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Abstract : We prove the Hyers-Ulam-Rassias stability of homomorphism and
derivations on normed Lie triple systems for the following generalized Cauchy-
Jensen additive mapping:

s ap Aty 3 y
rof< 2371 b Zylyﬂ> :st(Ij)+th(yj)
Jj=1 Jj=1

To

and generalize some results concerning this functional equation.
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1 Introduction

The stability problem of functional equations originated from a question of
Ulam [1], posed in 1940, concerning the stability of group homomorphism. In 1941,
Hyers [2] gave a partial affirmative answer to the question of Ulam in the context of
Banach spaces. In 1950, a generalized version of Hyers’ theorem for approximate
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additive mappings was given by Aoki [3]. In 1978, Rassias [4] extended the theorem
of Hyers by considering the unbounded cauchy difference inequality

[z +y) = f(2) = FI < (=" + [[yl") (e =0, pe]0,1)).

Rassias [4] was the first who proved the stability of the linear mappings between
Banach spaces. In 1990, Rassias [5] during the 27th international symposium on
functional equations asked the question whether such a theorem can also be proved
for p > 1. In 1991, Gajda [6] following the same approach as in Rassias [4] gave
an affirmative solution to this question for p > 1. It was proved by Gajda [6],
as well as by Rassias and Semrl [7] that one cannot prove Rassias’ type theorem
when p = 1. Rassias Theorem for the stability of the linear mappings between
Banach spaces provided some influence for the development of the concept of
generalized Hyers-Ulam stability, a fact which rekindled interest in the subject
of stability of functional equations. This concept is known today as generalized
Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations; cf.
[8-11]. Several mathematicians worldwide followed the spirit of the approach in
the paper of Rassias [4] for the unbounded Cauchy difference obtained various
results.

During the last decades several stability problems of functional equations have
been investigated by a number of mathematicians; cf. [12-15] and references
therein.

One of the interesting functional equations is the following Cauchy-Jensen
additive mapping

s+t 5 -
rof < G T T y3> - SZf(xj)—i—th(yj)v
=1 =1

To

where f is a mapping between linear spaces. It is easy to see that a function
f satisfies the above Cauchy-Jensen additive type equation if and only if it is
additive.

Ternary algebraic operations were considered in 19th century by several math-
ematicians such as Cayley [16] how introduced the notion of cubic matrix which in
turn was generalized by Kapranov et al. [17] in 1990. There are some applications,
although still hypothetical, in the fractional quantum Hall effect, the nonstandard
statistics, supersymmetric theory, and Yang-Baxter equation. The comments on
physical applications of ternary structures can be found in Refs. [18-25].

A normed (Banach) Lie triple system is a normed (Banach) space (A; ||.||) with
a trilinear mapping (z,y, 2) — [x,y, z] from A x Ax A to A satisfying the following
axioms

[‘Tﬂ Y, Z] = _[yv Z, Z],
[z, 2] + [y, 2, 2] + [z, 2,9] = 0
|[u7 v, [I’ Y, Z]] = [[ua v, ZE], Y, Z] + [I; [u, v, y], Z] + [{E, Y, [u, v, Z]],

[y, 2 < M=l llwll=1l,
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for all w,v,z,y,z € A. The concept of lie triple system was first introduced by
Lister [26] (see also [27]).

Let A and B be normed Lie triple systems. A C-linear mapping H : A — B is
said to be a homomorphism if H([z,y, z]) = [H(z), H(y), H(2)] for all z,y,z € A.
A C-linear mapping A — B is called a derivation if D([z,y, z]) = [D(x),y, 2] +
[z, D(y), 2] + [z,y, D(z)] for all z,y,z € A. The third identity asserts that the
mappings D, , : © — [u, v, z] are (inner)derivation of A.

Clearly, every Lie algebra is at the same time a Lie triple system via [z, y, 2] :=
[[z,y], 2], and our definition of a homomorphism (derivation) coincides with that of
prehomomorphism (prederivation) on a Lie algebra [28]. Also, if U is an involutive
automorphism of a Lie algebra (L, [,]), then the eigenspace E_;(U) is a Lie triple
system. Lie triple systems are important since they give the structure of the
tangent space of a symmetric space, see [29]. Also some application of Lie triple
systems can be found in Nambuos approach by modifying the Heisenberg equation
of motion [30].

In this paper, we have analyzed the Hyers-Ulam-Rassias stability of homomor-
phism and derivation in Lie triple systems associated with the following generalized
Cauchy-Jensen additive mapping

sSSP a4+t Ly - -
Tof( =1 Tt yﬂ) =s> flx)+t>_ fy;),
=1 =1

To

and then apply our results to study stability of homomorphisms and derivations
associated to Cauchy-Jensen additive mapping in normed Lie triple systems, which
can be regarded as ternary structures. The reader is referred to [31-33] for some
other related results.

Throughout this paper, suppose that A is normed Lie triple system with norm
I-lla and that B is a Banach Lie triple system with norm ||.||g.

2 Stability of Homomorphisms in Normed Lie
Triple Systems

In this section, we prove the stability of homomorphisms in normed Lie triple
systems associated with the Cauchy-Jensen additive mapping. For given mapping
f:+A:— B and given subset E of C, we define

J)xf(‘rla"'axpuyla"wyd)

sSSP Az +t5 My L d
— TOf ( j=1 J+ Z]fl y]) _SZ)\f(J:])_tZ)\f(yj)g
j=1 j=1

To

foral \e T={z2€C:|z] =1} and all z1,...,2p,¥y1,...,ya € A. One can easily
show that a mapping f : A — B satisfies

Inflze, .. zp,y1,..,ya) =0
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forall A€ T and all 1,...,2p,%1,...,y4 € A if and only if

flpx +Ay) = pf(z) + A f(y)

for all u, A € T and all z,y € A.

Theorem 2.1. Let 0 be a positive real number, let 1 < 3 and d > 2. Suppose
f:+ A— B be a mapping with f(0) =0 such that

P d
[ Inf @1, 2t ya)lls < 01> llaglla+ > llyilla (2.1)
j=1 j=1
and
£ (s, 2]) = [f(2), £ (), F ()]l < O[5 + Nyl +1211%), (2:2)

for all X € T and all x,y,z € A. Then there exists a unique homomorphism
H : A— B such that

17) ~ H@)lls < 7=l (23)
for all x € A.
Proof. First, we assume that ||0]|" = co for r < 0. Let A = 1,21 = -+ =z, =
0,1 =--=yqg=xand t =1in (2.1) we get
£ (dz) — df (z)[[s < db]|x||a (2.4)

for all z € A. If we replace x by d"z in (2.4) and divide both sides of (2.4) to
A"t we get
1
Hdn+l

n 1 n r—1)n T
F(@" ) = —f(d")lls < A 1A

for all z € A and all nonnegative integers n. Therefore, one can use induction to
show that

n—1
ld" f(d"z) —d ™ f(d™z)|g <6 ) d" V|| (2.5)
k=m

for all nonnegative n > m and all x € A. It follows from the convergence of
the series (2.5) that the sequence {%} is a Cauchy sequence. Due to the
completeness of B, this sequence is convergent. Now, by define the mapping H :
A — B by

H(z):= lim f(d"z)

n—oo dn
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for all x € A. Set m = 0 in (2.5) and let n tend to infinity to get (2.3). It follows
from (2.1) that

To

sSSP Az At Ny - -
TOH( Zj—l J Zj_l y])—sZ)\H(xj) —tz)\H(yj)HB
j=1 Jj=1

D . d . D d
— lim inHrof(dnstl A%Tttzﬂ"l ij) — S OAf(dh ) — £ S AF(dyy)
=1 =

A R r
< Jim S 0(3 llslla + D luslla) =0,
Jj=1 Jj=1

forall A € T and x1,...,2p,¥1,...,yd € A. Hence

DYAPEIERD DPI S d
T0H< o S;AH(xj)—i-tj;)\H(yJ)
forall A € T and z1,...,2p,91,.-.,%4 € A. So HAzx + py) = AH(z) + pH(y)
for all A,u € T and all z,y € A, then H ia an additive mapping. Obviously,
H(0z) = 0 = 0H(x). Next, let 4 € C(x # 0), and let M be a natural number
greater then |u|. By an easily geometric argument, one can coincide that there
exist two number A1, Ao € T such that 2% = A1 + A2. By additivity and also

definition of H we get H(3z) = $H () for all z € A. Therefore

H(uz) = H (%2%33) = MH (%2%33)
= %H()qx + Xox) = %(H()qw) + H(A\2x))
M

= 2O+ M) H () = 52 H () = i (o),

for all € A, so that H is a C-linear mapping. It follows from (2.2) that

VE(lzyy, 2)) — [H (@), H(y), H(=)le
= tim [l g, ) — [, sy, @)

. d T T A
<0 lim = (llzlla + llylla + lI=lla) = 0

for all z,y,z € A. So, H([z,y,z]) = [H(x), H(y), H(z)] for all z,y, z € A.

Now we prove that H is the unique such additive mapping. Assume that there
exists another one, denote by H' : A — B. Then there exist a constant ¢; and
r' (r' < 1) with

If(z) = H' ()| < exllzla-
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By the triangle inequality, (2.3) and above inequality we have
|H(x) — H'(z)|lg = d " "||[H(d"z) — H'(d"z)]s
S e e
S a1 L B
for n € N. By letting n — oo we get H(z) = H'(z) for any = € A. O

Example 2.2. Let L : A— A be a norm one homomorphism between normed Lie
triple systems, let f : A — A be defined by

_ L) zll<1
=1 5
letr =0 and 0 = 3. Then

lInf(xe, .. Tp Y1y ya)llBa <3 =10,

and
(2,9, 2]) = [f(2), f(y), f(2)]lls <2 <0,
for all A€ T and all x,y,z € A. Note also that f in not linear.
By the theorem 2.1 there is a homomorphism H given by H (x) = lim,,—, f(gnm) .
Further, H(0) = lim,,— fd(S) =0 and for x # 0 we have
ar 0
Hz) = tim 29— & )

since for sufficiently large n,||d™x| > 1. Thus H is identically zero and

do 3d

— <1< 2 -2

17@) - H@lls <1< - = 50
forallz € A and d > 2.

Theorem 2.3. Let 0 be a positive real number, let 7 > 3 and d > 2. Suppose
f:+ A— B be a mapping with f(0) =0 such that

14 d
j=1 j=1
and
I1f ([, y, 2]) = [f (@), f (), f(2)]ll8 < Ol|z[la + llylla + [[211a), (2.7)

for all X =1,i and all x,y,z € A. Assume that for each fized x € A the function
t — f(tzx) is continuous on R. Then there exists a unique homomorphism H :

A — B such that g
[f(z) — H(z)|[s < ml\xllﬁ (2.8)
for all x € A.
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Proof. Applying the same argument as in the proof of 2.1 one can deduce the
existence of a unique additive mapping H : A — B given by

H(z):= lim d"f(d ")

n—oo

satisfying the required inequalities. By the same reasoning as in the proof of the
theorem of [4], the additive mapping H is R-linear.

Letting 1 =z, 29 = -+ ,ap =y1 = -~ =yg=0and t = s = 1in (2.6), we
get

1f(Ax) = Af(z)lls < Ol

then it follows that || f(iz) —if (x)|| < 6]|z||a, for all z € A. Hence d"| f(d"ix) —
if(d"z) < %Hx”,ﬁ, for all n € N and all z € A. The right hand side tends to
Zero as n — 00, so that

H(iz) = lim d"f(;—f) - nlingoid"f(din) —iH(2),

for all z € A. For each € C, u = A1 4+ iA2(A1, A2 € R). Hence
H(px) = H(Max + idoz) = M H(z) + M2 H (i)
= pH(z),

thus H is C-linear. Note that inequality (2.6) implies that f(0) = 0. It follows
from (2.7) that

[H ([, y, 2])—[H (x), H(y), H(2)][ls

15 - (@) @) Gl

3n

= lim d°"

n—oo

. d r r T
<0 lim S (el + lolla + 121 = 0

for all z,y,z € A. So, H([x,y, 2]) = [H(z), H(y), H(2)] for all z,y,z € A.
The reminder of proof is similar to Theorem 2.1. O

3 Stability of Derivations on Normed Lie Triple
Systems

In this section, we prove the stability of derivations in normed Lie triple sys-
tems associated with the Cauchy-Jensen additive mapping.

Theorem 3.1. Let 0 and r,r', s, € RY withr' + s+t >3, and f : A— B be
a mapping such that

P d
Inf @, ap s ya)lle < O [T el T llvslla (3.1)
j=1 j=1
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and

£ ([2,y, 2]) = [f (@), 5, 2] = [, F (), 2) = [2,y, F(2)]lle < Ol -lylla =] (3.2)

for A =1,i and all z,y,2,21,...,%p,Y1,...,Yd € A. Assume that for each fized
x € A the function t — f(tx) is continuous on R. Then there exists a unique
derivation D : A — B such that

9(p+d)rg

2| (3.3)
2(p + 2d)@+d)r — 2t (p + 2d))

If(2) = D(x)]ls < (

for all x € A.

Proof. Note that inequality (3.1) implies f(0) = 0, put A = 1 and z1,...,2p =
y1=---=yg=xand s =1,t=21n (3.1), we obtain

1 ((p+2d)z) — (p + 2d) f () & < O] " (3.4)
for all z € A. Therefore

4 (p+d)r
: < m”ﬂﬁ”A

- 0 20s (257)

for all z € A. Then

x

o201 () ~ 0+ 2075 (G5

<

k=m

B

(p+2d)*f (W) —(p+2d)"f (W) HB

n—1
o (»+ 2d)k (p+d)r
= 2w 2 (p + 2d) )k [ (3.5)

k=m

for all nonnegative integer n > m and x € A. It follows from the convergence of the
series (3.5) that the sequence {(p + 2d)"f(m)} is a Cauchy sequence. From
the completeness of B, this sequence converges. So we can define the mapping

D:A—Bby

D) = tim -+ 200" ()

for all x € A.
Now by considering m = 0 and taking the limit as n — oo in (3.6), we obtain
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(3.3). Tt follows from (3.2) that

1D([z,y, 2]) = [D(x),y, 2] =[x, D(y), 2] = [z,y, D(2)][[
znh_)rr;op 2d)3" || f

( piy27d 3”)
)1

+
( +2d”

+2d —|—2d"
+2d

(

-l }
{p+2d"7f((p+2d) ) (p }
-Iq )

s

(llla -lyllz-ll=lla) =0

p+2d p+2d)"’f( (b + 2d)" )
. 0(p + 2d)*"
= lim S
n—00 (p —+ 2d)n(r +s'+t7)
for all x € A. So, D([z,y,2]) = [D(x),y, 2] + [z, D(y), 2] + [z,y,D(2)] for all

x,y, 7z € A. Similar to H(z) in Theorem 2.3, one can show that the mapping D(x)
is a C-linear too, and also the reminder is similar to the proof of Theorem 2.3. O

Theorem 3.2. Let § and r,r',s',t' € RT withr’' +s +t' <1, and f : A— B be
a mapping such that

P
[ Iaf @1, 2y, ya)lls < 0 [ gl [T lwslia

and
1£ ([, y, 21) = [£(2), 9, 2] — [z, f(), 2] = [z, y, F(2)]ll8 < O-lla- Iyl -l Il

for X € T and all z,y,2,21,...,Tp,Y1,--.,Yd € A. Then there exists a unique
derivation D : A — B such that

9(pt+d)rg
(2007 (p+ 2d) — 2(p + 2) )

d)r
If () — D(x)||s < ]|
for all x € A.

Proof. First let us assume that [|0||X = oo for p < 0. We can define the mapping
D:A—B
D(x) = lim (p-+ 24)~"f((p + 24)")

for all x € A. The rest of the proof is similar to the proof of Theorem 3.1. O
Theorem 3.3. Let 0 and r',s',t',r1,...,7p,81,...,84 be positive real numbers,

with v’ + s +t' #3, and f : A— B be a mapping such that

P d
IS (@1, aps s ya)lls < O T llaslld - TT sl (3.6)
j=1

Jj=1
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and

1 ([, 2) = [f (@), 9, 2] = [, £ (), 2] = [y, F ()8 < O.ll2lla lylls -2l

forall \€ T and all x,y,2,21,...,%p,Y1,...,Ya € A. In case A = 1,1 assume that
for each fized x € A the function t — f(tx) is continuous on R. Then there exists
a unique derivation D : A — B such that

9(pt+d)rg (p+d
-D < prdr

for all x € A.

Proof. Letting A=1and z1,...,2p =y1 =---=yqg=x and s = 1,t = 2 in (3.6),
thenri =---=r,=s="---=sq=r, so (3.6) is same (3.1) in Theorem 3.1 and
3.2. Therefore, we can continue the proof similar to the proofs of Theorems 3.1
and 3.2. O
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