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Finite Element Solution for 1-D Groundwater
Flow, Advection-Dispersion and Interphase

Mass Transfer : I. Model Development
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Abstract : Prediction of the mass transfer behavior of the entrapped dense non-
aqueous phase liquid (or DNAPL) in the subsurface environment is an uneasy
task. Mathematical description of this problem, which involves the solution to
groundwater flow, advection-dispersion, and interphase mass transfer equations, is
complex and results in a non-linear coupled system of partial differential equations
where no analytical solution exists. Available, but limited, numerical tools can
only solve these problems using explicit approach where all governing equations
are numerically approximated as an uncoupled system of equations. This paper
presents an initial development of a one-dimensional numerical solution to this
problem where the system of equations is solved implicitly. Crank-Nicolson Finite-
Element Galerkin (CN-FEG) scheme is developed and implemented. Assumptions
are made so that the code can be compared or verified with available analytical
solution. Error analysis and rate of convergence are also presented.
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1 Introduction

Dense non-aqueous phase liquids (DNAPLs) such as chlorinated solvents are
common organic contaminants found in subsurface environment throughout the
hazardous waste sites around the world [1]. These chemicals are health hazard and
some are known to be carcinogens. Once they leaked or spilled into soils, as shown
in Fig. 1, significant fraction of DNAPL remained entrapped and slowly dissolve
into the flowing groundwater. Partial or full exposure to polluted groundwater
results in a high risk for those who are located downstream of the DNAPL source
zone. In order to manage these sites properly, tools need to be developed to help
decide what would be the most appropriate actions (i.e. selection of a remediation
scheme) to apply to these contaminated sites. A mathematical model is commonly
used as a tool to evaluate DNAPL source zone longevity, cost/benefit of a selected
remediation technology, and to predict the extent of groundwater contamination
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before and after remediation [1]. In the past two decades, mathematicians, engi-
neers and hydrogeologists have successfully developed several numerical models to
better understand groundwater systems and contaminant transport in porous me-
dia. These models were developed using both finite-difference and finite-element
methods and range from simple to very sophisticated formulations. Unfortunately,
available numerical models that deal with both groundwater flow and NAPL con-
tamination are very limited. This is particularly due to the mathematical com-
plexity of the multiphase flow and the dissolution of DNAPL in the heterogenous
subsurface.

Figure 1: Schematic diagram illustrates conceptual model for DNAPL spill in the
field. Dark arrows show the direction of groundwater flow.

Dissolution (or interphase mass transfer) and transport of DNAPL constituents
in heterogeneous soils are complex processes [2, 3]. Several experimental studies
have been conducted at various scales, ranging from small 1-D soil column [2, 3] to
2-D large-scale soil tank [4, 5, 6], to investigate mass transfer behavior of entrapped
in porous media. These researchers also attempted to quantify and predict mass
transfer behavior using either analytical (for 1-D case) or numerical models.

The purpose of this paper is to develop a verified, comprehensive numerical
model based on CN-FEG method that can be used to simulate flow in porous
media, mass transfer (i.e. dissolution), and the fate-and-transport of the dissolved
organic components from entrapped DNAPL in the heterogeneous subsurface en-
vironment. The validation of the developed model with experimental data will be
presented in the second paper of this series [7].
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2 Background

2.1 Previous Work

Numerical modelling of groundwater flow and contaminant transport has long
been studied and their development have become relatively mature. Several nu-
merical models are available for a wide range of applications related groundwater
flow and contaminant transport [8, 9, 10, 11]. However finite-element based com-
puter code for solving this kind of problem in heterogeneous porous media is still at
an early stage [12]. Relatively little effort has been made to develop a truly coupled
model due to the problem complexity and the sophistication of the mathematical
formulation as well as its numerical implementation. Traditional modeling exercise
for the problem of this type assumes that the solute concentration does not affect
the fluid density, viscosity, nor the soil’s hydraulic conductivity. Based on these as-
sumptions, groundwater modelers usually solve the two processes of groundwater
flow and contaminant transport separately (i.e. uncoupled) thus simplifying the
mathematics, numerical implementation, and computational power requirement.

With an addition of the interphase mass transfer process to groundwater flow
and solute transport, mathematics becomes more complicated and highly non-
linear. Simple analytical solution to this problem does not exist unless assumptions
are made. Available numerical models such as MODFLOW-MT3DMS suite [8,
9], SUTRA [10], and the finite-element groundwater flow/contaminant transport
program by Istok [13] cannot handle this kind of problem since it does not capture
processes occurring due to the presence of non-aqueous phase liquid. Delshad et
al. [11] developed a multi-phase, multi-component compositional finite-difference
model (called UTCHEM) to solve the migration and dissolution of the non-aqueous
phase liquids. This model however has experienced some numerical difficulties and
its limitation to simulate complex boundary conditions prevents it from widely
acceptance.

Saenton et al. [14] and Saenton [6] developed an explicitly coupled finite-
difference mass transfer model based on existing groundwater flow program, MOD-
FLOW [8], and reactive contaminant transport or RT3D [15] by adding the dis-
solution package (DSS) to the program module. They successfully simulated the
dissolution of entrapped tetrachloroethene (PCE) in the sandbox experiment un-
der both normal and (surfactant-) enhanced conditions. However these simulations
required a very small time-step size in order to satisfy the stability criteria due to
the use of a technique called operator splitting. This can cause excessively long
execution time when a lengthy simulation is desired. The major limitation of the
finite-difference model is that finite-difference grids do not conform to boundaries
that are not parallel to the coordinate axes. Stair-step approximations to angu-
lar boundaries are inconvenient to specify and can cause local variations in the
ground-water flow field or contaminant plume that are not realistic.

It is our motivation to move one step further from our previous work by in-
corporating all the processes into a single code (both groundwater flow, DNAPL
dissolution and its transport) using finite-element method. We believe that the
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finite-element formulation will eliminate the geometric constraint (i.e. complex
problem domain or boundary) that is usually approximated by the finite-difference
program. In addition, numerical dispersion is expected to be reduced due to the
reduction of discretization error compared to the finite-difference method.

2.2 Governing Equations

2.2.1 Groundwater Flow

A general expression of transient groundwater flow can be written as,

Ss
∂h

∂t
= ∇ · (K∇h) + q (1)

where h(x, y, z, t) is the total hydraulic head, K is the effective hydraulic conduc-
tivity tensor of the porous media, q denotes source or sink such as well or river,
and the parameter Ss refers to specific storage of an aquifer. For confined aquifer,
Ss = S/b where b is the aquifer thickness and S is storativity of an aquifer. On
the other hand, the storativity for an unconfined aquifer is S = Sy + hSs where
Sy is a specific yield.

2.2.2 Contaminant Transport

The mathematical expression for advection-dispersion of a reactive solute em-
anating from NAPL dissolution (or interphase mass transfer) can be written as

∂C

∂t
= −∇ · (v̄C −D∇C)− ∂

∂t
(ρnφ0Sn) , (2)

where the unknowns C(x, y, z, t) and Sn(x, y, z, t) are dissolved solute concen-
tration, and NAPL saturation, respectively. NAPL saturation, representing the
quantity of non-aqueous phase liquid in aquifer, is defined as a ratio of the volume
of non-aqueous phase liquids to the void volume of the porous medium. The first
term on the right-hand side represents advection and dispersion of a dissolved so-
lute with the paramters v̄ and D denotes average linear pore velocity vector and
hydrodynamic dispersion coefficient tensor, respectively. And, the last term rep-
resent an interphase mass transfer or dissolution of a solute from a NAPL phase.

The parameter v̄ is an average linear pore velocity vector that can be calculated
from v̄ = −K∇h/φ. The parameter φ is an effective porosity and it is defined
as φ = (1 − Sn)φ0 where φ0 is aquifer’s porosity without NAPL entrapment.
The variables K and Ks are effective and water-saturated hydraulic conductivity
tensors, respectively. They are related to each other by the relationship K =
kr,wKs where kr,w is a relative permeability function that depends on the amount
of entrapped NAPL (Sn). Several expressions of this function were proposed in
literature [16, 17, 18]. The proposed numerical model in this study is not only
able to incorporate any relative permeability function, it is also flexible that it
accepts an experimentally derived relative permeability function (i.e. discrete
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relative permeability function). Generally, the relative permeability function takes
the form kr,w = (Se)γ where Se is effective water saturation or Se = (1 − Sn −
Sr,w)/(1−Sr,w). Sr,w is residual water saturation and the parameter γ is a relative
permeability exponent which can range from 2 to 4 depending on the type of fluids
and aquifer materials.

2.2.3 Interphase Mass Transfer

A process that is fundamental to this study is the dissolution of entrapped NAPL
to the flowing aqueous phase. Based on methods developed in chemical engineer-
ing, a linear-driving force model for mass transfer from single-component, stably
entrapped NAPLs in soils has been proposed [2]:

∂

∂t
(ρnφ0Sn) = −kLa(Cs − C), (3)

where the left-hand-side term represents a dissolved mass flux due to dissolution of
NAPL per unit volume of porous medium, C and Cs and are dissolved concentra-
tion and aqueous solubility, respectively. The value of kLa, an overall mass transfer
coefficient is calculated based on experimentally-derived correlations containing a
modified form of dimensionless Sherwood (Sh) number: kLa = DmSh/d2

50. The
parameters ρn, d50, and Dm are NAPL density, average grain size of soils, and
molecular diffusion coefficient, respectively.

For simple flow systems, it is possible to derive relationships between Sher-
wood number and other dimensionless groups such as Reynolds (Re), Schmidt
(Sc), or Peclet (Pe) numbers. These functional relationships are referred to as
Gilland-Sherwood models. Similar system specific empirical relationships have
been proposed for NAPL dissolution [2, 3, 19]. It should be noted that lumped
mass transfer coefficients that are estimated using the modified Sherwood number
quantifies the mass transfer that occurs at the representative elemental volume
(REV) scale that is larger than the pore-scale where mass transfer occurs at the
NAPL/water interfaces. In this work, we propose the relationship as shown in
(4). The development of the Gilland-Sherwood was based on a Buckingham-Pi
theorem which can be found in any chemical engineering literature [20].

Sh = α0 + α1(Re)α2(Sc)α3(Sn)α4 (4)

The above expression accounts for the dependency of NAPL dissolution or
interphase mass transfer on groundwater flow velocity, solute’s physicochemical
property (i.e. viscosity and density), and the amount of entrapped NAPL. It
is slightly different from traditional Sherwood expression developed in chemical
engineering literature that the above expression has and additional term (first
term) on the right-hand side. The addition of a parameter α0 to the dimensionless
mass transfer coefficient (or Sherwood number, Sh) enables the numerical model to
simulate dissolution under static or no-flow condition where Re = 0. The constants
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α0, α1, . . . , α4 are empirical parameters. These parameters are usually obtained
by fitting a model such as the one given by (4) to data generated from dissolution
experiments conducted in a controlled 1-D column.

3 CN-FEG Scheme Development

This section describes the development of the Crank-Nicolson Finite Element
Galerkin scheme for solving the groundwater flow, DNAPL dissolution, and con-
taminant transport equations. Example that will be given here will utilize 1-
D domain for ease of understanding. Although the derivation is illustrated us-
ing one-dimensional domain, the method should readily be extended to a multi-
dimensional domain. Fig. 2 displays the algorithm for developing the CN-FEG
scheme for solving governing equations as described in (1), (2), and (3).

Solve Groundwater

Flow Equation

Solve Advection-Dispersion-

Dissolution Processes

Target time 

is reached?

Start

Velocity Field

NO

END

YES

Figure 2: An algorithm for developing the CN-FEG scheme for solving governing
equations.

The program is designed to solve groundwater flow equation using effective
hydraulic conductivity which is corrected for the permeability reduction due to
the presence of non-aqueous phase liquid. The groundwater velocity field ob-
tained from previous step is used in the next step where advection, dispersion,
and NAPL dissolution processes are solved simultaneously. Then, NAPL satura-
tion are updated. These processes are repeated until the targeted simulation time
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is reached. The formulation of CN-FEG with linear shape or basis function can be
found in any standard textbook [13] and, its detail will be briefly discussed here.

3.1 CN-FEG for Groundwater Flow Equation

In the finite-element Galerkin method, a domain of interest are discretized
into small regions called elements. Each element consist of nodes. Our goal is to
find the approximate solution to the differential equation that minimize residuals
caused by this approximation.

Let h̃(e) be an approximate of hydraulic head within an element e, and it is
defined by;

h̃(e) =
n∑

i=1

φ
(e)
i hi, (5)

where φ
(e)
i are the basis functions for each node within an element e, n is the

number of nodes within an element e, and hi are the unknown values of hydraulic
head for each node within an element e. If we insert the above approximate (5)
into the 1-D groundwater flow equation which is in the form

∂

∂x

(
K

∂h

∂x

)
+ q − Ss

∂h

∂t
= 0,

we will have a residual at node i contributed from element e or R
(e)
i as follows,

R
(e)
i = −

∫

L

φ
(e)
i

[
K(e) ∂

2h̃(e)

∂x2
+ q(e) − S(e)

s

∂h̃(e)

∂t

]
dx, (6)

where L is the length of an element e, and K(e) is assumed constant within an
element. The above expression is known as a finite-element Galerkin weighted
residuals method. Expand (6) the first term and perform an integration by-part,
we will have,

R
(e)
i = +

∫ x
(e)
j

x
(e)
i

K(e) ∂φ
(e)
i

∂x

∂h̃(e)

∂x
dx−

[
φ

(e)
i K(e) ∂h̃(e)

∂x

]x
(e)
j

x
(e)
i

−
∫ x

(e)
j

x
(e)
i

φ
(e)
i q(e)dx +

∫ x
(e)
j

x
(e)
i

φ
(e)
i S(e)

s

∂h̃(e)

∂t
dx, (7)

where x
(e)
i and x

(e)
j denote node locations in a two-node linear element shown in

Fig. 3, respectively and x
(e)
j −x

(e)
i = L. Note that a linear basis or shape function

is used in this study and they are defined as,

φ
(e)
i (x) = (xj − x)/L,

φ
(e)
j (x) = (x− xi)/L.
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Figure 3: Basis or shape function for a two-node linear element.

Substitute basis function and h̃(e) = φ
(e)
i (x)hi + φ

(e)
j (x)hj into (7) and ex-

pressions for R
(e)
i can be derived. The first term on the right-hand side of (7)

becomes,

∫ x
(e)
j

x
(e)
i

K(e) ∂φ
(e)
i

∂x

∂h̃(e)

∂x
dx =

K(e)

L
(hi − hj). (8)

The second term on the right-hand side of (7) is groundwater flux. For the
interior nodes with no net flux, this term becomes zero because groundwater flux
entering the node i of an element e will cancel out the flux flowing out of the node
i of an element e−1 when global matrix is assembled. For nodes at the boundary,
this term is used to represent the Neumann boundary conditions. In this case, a
symbol F

(e)
i is used to represent the flux for node i of an element e.

[
φ

(e)
i K(e) ∂h̃(e)

∂x

]x
(e)
j

x
(e)
i

= F
(e)
i (9)

F
(e)
i is positive if groundwater flux is entering the domain. Similar to the second

term in (7), the third term also represents specified flow boundary of the domain.

Therefore,
∫ x

(e)
j

x
(e)
i

φ
(e)
i q(e)dx can be incorporated into the flux term or F

(e)
i . However,

if groundwater flux originates from line or surface sources (e.g. drains, rivers, or
recharge and evapotranspiration), this third term must be evaluated prior to the
assembly of the global matrix.

The fourth term represents change in groundwater storage, and it can be
evaluated by substituting the approximate h̃(e) = φ

(e)
i (x)hi + φ

(e)
j (x)hj into the

integral, and we will have

∫ x
(e)
j

x
(e)
i

φ
(e)
i S(e)

s

∂h̃(e)

∂t
dx = S(e)

s

[
L

3
∂hi

∂t
+

L

6
∂hj

∂t

]
. (10)
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Therefore, the expression for residuals R
(e)
i of an element e contributed from

node i, is

R
(e)
i =

K(e)

L
(hi − hj)− F

(e)
i + S(e)

s

[
L

3
∂hi

∂t
+

L

6
∂hj

∂t

]
. (11)

Similarly, residual from node j of an element e can be written as,

R
(e)
j =

K(e)

L
(−hi + hj)− F

(e)
j + S(e)

s

[
L

6
∂hi

∂t
+

L

3
∂hj

∂t

]
. (12)

Combining (11) and (12), residual of an element e can be written in a matrix
form as,

{
R

(e)
i

R
(e)
j

}
=

K(e)

L

[
1 −1

−1 1

]{
hi

hj

}
−

{
F

(e)
i

F
(e)
j

}
+

S
(e)
s L

6

[
2 1
1 2

]{
∂hi

∂t
∂hj

∂t

}
. (13)

In short, the above expression (13) can be written as
{

R(e)
}

=
[
K(e)

]
{h} −

{
F(e)

}
+

[
S(e)

]{
∂h

∂t

}
, (14)

where [K(e)], {F(e)}, and [S(e)] are conductance matrix, source/sink vector, and
capacitance or storage matrix of an element e, respectively. Equations, like (14),
for all elements will be assembled to obtain a global system of differential equations
that can be solved for hydraulic heads. The resultant system of equation (global)
is

{R} = [S]
{

∂h

∂t

}
+ [K]{h} − {F}.

If (i) a time derivative of the hydraulic head is discretized using finite difference
approach, (ii) let {h} = (1−ω){h}t+ω{h}t+∆t, (iii) {F} = (1−ω){F}t+ω{F}t+∆t,
and (iv) set residual {R} = 0, we will have a system of equations to solve for
hydraulic heads at any time t as,

([S] + ω∆t[K]) {h}t+∆t = ([S]− (1− ω)∆t[K]) {h}t

+∆t (ω{F}t+∆t + (1− ω){F}t) . (15)

The above expression is called a finite-element Galerkin scheme for solving ground-
water flow equation. A parameter ω is used to change the scheme from fully-
implicit (ω = 1.0) to fully-explicit schemes (ω = 0). If ω = 0.5, a scheme is called
Crank-Nicolson finite-element Galerkin or CN-FEG scheme.

3.2 CN-FEG for Mass Transfer and Transport Equations

The one-dimensional advection-dispersion-dissolution or contaminant trans-
port equation in the form of

D
∂2C

∂x2
− v̄

∂C

∂x
− ∂C

∂t
− kLa(C − Cs) = 0,
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along with the approximate solution for contaminant concentration defined as

C̃(e) =
n∑

i=1

φ
(e)
i Ci, (16)

can be used to develop similar scheme that was derived for groundwater flow
equation in the previous section. Using the weighted residual method, the residual
of an element e that is contributed from node i or R

(e)
i can be written as,

R
(e)
i = −

∫

L

φi

[
D(e) ∂

2C̃

∂x2
− v̄(e) ∂C̃

∂x
− ∂C̃

∂t
− k

(e)
LaC̃ + k

(e)
LaCs

]
dx.

Perform the integration similar to the previous section, we will have expressions
for residual of an element e contributed from both nodes i and j as follows.

{
R

(e)
i

R
(e)
j

}
= +

D(e)

L

[
1 −1

−1 1

]{
Ci

Cj

}
−

{
F

(e)
i

F
(e)
j

}

+
v̄(e)

2

[−1 1
−1 1

]{
Ci

Cj

}
+

L

6

[
2 1
1 2

]{
∂Ci

∂t
∂Cj

∂t

}

+
k

(e)
LaL

6

[
2 1
1 2

]{
Ci

Cj

}
− k

(e)
LaCsL

2

{
1
1

}
(17)

If we let
[
D(e)

]
=

D(e)

L

[
1 −1

−1 1

]
+

v̄(e)

2

[−1 1
−1 1

]
+

k
(e)
LaL

6

[
2 1
1 2

]
,

[
S(e)

]
=

L

6

[
2 1
1 2

]
, and

{
M(e)

}
=

k
(e)
LaCsL

2

{
1
1

}
,

the above equation (17) can be written in a shorter notation for elemental matrix
as [

R(e)
]

=
[
D(e)

]
{C} − {F(e)}+

[
S(e)

]{
∂C

∂t

}
−

{
M(e)

}
.

After assembling the global matrix and setting residual equal to zero, we will have
system of differential equation for the contaminant concentration as

[S]
{

∂C

∂t

}
+ [D] {C} = {F}+ {M} .

Using a finite-difference approximation for the time derivative, and let {h} =
(1−ω){h}t + ω{h}t+∆t and {F} = (1−ω){F}t + ω{F}t+∆t, we will have a finite-
element scheme for solving advection-dispersion-dissolution equation as follows,

([S] + ω∆t[D]) {C}t+∆t = ([S]− (1− ω)∆t[D]) {C}t

+ ∆t (ω{F}t+∆t + (1− ω){F}t)
+ ∆t{M}. (18)
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If ω = 0.5, a scheme is called Crank-Nicolson Finite-Element Galerkin or CN-
FEG scheme. Equations (15) and (18) are used to solve for groundwater flow
and contaminant transport. Unlike traditional simulation for the problem of this
kind, where time step size or ∆t for groundwater flow is larger than contaminant
transport simulations, this simulation use the same time step size for both ground-
water flow and contaminant transport simulations. This is because the depletion
of NAPL (due to dissolution) results in the change in relative permeability. Hence,
groundwater flow field will change accordingly.

4 Model Verification and Discussion

Generally, all physics-based mathematical/numerical model should be verified
with, if possible, existing analytical solution. In case where analytical solution
does not exist, ones generally validate the model by comparing with experimental
data. In this section, we verify the code with two available analytical solutions:
conservative transport and steady-state DNAPL dissolution in 1-D domain. It
should be noted that several assumptions must be made in order to simplify the
governing equations (PDE) such that the exact solution can be derived. In the first
example, the program is used to simulate transient, conservative tracer transport
in one-dimensional porous medium domain. Second example illustrates the steady-
state dissolution of entrapped NAPL in a 1-D column.

4.1 Case I: Conservative Transport

Governing equation for a one-dimension conservative tracer transport in porous
medium is described in (19) where C = C(x, t) is tracer concentration at any time
t and at distance x. v̄ and Dx are average linear groundwater (pore) velocity and
dispersion coefficient, respectively.

∂C

∂t
= −v̄

∂C

∂x
+ Dx

∂2C

∂x2
, (19)

For special case, when the transport of a conservative chemical is subject to
the following initial and boundary conditions;

C(x, 0) = 0,

C(0, t) = C0,

∂C

∂x

∣∣∣∣
x→∞

= 0, ∀t,

the solution to (19) is given by (20).

C(x, t) =
C0

2

{
erfc

(
x− v̄t√
4Dxt

)
+ exp

(
xv̄

Dx

)
erfc

(
x + v̄t√
4Dxt

)}
, (20)
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where erfc(z) = 2√
π

∫∞
z

e−ξ2
dξ is a complimentary error function. We use the

above analytical solution (20) to generate a series of breakthrough curve of con-
servative tracer concentration at any time t and in the column. In this case, a
column is assume to be 1-m long, and cross-sectional area is 1 cm2. Soil’s porosity
and longitudinal dispersivity are 0.35 and 10.0 cm, respectively. Initial concentra-
tion C0 and average linear pore velocity (v̄) are 100.0 mg L−1 (or ppm) and 0.05
cm min−1, respectively.

Fig. 4 illustrates the conservative tracer breakthrough curves at times 10,
50, and 100 minutes, and they are compared with solution obtained from our
finite-element code (CN-FEG). It appears that our finite-element code capture the
groundwater flow and (conservative) contaminant transport processes relatively
reasonable.

Distance, x (cm)

0 20 40 60 80 100

C
 (

m
g
 L

-1
)

0

20

40

60

80

100

t = 50 min
t = 100 min

t = 10 min

Analytical Solution

CN-FEG ( t = 10 min)

Figure 4: Numerical and analytical solutions of transient contaminant transport
for non-reactive compound.

In addition to the comparison between analytical solution and results from
finite-element code, we conduct some numerical experiments to evaluate the order
or rate of convergence of a scheme that we developed. Three types of errors (ε)
we investigated are maximum error, L2-norm, and H1-norm. If we let N denotes
the number of elements, as N increases, rate of convergence defined by

Rate of Convergence =
log(ε1/ε2)
log(N2/N1)

should logically increase. L2- and H1-norms are calculated using the following
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expressions;

L2−norm =

√∫

Ω

(uexact − uapprox)
2
dx, and

H1−norm =

√∫

Ω

[
(uexact − uapprox)

2 + (ux,exact − ux,approx)
2
]
dx,

where u and ux represent solution (i.e. contaminant concentration) and first
derivative of the solution, respectively. Note that uexact and uapprox are results
from analytical solution and finite-element method, respectively. Tables 1 to 4
show rates of convergence from numerical experiments we conducted using our
code. As one may clearly see that, when Crank-Nicolson scheme is used, rate of
convergence improves considerably (see Tables 1 and 2). It should be noted that,
for a linear basis function, Crank-Nicolson scheme should theoretically yield a rate
of convergence of 2.0. One may observe that an increase of number of time steps
Nt (as an alternative to the use of Crank-Nicolson scheme) result in an improve-
ment of rate of convergence as well (see Tables 3 and 4). However, increase of time
steps (or use smaller ∆t) results in a longer execution time and, thus, becomes
numerically more expensive.

Table 1: Error and rates of convergence for fully-implicit scheme (ω = 1) with
Nt = N .

N Nt Max Error Rate L2 Rate H1 Rate
5 5 6.483822 51.44111 51.49512
10 10 3.318101 0.966486 24.09733 1.094049 24.13467 1.093328
20 20 1.80304 0.923207 12.22565 1.036505 12.24853 1.035914
40 40 1.174673 0.821528 6.465483 0.997364 6.479117 0.996856

Table 2: Error and rates of convergence for Crank-Nicolson scheme (ω = 0.5)
with Nt = N .

N Nt Max Error Rate L2 Rate H1 Rate
5 5 6.389398 45.3047 45.36046
10 10 2.285886 1.482926 14.93751 1.600721 14.97422 1.598954
20 20 0.680547 1.615456 4.551956 1.657551 4.580811 1.65388
40 40 0.57942 1.154333 1.559113 1.620288 1.586432 1.612526
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Table 3: Error and rates of convergence for fully-implicit scheme (ω = 1) with
Nt = N2.

N Nt Max Error Rate L2 Rate H1 Rate
5 25 6.514527 45.89261 45.94343
10 100 2.168685 1.58684 15.10535 1.603202 15.14041 1.601454
20 400 0.677542 1.632639 4.604175 1.658624 4.632259 1.655035
40 1600 0.59066 1.15442 1.584241 1.618799 1.610941 1.611294

Table 4: Error and rates of convergence for Crank-Nicolson scheme (ω = 0.5)
with Nt = N2.

N Nt Max Error Rate L2 Rate H1 Rate
5 25 6.758288 46.60389 46.65887
10 100 2.346071 1.526411 15.32816 1.604266 15.36438 1.602562
20 400 0.701078 1.634505 4.645745 1.663234 4.67408 1.716835
40 1600 0.575224 1.184821 1.573994 1.629316 1.601013 1.545697

4.2 Case II: Steady-State DNAPL Dissolution

In this example, we will demonstrate the code’s capability of simulating steady-
state DNAPL dissolution from a contaminated soil’s column where NAPL satura-
tion Sn does not change significantly with time and, hence, the dissolution does not
affect the permeability field (nor the soil’s porosity, mass transfer coefficient, and
groundwater velocity). Although these assumptions are not realistic, they must be
made so that the analytical solution can be derived. With all these assumptions
mentioned above, the advection-dispersion-dissolution of entrapped DNAPL in a
soil column (1-D) is reduced to

−v̄
dC

dx
+ Dx

d2C

dx2
− kLa (C − Cs) = 0. (21)

With the following boundary conditions

C(x = 0) = 0,

dC

dx

∣∣∣∣
x→∞

= 0,

a solution to (21) can be derived and it is shown in (22);

C(x)
Cs

= 1− exp

[(
xv̄

2Dx

) (
1−

√
1 +

4DxkLa

v̄2

)]
, (22)
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where C(x) is a steady-state dissolved concentration of DNAPL constituent at
a distance x along the column. The above equation is used to verify our finite-
element code for simulation NAPL dissolution. A dissolution simulation is con-
ducted in a 100-cm long (with cross-sectional area of 1.0 cm2) hypothetical soil
column that has a porosity of 0.4, and contains tetrachloroethene or PCE (with
aqueous solubility Cs = 200.0 mg L−1 at 25 ◦C) with Sn = 0.25. Clean water is
injected into the column at x = 0 at a steady flow rate of 0.1 cm3 min−1. Mass
transfer coefficient kLa and soil’s longitudinal dispersivity (αL) are 0.01 min−1 and
0.01 cm, respectively. The dispersion coefficient (Dx) is 0.001 cm2 sec−1.

Fig. 5 illustrates the steady-state PCE concentration profile as a function of
distance x calculated from analytical solution (22) and CN-FEG code. A solution
to steady-state PCE dissolution obtained from Crank-Nicolson Finite-Difference
Method is also presented in this figure. As expected, our finite-element solution
can simulate the dissolution of NAPL better than the solution based on finite-
difference method. This is could be due to the fact that finite-difference method
produces more numerical dispersion error [9].
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Figure 5: Numerical and analytical solutions of steady-state PCE dissolution in
1-D column test problem.

5 Conclusions

This paper presents a development of a one-dimensional Crank-Nicolson Finite-
Element Galerkin solution to groundwater flow, and advection-dispersion-dissolution
equations. We demonstrated the program’s capability of simulating the transport
of conservative tracer and steady-state DNAPL dissolution by comparing with
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the available analytical solutions. Rate of convergence for CN-FEG is close to a
theoretical value (2.0) and the solution from finite-element method is better than
finite-difference solution due to the reduction of numerical dispersion. A valida-
tion of the code using experimental data will be presented in second paper of this
series [7].
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Notations

English and Greek symbols appeared in this paper are listed below. The unit or
dimension of the quantity is given in parenthesis. The symbol M, L, and T denote
mass, length and time, respectively.

C Solute concentration in the aqueous phase (ML−3).
Cs Aqueous solubility of the DNAPL constituent (ML−3).
Dm Molecular diffusion coefficient in aqueous phase (L2T−1).
D Hydrodynamic dispersion coefficient tensor (L2T−1).
h Hydraulic head (L).
kLa Lumped mass transfer coefficient (T−1).
K Hydraulic conductivity tensor (LT−1).
N Number of elements.
Nt Number of time steps.
Se Effective water saturation (−).
Sn DNAPL saturation (−).
Sr,w Residual water saturation (−).
Ss Specific storage of a confined aquifer (L−1).
t Time (T).
v̄ Average linear pore velocity of groundwater (LT−1).
v̄ Average linear pore velocity vector (LT−1).
xi Cartesian coordinate (L).
αL Longitudinal dispersivity (L).
γ Relative permeability exponent [−].
ε Error.
φ Effective porosity of the geologic media (−).
ω Parameter for switching from fully-implicit to Crank-Nicolson formulation

or vice versa [−].
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