Online ISSN 1686-0209

Strong Convergence Theorems for a Finite Family of Uniformly L-Lipschitzian Mappings in a Banach Space

Xiufang Liu
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China
e-mail : liuxiu31@126.com

Abstract

The purpose of this work is to prove strong convergence theorems for a finite family of uniformly L-Lipschitzian mappings in a Banach space.

Keywords : Fixed point; Uniformly L-Lipschitzian mapping; Strong convergence; Banach space.
2010 Mathematics Subject Classification : 47H09; 47H10; 46 B 25.

1 Introduction and Preliminaries

Throughout this paper, we assume that E is a real Banach space, E^{*} is the dual space of E, K is a nonempty closed convex subset of E, T is a self-mapping of K and $J: E \rightarrow 2^{E^{*}}$ is the normalized duality mapping defined by

$$
J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2},\|f\|=\|x\|\right\}, \forall x \in E,
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between E and E^{*}. The single-valued normalized duality mapping is denoted by j. Recall that a mapping T is said to be uniformly L-Lipschitzian if there exists $L>0$ such that, for any $x, y \in$ $K,\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|, \forall n \geq 1$. A mapping T is said to be asymptotically nonexpansive if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $k_{n} \rightarrow 1$ such that for any given $x, y \in K,\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|, \forall n \geq 1$. A mapping T is said to be asymptotically pseudo-contractive if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with
$k_{n} \rightarrow 1$ such that for any $x, y \in K$, there exists $j(x-y) \in J(x-y)$ such that $\left\langle T^{n} x-T^{n} y, j(x-y)\right\rangle \leq k_{n}\|x-y\|^{2}, \forall n \geq 1$.

Let C be a nonempty closed convex subset of a real Hilbert space H , and T : $C \rightarrow C$ be a mapping. T is said to be a k-strict pseudo-contraction if there exists a $k \in[0,1)$ such that $\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}, \forall x, y \in C$. A mapping $T: C \rightarrow C$ is said to be an asymptotically k-strict pseudo-contraction mapping with sequence $\left\{k_{n}\right\}$ if there exists a constant $k \in[0,1)$ and a sequence $\left\{k_{n}\right\}$ in $[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that $\left\|T^{n} x-T^{n} y\right\|^{2} \leq k_{n}\|x-y\|^{2}+$ $k\left\|x-T^{n} x-\left(y-T^{n} y\right)\right\|^{2}$ for all $x, y \in C$ and $\forall n \geq 1$.

Remark 1.1.

(1) It is easy to see that if T is an asymptotically nonexpansive mapping, then T is a uniformly L-Lipschitzian mapping, where $L=\sup _{n \geq 1} k_{n}$.
(2) (Kim and Xu [1]) Every asymptotically k-strict pseudo-contractive mapping with sequence $\left\{k_{n}\right\}$ is a uniformly L-Lipschitzian mapping with $L=$ $\sup \left\{\frac{k+\sqrt{(1-k) k_{n}}}{1+k}: \forall n \geq 1\right\}$.
The normal Mann's iterative process [2] generates a sequence $\left\{x_{n}\right\}$ in the following manner: for any $x_{1} \in K$,

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, \forall n \geq 1 \tag{1.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ is sequence in $(0,1)$. If T is a nonexpansive mapping with a fixed point and the control sequence $\left\{\alpha_{n}\right\}$ is chosen so that $\Sigma_{n=1}^{\infty} \alpha_{n}\left(1-\alpha_{n}\right)=\infty$, then the sequence $\left\{x_{n}\right\}$ generated by the normal Mann's iterative process (1.1) converges weakly to a fixed point of T (this is also valid in a uniformly convex Banach space with the Fréchet differentiable norm [3]). In an infinite-dimensional Hilbert space, the normal Mann's iteration algorithm has only weak convergence, in general, even for nonexpansive mapping [4].

Marino and $\mathrm{Xu}[5]$ studied the k-strict pseudo-contractions and gave a weak convergence theorem in the framework of Hilbert spaces. That is, they extended the results of Reich [3] from nonexpansive mapping to k-strict pseudo-contractions.

In order to get a strong convergence result, one has to modify the normal Mann iteration algorithm. Some attempts have been made and several important results have been reported (see,e.g., [5-9]). Recently, Acedo and Xu [10] studied the following cyclic algorithm. Let $x_{0} \in C$ and $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1),\left\{x_{n}\right\}$ is generated in the following way:

$$
\begin{aligned}
x_{1} & =\alpha_{0} x_{0}+\left(1-\alpha_{0}\right) T_{0} x_{0} \\
x_{2} & =\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) T_{1} x_{1} \\
& \vdots \\
x_{N} & =\alpha_{N-1} x_{N-1}+\left(1-\alpha_{N-1}\right) T_{N-1} x_{N-1} \\
x_{N+1} & =\alpha_{N} x_{N}+\left(1-\alpha_{N}\right) T_{0} x_{N},
\end{aligned}
$$

In general, x_{n+1} is defined by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{[n]} x_{n}, \forall n \geq 0 \tag{1.2}
\end{equation*}
$$

where $T_{[n]}=T_{i}$, with $i=n(\bmod N), 0 \leq i \leq N-1$. They also proved weak and strong convergence theorems for k-strictly pseudo-contractive mappings in Hilbert spaces by cyclic algorithm (1.2).

Very recently, Qin and Cho [11] studied the following cyclic algorithm. Let $x_{0} \in C$ and $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1),\left\{x_{n}\right\}$ is generated by the following way:

$$
\begin{aligned}
x_{1} & =\alpha_{0} x_{0}+\left(1-\alpha_{0}\right) T_{1} x_{0}, \\
x_{2} & =\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) T_{2} x_{1}, \\
& \vdots \\
x_{N} & =\alpha_{N-1} x_{N-1}+\left(1-\alpha_{N-1}\right) T_{N} x_{N-1}, \\
x_{N+1} & =\alpha_{N} x_{N}+\left(1-\alpha_{N}\right) T_{1}^{2} x_{N}, \\
& \vdots \\
x_{2 N} & =\alpha_{2 N-1} x_{2 N-1}+\left(1-\alpha_{2 N-1}\right) T_{N}^{2} x_{2 N-1}, \\
x_{2 N+1} & =\alpha_{2 N} x_{2 N}+\left(1-\alpha_{2 N}\right) T_{1}^{3} x_{2 N},
\end{aligned}
$$

We can rewrite the above table in the following compact form:

$$
\begin{equation*}
x_{n}=\alpha_{n-1} x_{n-1}+\left(1-\alpha_{n-1}\right) T_{i(n)}^{h(n)} x_{n-1}, \forall n \geq 1 \tag{1.3}
\end{equation*}
$$

where $i=i(n) \in\{1,2, \ldots, N\}, h=h(n) \geq 1$ is a positive integer and $h(n) \rightarrow \infty$ as $n \rightarrow \infty, n=(h-1) N+i$. They proved weak and strong convergence theorems for asymptotically k-strictly pseudo-contractive mappings in Hilbert spaces by the cyclic algorithm (1.3).

In this paper, motivated and inspired by Acedo and Xu [10], Qin and Cho [11], we introduce the following algorithm for uniformly L-Lipschitzian mapping. Let $x_{1} \in K$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be sequences in $(0,1)$. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is generated in the following way:

$$
\begin{aligned}
x_{2} & =\left(1-\alpha_{1}\right) x_{1}+\alpha_{1} T_{1} y_{1}, \\
y_{1} & =\left(1-\beta_{1}\right) x_{1}+\beta_{1} T_{1} x_{1}, \\
x_{3} & =\left(1-\alpha_{2}\right) x_{2}+\alpha_{2} T_{2} y_{2}, \\
y_{2} & =\left(1-\beta_{2}\right) x_{2}+\beta_{2} T_{2} x_{2}, \\
& \vdots \\
x_{N+1} & =\left(1-\alpha_{N}\right) x_{N}+\alpha_{N} T_{N} y_{N}, \\
y_{N} & =\left(1-\beta_{N}\right) x_{N}+\beta_{N} T_{N} x_{N},
\end{aligned}
$$

$$
\begin{aligned}
& x_{N+2}=\left(1-\alpha_{N+1}\right) x_{N+1}+\alpha_{N+1} T_{1}^{2} y_{N+1}, \\
& y_{N+1}=\left(1-\beta_{N+1}\right) x_{N+1}+\beta_{N+1} T_{1}^{2} x_{N+1},
\end{aligned}
$$

We can rewrite the above table in the following compact form:

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{i(n)}^{h(n)} y_{n}, \tag{1.4}\\
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T_{i(n)}^{h(n)} x_{n}
\end{array}\right.
$$

where $i=i(n) \in\{1,2, \ldots, N\}, h=h(n) \geq 1$ is a positive integer and $h(n) \rightarrow \infty$ as $n \rightarrow \infty, n=(h-1) N+i$.

In this paper, algorithm (1.4) in the framework of Banach spaces, we prove two strong convergence theorems for the finite family of uniformly L-Lipschitzian mappings.

In order to prove our main results, we need the following lemmas.
Lemma 1.2 (Chang [12]). Let E be a real Banach space and $J: E \rightarrow 2^{E^{*}}$ be the normalized duality mapping. Then, for any $x, y \in E$,

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \forall j(x+y) \in J(x+y) .
$$

Lemma 1.3 (Moore and Nnoli [13]). Let $\left\{\theta_{n}\right\}$ be a sequence of nonnegative real numbers and $\left\{\lambda_{n}\right\}$ be a real sequence satisfying the following conditions:

$$
0 \leq \lambda_{n} \leq 1, \sum_{n=0}^{\infty} \lambda_{n}=\infty .
$$

If there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ such that $\theta_{n+1}^{2} \leq$ $\theta_{n}^{2}-\lambda_{n} \phi\left(\theta_{n+1}\right)+\sigma_{n}, \forall n \geq n_{0}$, where n_{0} is some nonnegative integer and $\left\{\sigma_{n}\right\}$ is a sequence of nonnegative numbers such that $\sigma_{n}=\circ\left(\lambda_{n}\right)$, then $\theta_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 1.4 ([14]). Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two nonnegative real sequences satisfying the following condition:

$$
a_{n+1} \leq\left(1+\lambda_{n}\right) a_{n}+b_{n}, \forall n \geq n_{0},
$$

where $\left\{\lambda_{n}\right\}$ is a sequence in $(0,1)$ with $\sum_{n=0}^{\infty} \lambda_{n}<\infty$. If $\sum_{n=0}^{\infty} b_{n}<\infty$, then $\lim _{n \rightarrow \infty} a_{n}$ exists.

2 Main Results

Theorem 2.1. Let K be a nonempty closed convex subset of a real Banach space E. Let $N \geq 1$ be an integer,for each $1 \leq i \leq N, T_{i}: K \rightarrow K$ be a uniformly L_{i}-Lipschitzian for $L_{i}>0$ and $L=\max \left\{L_{i}: 1 \leq i \leq N\right\}$. Assume that the
common fixed point set $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and x^{*} be a point in $\bigcap_{i=1}^{N} F\left(T_{i}\right)$. Let $\left\{k_{h(n)}\right\} \subset[1, \infty)$ be a sequence with $k_{h(n)} \rightarrow 1$. For any $x_{1} \in K$, let $\left\{x_{n}\right\}$ be the sequence generated by the cyclic algorithm (1.4). Let $\left\{\alpha_{n}\right\}$ be a sequence in $\left[0, \frac{1}{2}\right]$ and $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ satisfying the following conditions:
(a1) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(a2) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(a3) $\sum_{n=1}^{\infty} \beta_{n}<\infty$;
(a4) $\sum_{n=1}^{\infty} \alpha_{n}\left(k_{h(n)}-1\right)<\infty$.
If there exists a strict increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ such that

$$
\left\langle T_{i(n)}^{h(n)}-x^{*}, j\left(x-x^{*}\right)\right\rangle \leq k_{h(n)}\left\|x-x^{*}\right\|^{2}-\phi\left(\left\|x-x^{*}\right\|\right)
$$

for all $j\left(x-x^{*}\right) \in J\left(x-x^{*}\right)$ and $x \in K, i=i(n)=1,2, \ldots, N$, then $\left\{x_{n}\right\}$ converges strongly to x^{*}.
Proof. First, we prove that the sequence $\left\{x_{n}\right\}$ defined by (1.4) is bounded. In fact, it follows from (1.4) and Lemma 1.2 that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T_{i(n)}^{h(n)} y_{n}-x^{*}\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle T_{i(n)}^{h(n)} y_{n}-x^{*}, j\left(x_{n+1}-x^{*}\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\{k_{h(n)}\left\|x_{n+1}-x^{*}\right\|^{2}-\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)\right\} \\
& +2 \alpha_{n} L\left\|y_{n}-x_{n+1}\right\|\left\|x_{n+1}-x^{*}\right\| . \tag{2.1}
\end{align*}
$$

Note that

$$
\begin{align*}
\left\|x_{n+1}-y_{n}\right\| & =\left\|\left(1-\alpha_{n}\right)\left(x_{n}-y_{n}\right)+\alpha_{n}\left(T_{i(n)}^{h(n)} y_{n}-y_{n}\right)\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}\left\|T_{i(n)}^{h(n)} y_{n}-x^{*}+x^{*}-y_{n}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}(1+L)\left\|x^{*}-y_{n}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}(1+L)\left(\left\|x_{n}-y_{n}\right\|+\left\|x_{n}-x^{*}\right\|\right) \\
& =\left(1+L \alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n}(1+L)\left\|x_{n}-x^{*}\right\| \\
& =\left(1+L \alpha_{n}\right) \beta_{n}\left\|x_{n}-T_{i(n)}^{h(n)} x_{n}\right\|+\alpha_{n}(1+L)\left\|x_{n}-x^{*}\right\| \\
& \leq\left(1+L \alpha_{n}\right) \beta_{n}(1+L)\left\|x_{n}-x^{*}\right\|+\alpha_{n}(1+L)\left\|x_{n}-x^{*}\right\| \\
& =c_{n}\left\|x_{n}-x^{*}\right\|, \tag{2.2}
\end{align*}
$$

where $c_{n}=(1+L)\left\{\left(1+L \alpha_{n}\right) \beta_{n}+\alpha_{n}\right\}$. Substituting (2.2) into (2.1), we have

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\{k_{h(n)}\left\|x_{n+1}-x^{*}\right\|^{2}-\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)\right\} \\
& +2 \alpha_{n} L c_{n}\left\|x_{n}-x^{*}\right\|\left\|x_{n+1}-x^{*}\right\| \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\{k_{h(n)}\left\|x_{n+1}-x^{*}\right\|^{2}-\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)\right\} \\
& +\alpha_{n} L c_{n}\left(\left\|x_{n}-x^{*}\right\|^{2}+\left\|x_{n+1}-x^{*}\right\|^{2}\right) \tag{2.3}
\end{align*}
$$

and hence

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \frac{A_{n}}{B_{n}}\left\|x_{n}-x^{*}\right\|^{2}-\frac{2 \alpha_{n} \phi\left(\left\|x_{n+1}-x^{*}\right\|\right)}{B_{n}} \\
= & \left\{1+\frac{2 \alpha_{n}\left(k_{h(n)}-1\right)+2 L c_{n} \alpha_{n}+\alpha_{n}^{2}}{B_{n}}\right\}\left\|x_{n}-x^{*}\right\|^{2} \\
& -\frac{2 \alpha_{n} \phi\left(\left\|x_{n+1}-x^{*}\right\|\right)}{B_{n}} \tag{2.4}
\end{align*}
$$

where $A_{n}=1-2 \alpha_{n}+\alpha_{n}^{2}+\alpha_{n} L c_{n}, B_{n}=1-\left(2 \alpha_{n} k_{h(n)}+\alpha_{n} L c_{n}\right)$.
Since $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, there exists a positive integer n_{0} such that $\frac{1}{2}<B_{n} \leq 1$ for all $n \geq n_{0}$. Therefore, it follows from (2.4) that

$$
\begin{gather*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq\left\{1+2\left[2 \alpha_{n}\left(k_{h(n)}-1\right)+2 L c_{n} \alpha_{n}+\alpha_{n}^{2}\right]\right\}\left\|x_{n}-x^{*}\right\|^{2} \\
-2 \alpha_{n} \phi\left(\left\|x_{n+1}-x^{*}\right\|\right), \forall n \geq n_{0} \tag{2.5}
\end{gather*}
$$

and so

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq\left\{1+2\left[2 \alpha_{n}\left(k_{h(n)}-1\right)+2 L c_{n} \alpha_{n}+\alpha_{n}^{2}\right]\right\}\left\|x_{n}-x^{*}\right\|^{2}, \forall n \geq n_{0} \tag{2.6}
\end{equation*}
$$

By the conditions $(a 1)-(a 3)$, we know that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \alpha_{n}<\infty \tag{2.7}
\end{equation*}
$$

It follows from the condition $(a 2),(a 4)$ and (2.7) that

$$
2 \sum_{n=1}^{\infty}\left[2 \alpha_{n}\left(k_{h(n)}-1\right)+2 L c_{n} \alpha_{n}+\alpha_{n}^{2}\right]<\infty
$$

So, we obtain by Lemma1.4 that $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ exists. Therefore, there exists a positive constant M such that $\left\|x_{n}-x^{*}\right\|^{2} \leq M$.

Secondly, we prove that $x_{n} \rightarrow x^{*}$. Taking $\theta_{n}=\left\|x_{n}-x^{*}\right\|, \lambda_{n}=2 \alpha_{n}$ and $\sigma_{n}=2\left[2 \alpha_{n}\left(k_{h(n)}-1\right)+2 L c_{n} \alpha_{n}+\alpha_{n}^{2}\right] M$, by the conditions (a1) - $(a 3)$ and Lemma 1.3, we have $\left\|x_{n}-x^{*}\right\| \rightarrow 0$, that is, $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. This completes the proof.

The following theorem can be obtained from Theorem 2.1 by taking $\beta_{n}=0, \forall n$.
Theorem 2.2. Let K be a nonempty closed convex subset of a real Banach space E. Let $N \geq 1$ be an integer, for each $1 \leq i \leq N, T_{i}: K \rightarrow K$ be a uniformly L_{i}-Lipschitzian for $L_{i}>0$ and $L=\max \left\{L_{i}: 1 \leq i \leq N\right\}$. Assume that the common fixed point set $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and x^{*} be a point in $\bigcap_{i=1}^{N} F\left(T_{i}\right)$. Let $\left\{k_{h(n)}\right\} \subset[1, \infty)$ be a sequence with $k_{h(n)} \rightarrow 1$. For any $x_{1} \in K$, let $\left\{x_{n}\right\}$ be the sequence generated by the cyclic algorithm:

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{i(n)}^{h(n)} x_{n}
$$

Let $\left\{\alpha_{n}\right\}$ be a sequence in $\left[0, \frac{1}{2}\right]$ satisfying the following conditions:
(b1) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(b2) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(b3) $\sum_{n=1}^{\infty} \alpha_{n}\left(k_{h(n)}-1\right)<\infty$.
If there exists a strict increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ such that

$$
\left\langle T_{i(n)}^{h(n)}-x^{*}, j\left(x-x^{*}\right)\right\rangle \leq k_{h(n)}\left\|x-x^{*}\right\|^{2}-\phi\left(\left\|x-x^{*}\right\|\right)
$$

for all $j\left(x-x^{*}\right) \in J\left(x-x^{*}\right)$ and $x \in K, i=1,2, \ldots, N$, then $\left\{x_{n}\right\}$ converges strongly to x^{*}.

Remark 2.3.

(1) Theorem 2.1 extends and improves ([15, Theorem 3.10]) for a two-step implicit iteration scheme of two parametric sequences (without error terms) in the setting of an arbitrary real Banach space.
(2) Theorem 2.2 provides strong convergence analogue of Theorem 2.1 in [11] for a two-step implicit iteration scheme of one parametric sequence in a real Banach space.
(3) For strong convergence of an implicit scheme of one-step to a common fixed point of a finite family of uniformly continuous mappings on a uniformly convex Banach space, we refer the reader to [16].

References

[1] T.H. Kim, H.K. Xu, Strong convergence of modified Mann iteration method for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 68 (2008) 2828-2836.
[2] W.R. Mann, Mean walue methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
[3] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979) 274-276.
[4] A. Genel, J. Lindenstrass, An example concerning fixed points, Israel J. Math. 22 (1975) 81-86.
[5] G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert space, J. Math. Anal. Appl. 329 (2007) 336-346.
[6] B. Halpern, Fixed pointS of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957-961.
[7] T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60.
[8] P.L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Ser. A-B, Paris 284 (1977) 1357-1359.
[9] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372-379.
[10] G.L. Acedo, H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007) 2258-2271.
[11] X. Qin, Y.J. Cho, S.M. Kang, M.J. Shang, A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009) 1902-1911.
[12] S.S. Chang, On Chidume's open questions and approximation solutions of multi-valued strongly accretive mapping equation in Banach spaces, J. Math. Anal. Appl. 216 (1997) 94-111.
[13] C. Moore, B.V. Nnoli, Iterative solution of nonlinear equations involving setvalued uniformly accretive operators, Comput. Math. Appl. 42 (2001) 131140.
[14] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (2) (1993) 301-308.
[15] H. Fukhar-ud-din, A.R. Khan, Convergence of implicit iterates with errors for mappings with unbounded domain in Banach spaces, Int. J. Math. Math. Soc. 10 (2005) 1643-1653.
[16] H. Fukhar-ud-din, A.R. Khan, D. O'Regan, R.P. Agarwal, An implicit iteration scheme with errors for a finite family of uniformly continuous mappings, Fun. Diff. Equ. 14 (2009) 245-256.
(Received 21 February 2010)
(Accepted 20 May 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

