, 2, ..., N . By the
properties of g, we can conclude that

lim
n→∞

‖zi,n − vn‖ = 0, ∀i = 1, 2, ..., N.

Hence {Sn} satisfies the SC-condition.

(3) For p ∈ ∩N
i=1F (Ti), we know that PTi

p = {p} for every i ∈ {1, 2, ..., N}.
Let n ∈ N. Then for each x ∈ D and an ∈ PSn

x, there exists zi,n ∈ PTi
x such

that an = β0,nx +
∑N

i=1
βi,nzi,n. It follows that
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‖an − p‖ ≤ β0,n‖x − p‖ +

N
∑

i=1

βi,n‖zi,n − p‖

= β0,n‖x − p‖ +

N
∑

i=1

βi,nd(zi,n, PTi
p)

≤ β0,n‖x − p‖ +

N
∑

i=1

βi,nH(PTi
x, PTi

p)

≤ ‖x − p‖. (4.2)

This implies that d(PSn
x, p) ≤ ‖an − p‖ ≤ ‖x − p‖. It follows from (4.2) that

supan∈PSn
x d(an, PSn

p) ≤ ‖x − p‖. Since PSn
p = {p}, supp∈PSn

p d(PSn
x, p) ≤

‖x−p‖. This shows that H(PSn
x, PSn

p) ≤ ‖x−p‖ for all x ∈ D and p ∈ ∩N
i=1F (Ti).

This completes the proof.

Lemma 4.2. Let D be a closed and convex subset of a Banach space E. Let
{Ti}N

i=1 be a family of nonexpansive multi-valued mappings of D into P (D) and, let
{βi,n}N

i=0 be sequences in (0, 1) such that 0 < lim infn→∞ βi,n ≤ lim supn→∞
βi,n <

1 for all i ∈ {0, 1, ..., N} and
∑N

i=0
βi,n = 1 for all n ∈ N. For each n ∈ N, let Sn

be the mapping defined by (4.1). Assume that there exists i0 ∈ {1, 2, ..., N} such
that F (Ti0) = ∩N

i=1F (Ti) 6= ∅ and I −Ti0 is closed. Then {Sn} satisfies Condition
(A).

Proof. Since I −Ti0 is closed, it follows by Lemma 2.8 that Ti0 satisfies Condition
I. Then there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0,
f(r) > 0 for r ∈ (0,∞) such that

d(x, Ti0x) ≥ f(d(x, F (Ti0))) = f(d(x,∩N
i=1F (Ti))

for all x ∈ D. This completes the proof.

Using Lemma 4.1, we obtain the following:

Corollary 4.3. Let D be a closed and convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition. Let {Ti}N

i=1 be a family of nonexpansive
multi-valued mappings of D into P (D) with ∩N

i=1F (Ti) 6= ∅ and, let {βi,n}N
i=0 be

sequences in (0, 1) such that 0 < lim infn→∞ βi,n ≤ lim supn→∞
βi,n < 1 for all

i ∈ {0, 1, ..., N} and
∑N

i=0
βi,n = 1 for all n ∈ N. For each n ∈ N, let Sn be

the mapping defined by (4.1). Assume that the best approximation operator PTi
is

nonexpansive for all i ∈ {1, 2, ..., N}. Let {xn} be generated by

xn+1 ∈ αnxn + (1 − αn)PSn
xn, n ≥ 1. (4.3)

If 0 < lim infn→∞ αn ≤ lim supn→∞
αn < 1, then {xn} converges weakly to an

element in ∩N
i=1F (Ti).
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Proof. Putting Tn = Sn for all n ≥ 1 in the Theorem 3.1, we obtain the desired
result.

Now, using Lemma 4.1 and Lemma 4.2, we obtain the following:

Corollary 4.4. Let D be a closed and convex subset of a uniformly convex Banach
space E. Let {Ti}N

i=1 be a family of nonexpansive multi-valued mappings of D into
P (D) with ∩N

i=1F (Ti) 6= ∅ and, let {βi,n}N
i=0 be sequences in (0, 1) such that 0 <

lim infn→∞ βi,n ≤ lim supn→∞
βi,n < 1 for all i ∈ {0, 1, ..., N} and

∑N

i=0
βi,n = 1

for all n ∈ N. For each n ∈ N, let Sn be the mapping defined by (4.1). Assume
that the best approximation operator PTi

is nonexpansive for all i ∈ {1, 2, ..., N}
and there exists i0 ∈ {1, 2, ..., N} such that F (Ti0) = ∩N

i=1F (Ti) with I − Ti0 is
closed. Let {xn} be generated by

xn+1 ∈ αnxn + (1 − αn)PSn
xn, n ≥ 1. (4.4)

If 0 < lim infn→∞ αn ≤ lim supn→∞
αn < 1, then {xn} converges strongly to an

element in ∩N
i=1F (Ti).

Proof. Putting Tn = Sn for all n ≥ 1 in the Theorem 3.3, we obtain the desired
result.
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