Thai Journal of Mathematics Volume 9 (2011) Number 3 : 497–504

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Strong Convergence Theorems for Fixed Points of Nonexpansive Semigroups

Sun Young Cho^{\dagger} and Shin Min $\text{Kang}^{\ddagger,1}$

[†]Department of Mathematics, Gyeongsang National University, Jinju 660-701, Republic of Korea e-mail : ooly61@yahoo.co.kr [‡]Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea e-mail : smkang@gnu.ac.kr

Abstract: Let H be a real Hilbert space and $\mathcal{F} = \{T(t) : t \ge 0\}$ be a strongly continuous semigroup of nonexpansive mappings on H with a common fixed point. Let $f : H \to H$ be an α -contraction and $A : H \to H$ be a strongly positive linear bounded self-adjoint operator with the coefficient $\bar{\gamma} > 0$. Assume that $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$. The implicit iterative scheme is given as follows:

 $x_n = \alpha_n \gamma f(x_n) + (I - \alpha_n A) T(t_n) x_n, \quad \forall n \ge 1.$

It is proved that the sequence $\{x_n\}$ generated in the above iterative process converges strongly to a common fixed point $p \in \bigcap_{t \ge 0} F(T(t))$, where F(T(t)) denotes the fixed point of the nonexpansive mapping $\overline{T}(t)$. The point p also solves the variational inequality $\langle (\gamma f - A)p, x - p \rangle \le 0, \forall x \in \bigcap_{t \ge 0} F(T(t))$.

Keywords : Nonexpansive mapping; Common fixed point; Variational inequality; Iterative method.

2010 Mathematics Subject Classification : 47H09; 47HJ25.

1 Introduction and Preliminaries

Throughout this paper, we denote by \mathbb{R}^+ the set of nonnegative real numbers. Let H be a real Hilbert space, C be a nonempty closed convex subset of H and T

Copyright \bigcirc 2011 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author email: smkang@gnu.ac.kr (S.M. Kang)

be a nonlinear mapping. Recall that $T: C \to C$ is said to be *nonexpansive* if

 $||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$

A point $x \in C$ is said to be a *fixed point* of T provided Tx = x. Denote by F(T) the set of all fixed points of T, that is, $F(T) = \{x \in C : Tx = x\}$.

Let $\mathcal{F} = \{T(t) : t \ge 0\}$ be a strongly continuous semigroups of nonexpansive mappings on a closed convex subset C of a Hilbert space H, i.e.,

- (a) for each $t \in \mathbb{R}^+$, T(t) is a nonexpansive mapping on C;
- (b) T(0)x = x for all $x \in C$;
- (c) T(s+t) = T(s)T(t) for all $s, t \ge 0$;
- (d) for each $x \in H$, the mapping $T(\cdot)s$ from \mathbb{R}^+ into C is continuous.

We denote by F the set of common fixed points of \mathcal{F} , that is,

$$F := \{x \in C : T(t)x = x, t > 0\} = \bigcap_{t > 0} F(T(t)).$$

We know that F is nonempty if C is bounded (see [1]). In [2], Shioji and Takahashi proved the following theorem.

Theorem ST. Let C be a closed convex subset of a Hilbert space H. Let $\{T(t) : t \ge 0\}$ be a strongly continuous semigroup of nonexpansive mappings on C such that $\bigcap_{t\ge 0} F(T(t)) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{t_n\}$ be sequences of real numbers satisfying $0 < \alpha_n < 1$, $\lim_{n\to\infty} \alpha_n = 0$, $t_n \ge 0$ and $\lim_{n\to\infty} t_n = \infty$. Fix $u \in C$ and define a sequence $\{x_n\}$ in C by

$$x_n = \alpha_n u + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) x_n ds, \quad \forall n \ge 1.$$

Then $\{x_n\}$ converges strongly to the element of F nearest to u.

Recently, Suzuki [3] improved the results of Shinoji and Takahashi [2] and proved the following theorem.

Theorem S. Let C be a closed convex subset of a Hilbert space H. Let $\{T(t) : t \ge 0\}$ be a strongly continuous semigroup of nonexpansive mappings on C such that $\bigcap_{t\ge 0} F(T(t)) \ne \emptyset$. Let α_n and $\{t_n\}$ be sequences of real numbers satisfying $0 < \alpha_n < 1, t_n > 0$ and $\lim_{n\to\infty} t_n = \lim_{n\to\infty} \frac{\alpha_n}{t_n} = 0$. Fix $u \in C$ and define a sequence $\{x_n\}$ in C by

$$x_n = \alpha_n u + (1 - \alpha_n) T(t_n) x_n, \quad \forall n \ge 1.$$

Then $\{x_n\}$ converges strongly to the element of F nearest to u.

Recall that an operator A is said to be *strongly positive* on H if there exists a constant $\bar{\gamma} > 0$ such that

$$\langle Ax, x \rangle \ge \bar{\gamma} \|x\|^2, \quad \forall x \in H.$$

Recall also that a self mapping f is said to be an α -contraction on H if there exists a constant $\alpha \in (0, 1)$ such that

$$||f(x) - f(y)|| \le \alpha ||x - y||, \quad \forall x, y \in H.$$

Iterative methods for nonexpansive mappings have recently been applied to solve convex minimization problems (see [4–8] and the references therein). A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping T on a real Hilbert space H:

$$\min_{x \in F(T)} \frac{1}{2} \langle Ax, x \rangle - \langle x, b \rangle, \tag{1.1}$$

where A is a linear bounded self-adjoint operator and b is a given point in H.

In [3], it is proved that the sequence $\{x_n\}$ defined by the following iterative method:

$$x_0 \in H$$
, $x_{n+1} = (I - \alpha_n A)Tx_n + \alpha_n b$, $\forall n \ge 0$

converges strongly to the unique solution of the minimization problem (1.1) provided the sequence $\{\alpha_n\}$ satisfies certain conditions.

Recently, Marino and Xu [5] studied the following continuous scheme:

$$x_t = t\gamma f(x_t) + (I - tA)Tx_t,$$

where f is an α -contraction on H, A is a strongly positive linear bounded selfadjoint operator and $\gamma > 0$ is a constant. They showed that $\{x_t\}$ converges strongly to a fixed point \bar{x} of T. Also, in [5], they introduced a general iterative scheme by the viscosity approximation method which first was considered by Moudafi [9]:

$$x_0 \in H$$
, $x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A)Tx_n$, $\forall n \ge 0$

and proved that the sequence $\{x_n\}$ converges strongly to the unique solution of the variational inequality:

$$\langle (A - \gamma f)x^*, x - x^* \rangle \ge 0, \quad \forall x \in F(T),$$

which is the optimality condition for the minimization problem:

$$\min_{x \in F(T)} \frac{1}{2} \langle Ax, x \rangle - h(x),$$

where h is a potential function for γf (i.e., $h'(x) = \gamma f(x)$ for any $x \in H$).

In this paper, motivated by the recent work announced in [2, 3, 5, 10–14], we consider the following implicit iterative scheme:

$$x_n = \alpha_n \gamma f(x_n) + (I - \alpha_n A) T(t_n) x_n, \quad \forall n \ge 1,$$

where $\gamma > 0$ is a constant, f is an α -contraction on H, A is a strongly positive linear bounded self-adjoint operator on H and prove that the sequence $\{x_n\}$ generated in the above iterative process converge strongly to a common fixed point $p \in F$. Also, we show that the point p solves the variational inequality:

$$\langle (\gamma f - A)p, x - p \rangle \le 0, \quad \forall x \in F$$

The results presented in this paper mainly improve and extend the corresponding results announced in Shioji and Takahashi [2], Suzuki [3] and Xu [14].

In order to prove our main result, we need the following concepts and lemmas. Recall that a space X satisfies *Opial's condition* ([15]) if, for each sequence $\{x_n\}$ in X which converges weakly to point $x \in X$,

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|, \quad \forall y \in X \ (y \neq x).$$

Lemma 1.1 ([5]). Assume that A is a strongly positive linear bounded self-adjoint operator on a Hilbert space H with the coefficient $\bar{\gamma} > 0$ and $0 < \rho \leq ||A||^{-1}$. Then $||I - \rho A|| \leq 1 - \rho \bar{\gamma}$.

Lemma 1.2. Let H be a Hilbert space, C be a closed convex subset of H, $f: H \to H$ be an α -contraction and A be a strongly positive linear bounded operator with the coefficient $\bar{\gamma} > 0$. Then, for any $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$, we see that

$$\langle x - y, (A - \gamma f)x - (A - \gamma f)y \rangle \ge (\bar{\gamma} - \gamma \alpha) \|x - y\|^2, \quad \forall x, y \in H.$$
(1.2)

That is, $A - \gamma f$ is strongly monotone with the coefficient $\bar{\gamma} - \alpha \gamma$.

Proof. From the definition of strongly positive linear bounded operators, we see that

$$\langle x - y, A(x - y) \rangle \ge \bar{\gamma} ||x - y||^2$$

On the other hand, we have

$$\langle x - y, \gamma f x - \gamma f y \rangle \le \gamma \alpha \|x - y\|^2.$$

It follows that

$$\begin{aligned} \langle x - y, (A - \gamma f)x - (A - \gamma f)y \rangle &= \langle x - y, A(x - y) \rangle - \langle x - y, \gamma f x - \gamma f y \rangle \\ &\geq (\bar{\gamma} - \gamma \alpha) \|x - y\|^2, \quad \forall x, y \in H. \end{aligned}$$

This completes the proof.

Remark 1.3. Taking $\gamma = 1$ and A = I (: the identity mapping), we have the following inequality:

$$\langle x-y, (I-f)x - (I-f)y \rangle \ge (1-\alpha) \|x-y\|^2, \quad \forall x, y \in H.$$

Furthermore, if f is a nonexpansive mapping in (1.2), then we have

$$\langle x - y, (I - f)x - (I - f)y \rangle \ge 0, \quad \forall x, y \in H.$$

$$(1.3)$$

Strong Convergence Theorems for Fixed Points of Nonexpansive Semigroups 501

2 Main Results

Now, we are ready to give our main results.

Theorem 2.1. Let H be a real Hilbert space and $\{T(t) : t \ge 0\}$ be a strongly continuous semigroup of nonexpansive mappings on H such that $F \ne \emptyset$. Let $f: H \rightarrow H$ be an α -contraction and $A: H \rightarrow H$ a strongly positive linear bounded self-adjoint operator with the coefficient $\overline{\gamma} > 0$. Assume that $0 < \gamma < \frac{\overline{\gamma}}{\alpha}$. Let $\{\alpha_n\}$ and $\{t_n\}$ be sequences of real numbers satisfying $0 < \alpha_n < 1$, $t_n > 0$ and $\lim_{n\to\infty} t_n = \lim_{n\to\infty} \frac{\alpha_n}{t_n} = 0$. Define a sequence $\{x_n\}$ in the following manner:

$$x_n = \alpha_n \gamma f(x_n) + (I - \alpha_n A) T(t_n) x_n, \quad \forall n \ge 1.$$
(2.1)

Then $\{x_n\}$ converges strongly to $p \in F$ which solves the following variational inequality:

$$\langle (A - \gamma f)p, p - x \rangle \le 0, \quad \forall x \in F.$$
 (2.2)

Proof. First, we show that the fixed point equation (2.1) is well defined. For any $n \ge 1$, define a mapping T_n as follows:

$$T_n x = \alpha_n \gamma f(x) + (I - \alpha_n A) T(t_n) x.$$

It follows that

$$\begin{aligned} \|T_n x - T_n y\| &= \|\alpha_n \gamma(f(x) - f(y)) + (I - \alpha_n A)(T(t_n) x - T(t_n) y)\| \\ &\leq \alpha_n \alpha \gamma \|x - y\| + (1 - \alpha_n \bar{\gamma}) \|x - y\| \\ &= (1 - \alpha_n (\bar{\gamma} - \alpha \gamma)) \|x - y\|, \quad \forall x, y \in H. \end{aligned}$$

Hence T_n has a unique fixed point x_n , which uniquely solves the fixed point equation

$$x_n = \alpha_n \gamma f(x_n) + (I - \alpha_n A)T(t_n)x_n$$

The uniqueness of the solution of the variational inequality (2.2) is a consequence of the strong monotonicity of $A - \gamma f$. Suppose that $p, q \in F$ are solutions to (2.2). It follows that

$$\langle (A - \gamma f)p, p - q \rangle \le 0$$
 (2.3)

and

$$\langle (A - \gamma f)q, q - p \rangle \le 0.$$
 (2.4)

Adding up (2.3) and (2.4), one obtains that

$$\langle (A - \gamma f)p - (A - \gamma f)q, p - q \rangle \le 0, \quad \forall x \in F.$$

From Lemma 1.2, one sees that p = q. Next, we use p to denote the unique solution of the variational inequality (2.2). Observing $\lim_{n\to\infty} t_n = \lim_{n\to\infty} \frac{\alpha_n}{t_n} = 0$, we may assume, without loss of generality, that $\alpha_n < ||A||^{-1}$ for all $n \ge 1$. From Lemma 1.1, we know that, if $0 < \alpha_n \le ||A||^{-1}$, then $||I - \alpha_n A|| \le 1 - \alpha_n \bar{\gamma}$. Next, we show that $\{x_n\}$ is bounded. Fixing $x \in F$, we have

$$||x_n - x||^2 = \langle \alpha_n(\gamma f(x_n) - Ax) + (I - \alpha_n A)(T(t_n)x_n - x), x_n - x \rangle$$

= $\alpha_n \gamma \langle f(x_n) - f(x), x_n - x \rangle + \alpha_n \langle \gamma f(x) - Ax, x_n - x \rangle$
+ $\langle (I - \alpha_n A)(T(t_n)x_n - x), x_n - x \rangle$,

from which it follows that

$$||x_n - x||^2 \le \frac{1}{\bar{\gamma} - \gamma \alpha} \langle \gamma f(x) - Ax, x_n - x \rangle.$$
(2.5)

That is,

$$||x_n - x|| \le \frac{1}{\bar{\gamma} - \gamma \alpha} ||\gamma f(x) - Ax||.$$

This implies that $\{x_n\}$ is bounded. Let $\{x_{n_i}\}$ be an arbitrary subsequence of $\{x_n\}$. Then there exists a subsequence $\{x_{n_{i_j}}\}$ of $\{x_{n_i}\}$ which converges weakly to a point p.

Next, we show that $p \in F$. In fact, put $z_j = x_{n_{i_j}}$, $\gamma_j = \alpha_{n_{i_j}}$ and $s_j = t_{n_{i_j}}$ for all $j \ge 1$. Fix t > 0. Noticing that

$$\begin{aligned} \|z_{j} - T(t)p\| &\leq \sum_{k=0}^{\left[\frac{t}{s_{j}}\right]-1} \|T((k+1)s_{j})z_{j} - T(ks_{j})z_{j}\| \\ &+ \left\|T\left(\left[\frac{t}{s_{j}}\right]s_{j}\right)z_{j} - T\left(\left[\frac{t}{s_{j}}\right]s_{j}\right)p\right\| + \left\|T\left(\left[\frac{t}{s_{j}}\right]s_{j}\right)p - T(t)p\right\| \\ &\leq \left[\frac{t}{s_{j}}\right]\|T(s_{j})z_{j} - z_{j}\| + \|z_{j} - p\| + \left\|T\left(t - \left[\frac{t}{s_{j}}\right]s_{j}\right)p - p\right\| \\ &\leq \frac{\gamma_{j}}{s_{j}}t\|AT(s_{j})z_{j} - \gamma f(z_{j})\| + \|z_{j} - p\| \\ &+ \max\{\|T(s)p - p\| : 0 \leq s \leq s_{j}\}, \quad \forall j \geq 1, \end{aligned}$$

we have

$$\liminf_{j \to \infty} \|z_j - T(t)p\| \le \liminf_{j \to \infty} \|z_j - p\|.$$

From Opial's condition, we have T(t)p = p. It follows that $p \in F$. In the inequality (2.5), replacing p with x, we have

$$||z_j - p||^2 \le \frac{1}{\bar{\gamma} - \alpha\gamma} \langle \gamma f(p) - Ap, z_j - p \rangle.$$
(2.6)

Taking the limit as $j \to \infty$ in (2.6), we obtain that $\lim_{j\to\infty} ||z_j - p|| = 0$. Since the subsequence $\{x_{n_i}\}$ is arbitrary, it follows that $\{x_n\}$ converges strongly to p.

Finally, we prove that $p \in F$ is a solution of the variational inequality (2.2). From (2.1), we see that

$$(A - \gamma f)x_n = -\frac{1}{\alpha_n}(I - \alpha_n A)(x_n - T(t_n)x_n).$$

In view of (1.3), we see that

$$\langle (A - \gamma f)x_n, x_n - x \rangle = -\frac{1}{\alpha_n} \langle (I - \alpha_n A)(x_n - T(t_n)x_n), x_n - x \rangle$$

$$= -\frac{1}{\alpha_n} \langle (I - T(t_n))x_n - (I - T(t_n))x, x_n - x \rangle$$

$$+ \langle A(I - T(t_n))x_n, x_n - x \rangle$$

$$\le \langle A(I - T(t_n))x_n, x_n - x \rangle$$

$$= \langle A(\alpha_n \gamma f(x_n) - \alpha_n AT(t_n)x_n), x_n - x \rangle$$

$$= \alpha_n \langle A(\gamma f(x_n) - AT(t_n)x_n), x_n - x \rangle.$$

It follows that

$$\langle (A - \gamma f)p, p - x \rangle \le 0, \quad \forall x \in F.$$

That is, $p \in F$ is the unique solution to the variational inequality (2.2). This completes the proof.

Taking $\gamma = 1$ and A = I in Theorem 2.1, we have the following result.

Corollary 2.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let $\{T(t) : t \ge 0\}$ be a strongly continuous semigroup of nonexpansive mappings of C into itself such that $F \ne \emptyset$ and $f : C \rightarrow C$ be an α -contraction. Let $\{\alpha_n\}$ and $\{t_n\}$ be sequences of real numbers satisfying $0 < \alpha_n < 1$, $t_n > 0$ and $\lim_{n\to\infty} t_n =$ $\lim_{n\to\infty} \frac{\alpha_n}{t_n} = 0$. Define a sequence $\{x_n\}$ in the following manner:

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n) T(t_n) x_n, \quad \forall n \ge 1.$$

$$(2.7)$$

Then $\{x_n\}$ converges strongly to $p \in F$ which solves the following variational inequality:

$$\langle (f-I)p, x-p \rangle \le 0, \quad \forall x \in F.$$
 (2.8)

Remark 2.3. If $f(x) = u \in C$, a fixed point, for all $x \in C$, then Corollary 2.2 is reduced to Suzuki's results [3]. Corollary 2.2 also can be viewed as an improvement of the corresponding results in Shioji and Takahashi [2].

Remark 2.4. It is of interest to improve Theorem 2.1 to some Banach space.

References

- F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965) 1041–1044.
- [2] N. Shioji, W. Takahashi, Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 34 (1998) 87–99.
- [3] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003) 2133–2136.

- [4] S.Y. Cho, S.M. Kang, Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process, Appl. Math. Lett. 24 (2011) 224–248.
- [5] G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006) 43–52.
- [6] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240–256.
- [7] H.K. Xu, Aniterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659–678.
- [8] I. Yamada, N. Ogura, Y. Yamashita, K. Sakaniwa, Quadratic approximation of fixed points of nonexpansive mappings in Hilbert spaces, Numer. Funct. Anal. Optim. 19 (1998) 165–190.
- [9] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55.
- [10] J.K. Kim, Y.M. Nam, J.Y. Sim, Convergence theorems of implicit iterative sequences for a finite family of asymptotically quasi-nonexpansive type mappings, Nonlinear Anal. 71 (2009) 2839–2848.
- [11] G. Li, J.K. Kim, Nonlinear ergodic theorems for general curves defined on general semigroups, Nonlinear Anal. 55 (2003) 1–14.
- [12] X. Qin, S.Y. Cho, Implicit iterative algorithms for treating strongly continuous semigroups of Lipschitz pseudocontractions, Appl. Math. Lett. 23 (2010) 1252–1255.
- [13] X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415–424.
- [14] H.K. Xu, A strong convergence theorem for contraction semigrups in Banach spaces, Bull. Austral. Math. Soc. 72 (2005) 371–379.
- [15] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591–597.

(Received 23 April 2011) (Accepted 20 May 2011)

THAI J. MATH. Online @ http://www.math.science.cmu.ac.th/thaijournal