Online ISSN 1686-0209

Hyers-Ulam-Rassias Stability of Homomorphisms and Derivations on Normed Lie Triple Systems

Javad Shokri, Ali Ebadian ${ }^{1}$ and Rasoul Aghalary
Department of Mathematics, Faculty of Science, Urmia University, P.O. Box 165, Urmia, Iran
e-mail : j.shokri@urmia.ac.ir,
a.ebadian@urmia.ac.ir,
r.aghalary@urmia.ac.ir

Abstract : We prove the Hyers-Ulam-Rassias stability of homomorphism and derivations on normed Lie triple systems for the following generalized CauchyJensen additive mapping:

$$
r_{0} f\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} y_{j}}{r_{0}}\right)=s \sum_{j=1}^{p} f\left(x_{j}\right)+t \sum_{j=1}^{d} f\left(y_{j}\right)
$$

and generalize some results concerning this functional equation.
Keywords : Cauchy-Jensen additive mapping; Normed Lie systems; Homomorphism; Derivation; Generalized Hyers-Ulam stability. 2010 Mathematics Subject Classification : 39B82; 16W25; 17A40; $39 B 52$.

1 Introduction

The stability problem of functional equations originated from a question of Ulam [1], posed in 1940, concerning the stability of group homomorphism. In 1941, Hyers [2] gave a partial affirmative answer to the question of Ulam in the context of Banach spaces. In 1950, a generalized version of Hyers' theorem for approximate

[^0]additive mappings was given by Aoki [3]. In 1978, Rassias [4] extended the theorem of Hyers by considering the unbounded cauchy difference inequality
$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \quad(\varepsilon \geq 0, p \in[0,1))
$$

Rassias [4] was the first who proved the stability of the linear mappings between Banach spaces. In 1990, Rassias [5] during the 27th international symposium on functional equations asked the question whether such a theorem can also be proved for $p \geq 1$. In 1991, Gajda [6] following the same approach as in Rassias [4] gave an affirmative solution to this question for $p>1$. It was proved by Gajda [6], as well as by Rassias and Semrl [7] that one cannot prove Rassias' type theorem when $p=1$. Rassias Theorem for the stability of the linear mappings between Banach spaces provided some influence for the development of the concept of generalized Hyers-Ulam stability, a fact which rekindled interest in the subject of stability of functional equations. This concept is known today as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations; cf. [8-11]. Several mathematicians worldwide followed the spirit of the approach in the paper of Rassias [4] for the unbounded Cauchy difference obtained various results.

During the last decades several stability problems of functional equations have been investigated by a number of mathematicians; cf. [12-15] and references therein.

One of the interesting functional equations is the following Cauchy-Jensen additive mapping

$$
r_{0} f\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} y_{j}}{r_{0}}\right)=s \sum_{j=1}^{p} f\left(x_{j}\right)+t \sum_{j=1}^{d} f\left(y_{j}\right),
$$

where f is a mapping between linear spaces. It is easy to see that a function f satisfies the above Cauchy-Jensen additive type equation if and only if it is additive.

Ternary algebraic operations were considered in 19th century by several mathematicians such as Cayley [16] how introduced the notion of cubic matrix which in turn was generalized by Kapranov et al. [17] in 1990. There are some applications, although still hypothetical, in the fractional quantum Hall effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation. The comments on physical applications of ternary structures can be found in Refs. [18-25].

A normed (Banach) Lie triple system is a normed (Banach) space ($A ;\|\cdot\|$) with a trilinear mapping $(x, y, z) \longmapsto[x, y, z]$ from $\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ to A satisfying the following axioms

$$
\begin{aligned}
& {[x, y, z]=-[y, x, z]} \\
& {[x, y, z]+[y, z, x]+[z, x, y]=0} \\
& {[u, v,[x, y, z]]=[[u, v, x], y, z]+[x,[u, v, y], z]+[x, y,[u, v, z]]} \\
& \|[x, y, z]\| \leq\|x\|\|y\|\|z\|
\end{aligned}
$$

for all $u, v, x, y, z \in \mathrm{~A}$. The concept of lie triple system was first introduced by Lister [26] (see also [27]).

Let A and B be normed Lie triple systems. A \mathbb{C}-linear mapping $H: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a homomorphism if $H([x, y, z])=[H(x), H(y), H(z)]$ for all $x, y, z \in \mathrm{~A}$. A \mathbb{C}-linear mapping $\mathrm{A} \rightarrow \mathrm{B}$ is called a derivation if $D([x, y, z])=[D(x), y, z]+$ $[x, D(y), z]+[x, y, D(z)]$ for all $x, y, z \in \mathrm{~A}$. The third identity asserts that the mappings $D_{u, v}: x \longmapsto[u, v, x]$ are (inner)derivation of A.

Clearly, every Lie algebra is at the same time a Lie triple system via $[x, y, z]:=$ $[[x, y], z]$, and our definition of a homomorphism (derivation) coincides with that of prehomomorphism (prederivation) on a Lie algebra [28]. Also, if U is an involutive automorphism of a Lie algebra $(L,[]$,$) , then the eigenspace E_{-1}(U)$ is a Lie triple system. Lie triple systems are important since they give the structure of the tangent space of a symmetric space, see [29]. Also some application of Lie triple systems can be found in Nambuòs approach by modifying the Heisenberg equation of motion [30].

In this paper, we have analyzed the Hyers-Ulam-Rassias stability of homomorphism and derivation in Lie triple systems associated with the following generalized Cauchy-Jensen additive mapping

$$
r_{0} f\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} y_{j}}{r_{0}}\right)=s \sum_{j=1}^{p} f\left(x_{j}\right)+t \sum_{j=1}^{d} f\left(y_{j}\right)
$$

and then apply our results to study stability of homomorphisms and derivations associated to Cauchy-Jensen additive mapping in normed Lie triple systems, which can be regarded as ternary structures. The reader is referred to $[31-33]$ for some other related results.

Throughout this paper, suppose that A is normed Lie triple system with norm $\|\cdot\|_{\mathrm{A}}$ and that B is a Banach Lie triple system with norm $\|\cdot\|_{\mathrm{B}}$.

2 Stability of Homomorphisms in Normed Lie Triple Systems

In this section, we prove the stability of homomorphisms in normed Lie triple systems associated with the Cauchy-Jensen additive mapping. For given mapping $f: \mathrm{A}: \rightarrow \mathrm{B}$ and given subset \mathbb{E} of \mathbb{C}, we define

$$
\begin{aligned}
& J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right) \\
& \quad:=r_{0} f\left(\frac{s \sum_{j=1}^{p} \lambda x_{j}+t \sum_{j=1}^{d} \lambda y_{j}}{r_{0}}\right)-s \sum_{j=1}^{p} \lambda f\left(x_{j}\right)-t \sum_{j=1}^{d} \lambda f\left(y_{j}\right),
\end{aligned}
$$

for all $\lambda \in \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in \mathrm{~A}$. One can easily show that a mapping $f: \mathrm{A} \rightarrow \mathrm{B}$ satisfies

$$
J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0
$$

for all $\lambda \in \mathbb{T}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in \mathrm{~A}$ if and only if

$$
f(\mu x+\lambda y)=\mu f(x)+\lambda f(y)
$$

for all $\mu, \lambda \in \mathbb{T}$ and all $x, y \in \mathrm{~A}$.
Theorem 2.1. Let θ be a positive real number, let $r<3$ and $d \geq 2$. Suppose $f: A \rightarrow B$ be a mapping with $f(0)=0$ such that

$$
\begin{equation*}
\left\|J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{2.2}
\end{equation*}
$$

for all $\lambda \in \mathbb{T}$ and all $x, y, z \in A$. Then there exists a unique homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{\theta}{1-d^{r-1}}\|x\|_{A}^{r} \tag{2.3}
\end{equation*}
$$

for all $x \in A$.
Proof. First, we assume that $\|0\|^{r}=\infty$ for $r<0$. Let $\lambda=1, x_{1}=\cdots=x_{p}=$ $0, y_{1}=\cdots=y_{d}=x$ and $t=1$ in (2.1) we get

$$
\begin{equation*}
\|f(d x)-d f(x)\|_{\mathrm{B}} \leq d \theta\|x\|_{\mathrm{A}}^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in$ A. If we replace x by $d^{n} x$ in (2.4) and divide both sides of (2.4) to d^{n+1}, we get

$$
\left\|\frac{1}{d^{n+1}} f\left(d^{n+1} x\right)-\frac{1}{d^{n}} f\left(d^{n} x\right)\right\|_{\mathrm{B}} \leq \theta d^{(r-1) n}\|x\|_{\mathrm{A}}^{r}
$$

for all $x \in \mathrm{~A}$ and all nonnegative integers n. Therefore, one can use induction to show that

$$
\begin{equation*}
\left\|d^{-n} f\left(d^{n} x\right)-d^{-m} f\left(d^{m} x\right)\right\|_{\mathbf{B}} \leq \theta \sum_{k=m}^{n-1} d^{(r-1) k}\|x\|_{\mathrm{A}}^{r} \tag{2.5}
\end{equation*}
$$

for all nonnegative $n>m$ and all $x \in$ A. It follows from the convergence of the series (2.5) that the sequence $\left\{\frac{f\left(d^{n} x\right)}{d^{n}}\right\}$ is a Cauchy sequence. Due to the completeness of B , this sequence is convergent. Now, by define the mapping H : $A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{f\left(d^{n} x\right)}{d^{n}}
$$

for all $x \in \mathrm{~A}$. Set $m=0$ in (2.5) and let n tend to infinity to get (2.3). It follows from (2.1) that

$$
\begin{aligned}
& \left\|r_{0} H\left(\frac{s \sum_{j=1}^{p} \lambda x_{j}+t \sum_{j=1}^{d} \lambda y_{j}}{r_{0}}\right)-s \sum_{j=1}^{p} \lambda H\left(x_{j}\right)-t \sum_{j=1}^{d} \lambda H\left(y_{j}\right)\right\|_{\mathrm{B}} \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{d^{n}}\left\|r_{0} f\left(d^{n} \frac{s \sum_{j=1}^{p} \lambda x_{j}+t \sum_{j=1}^{d} \lambda y_{j}}{r_{0}}\right)-s \sum_{j=1}^{p} \lambda f\left(d^{n} x_{j}\right)-t \sum_{j=1}^{d} \lambda f\left(d^{n} y_{j}\right)\right\|_{\mathrm{B}} \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{d^{n r}}{d^{n}} \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{\mathrm{A}}^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|_{\mathrm{A}}^{r}\right)=0
\end{aligned}
$$

for all $\lambda \in \mathbb{T}$ and $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in \mathrm{~A}$. Hence

$$
r_{0} H\left(\frac{s \sum_{j=1}^{p} \lambda x_{j}+t \sum_{j=1}^{d} \lambda y_{j}}{r_{0}}\right)=s \sum_{j=1}^{p} \lambda H\left(x_{j}\right)+t \sum_{j=1}^{d} \lambda H\left(y_{j}\right)
$$

for all $\lambda \in \mathbb{T}$ and $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in \mathrm{~A}$. So $H(\lambda x+\mu y)=\lambda H(x)+\mu H(y)$ for all $\lambda, \mu \in \mathbb{T}$ and all $x, y \in \mathrm{~A}$, then H ia an additive mapping. Obviously, $H(0 x)=0=0 H(x)$. Next, let $\mu \in \mathbb{C}(\mu \neq 0)$, and let M be a natural number greater then $|\mu|$. By an easily geometric argument, one can coincide that there exist two number $\lambda_{1}, \lambda_{2} \in \mathbb{T}$ such that $2 \frac{\mu}{M}=\lambda_{1}+\lambda_{2}$. By additivity and also definition of H we get $H\left(\frac{1}{2} x\right)=\frac{1}{2} H(x)$ for all $x \in \mathrm{~A}$. Therefore

$$
\begin{aligned}
H(\mu x) & =H\left(\frac{M}{2} \cdot 2 \cdot \frac{\mu}{M} x\right)=M H\left(\frac{1}{2} \cdot 2 \cdot \frac{\mu}{M} x\right) \\
& =\frac{M}{2} H\left(\lambda_{1} x+\lambda_{2} x\right)=\frac{M}{2}\left(H\left(\lambda_{1} x\right)+H\left(\lambda_{2} x\right)\right) \\
& =\frac{M}{2}\left(\lambda_{1}+\lambda_{2}\right) H(x)=\frac{M}{2} \cdot 2 \cdot \frac{\mu}{M} H(x)=\mu H(x)
\end{aligned}
$$

for all $x \in \mathrm{~A}$, so that H is a \mathbb{C}-linear mapping. It follows from (2.2) that

$$
\begin{aligned}
\| H([x, y, z]) & -[H(x), H(y), H(z)] \|_{\mathrm{B}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{d^{3 n}}\left\|f\left(\left[d^{n} x, d^{n} y, d^{n} z\right]\right)-\left[f\left(d^{n} x\right), f\left(d^{n} y\right), f\left(d^{n} z\right)\right]\right\|_{\mathrm{B}} \\
& \leq \theta \lim _{n \rightarrow \infty} \frac{d^{n r}}{d^{3 n}}\left(\|x\|_{\mathrm{A}}^{r}+\|y\|_{\mathrm{A}}^{r}+\|z\|_{\mathrm{A}}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in \mathrm{~A}$. So, $H([x, y, z])=[H(x), H(y), H(z)]$ for all $x, y, z \in \mathrm{~A}$.
Now we prove that H is the unique such additive mapping. Assume that there exists another one, denote by $H^{\prime}: \mathrm{A} \rightarrow \mathrm{B}$. Then there exist a constant ε_{1} and $r^{\prime}\left(r^{\prime}<1\right)$ with

$$
\left\|f(x)-H^{\prime}(x)\right\| \leq \varepsilon_{1}\|x\|_{\mathrm{A}}^{r^{\prime}}
$$

By the triangle inequality, (2.3) and above inequality we have

$$
\begin{aligned}
\left\|H(x)-H^{\prime}(x)\right\|_{\mathrm{B}} & =d^{-n}\left\|H\left(d^{n} x\right)-H^{\prime}\left(d^{n} x\right)\right\|_{\mathrm{B}} \\
& \leq d^{-n}\left(\frac{\theta}{1-d^{r-1}}\left\|d^{n} x\right\|_{\mathrm{A}}^{r}+\varepsilon_{1}\left\|d^{n} x\right\|_{\mathrm{A}}^{r^{\prime}}\right) \\
& =d^{n(r-1)} \frac{\theta}{1-d^{r-1}}\|x\|_{\mathrm{A}}^{r}+d^{n\left(r^{\prime}-1\right)} \varepsilon_{1}\|x\|_{\mathrm{A}}^{r^{\prime}}
\end{aligned}
$$

for $n \in \mathbb{N}$. By letting $n \rightarrow \infty$ we get $H(x)=H^{\prime}(x)$ for any $x \in \mathrm{~A}$.
Example 2.2. Let $L: A \rightarrow A$ be a norm one homomorphism between normed Lie triple systems, let $f: A \rightarrow A$ be defined by

$$
f(x)= \begin{cases}L(x) & \|x\|<1 \\ 0 & \|x\| \geq 1\end{cases}
$$

let $r=0$ and $\theta=3$. Then

$$
\left\|J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq 3=\theta
$$

and

$$
\|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leq 2 \leq \theta,
$$

for all $\lambda \in \mathbb{T}$ and all $x, y, z \in A$. Note also that f in not linear.
By the theorem 2.1 there is a homomorphism H given by $H(x)=\lim _{n \rightarrow \infty} \frac{f\left(d^{n} x\right)}{d^{n}}$. Further, $H(0)=\lim _{n \rightarrow \infty} \frac{f(0)}{d^{n}}=0$ and for $x \neq 0$ we have

$$
H(x)=\lim _{n \rightarrow \infty} \frac{f\left(d^{n} x\right)}{d^{n}}=\lim _{n \rightarrow \infty} \frac{0}{d^{n}}=0
$$

since for sufficiently large $n,\left\|d^{n} x\right\| \geq 1$. Thus H is identically zero and

$$
\|f(x)-H(x)\|_{B} \leq 1 \leq \frac{d \theta}{d-1}=\frac{3 d}{d-1},
$$

for all $x \in A$ and $d \geq 2$.
Theorem 2.3. Let θ be a positive real number, let $r>3$ and $d \geq 2$. Suppose $f: A \rightarrow B$ be a mapping with $f(0)=0$ such that

$$
\begin{equation*}
\left\|J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{2.7}
\end{equation*}
$$

for all $\lambda=1, \mathbf{i}$ and all $x, y, z \in A$. Assume that for each fixed $x \in A$ the function $t \rightarrow f(t x)$ is continuous on \mathbb{R}. Then there exists a unique homomorphism H : $A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{\theta}{d^{r-1}-1}\|x\|_{A}^{r} \tag{2.8}
\end{equation*}
$$

for all $x \in A$.

Proof. Applying the same argument as in the proof of 2.1 one can deduce the existence of a unique additive mapping $H: \mathrm{A} \rightarrow \mathrm{B}$ given by

$$
H(x):=\lim _{n \rightarrow \infty} d^{n} f\left(d^{-n} x\right)
$$

satisfying the required inequalities. By the same reasoning as in the proof of the theorem of [4], the additive mapping H is \mathbb{R}-linear.

Letting $x_{1}=x, x_{2}=\cdots, x_{p}=y_{1}=\cdots=y_{d}=0$ and $t=s=1$ in (2.6), we get

$$
\|f(\lambda x)-\lambda f(x)\|_{\mathbf{B}} \leq \theta\|x\|_{\mathbf{A}}^{r}
$$

then it follows that $\|f(\mathbf{i} x)-\mathbf{i} f(x)\| \leq \theta\|x\|_{\mathrm{A}}^{r}$, for all $x \in \mathrm{~A}$. Hence $d^{n} \| f\left(d^{-n} \mathbf{i} x\right)-$ $\mathbf{i} f\left(d^{-n} x\right) \leq \frac{\theta}{d^{n(r-1)}}\|x\|_{\mathrm{A}}^{r}$, for all $n \in \mathbb{N}$ and all $x \in \mathrm{~A}$. The right hand side tends to zero as $n \rightarrow \infty$, so that

$$
H(\mathbf{i} x)=\lim _{n \rightarrow \infty} d^{n} f\left(\frac{\mathbf{i} x}{d^{n}}\right)=\lim _{n \rightarrow \infty} \mathbf{i} d^{n} f\left(\frac{x}{d^{n}}\right)=\mathbf{i} H(x),
$$

for all $x \in \mathrm{~A}$. For each $\mu \in \mathbb{C}, \mu=\lambda_{1}+\mathbf{i} \lambda_{2}\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}\right)$. Hence

$$
\begin{aligned}
H(\mu x) & =H\left(\lambda_{1} x+\mathbf{i} \lambda_{2} x\right)=\lambda_{1} H(x)+\lambda_{2} H(\mathbf{i} x) \\
& =\lambda_{1} H(x)+\mathbf{i} \lambda_{2} H(x)=\left(\lambda_{1}+\mathbf{i} \lambda_{2}\right) H(x) \\
& =\mu H(x)
\end{aligned}
$$

thus H is \mathbb{C}-linear. Note that inequality (2.6) implies that $f(0)=0$. It follows from (2.7) that

$$
\begin{aligned}
\| H([x, y, z])- & {[H(x), H(y), H(z)] \|_{\mathrm{B}} } \\
& =\lim _{n \rightarrow \infty} d^{3 n}\left\|f\left(\frac{[x, y, z]}{d^{3 n}}\right)-\left[f\left(\frac{x}{d^{n}}\right), f\left(\frac{y}{d^{n}}\right), f\left(\frac{z}{d^{n}}\right)\right]\right\|_{\mathrm{B}} \\
& \leq \theta \lim _{n \rightarrow \infty} \frac{d^{3 n}}{d^{n r}}\left(\|x\|_{\mathrm{A}}^{r}+\|y\|_{\mathrm{A}}^{r}+\|z\|_{\mathrm{A}}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in \mathrm{~A}$. So, $H([x, y, z])=[H(x), H(y), H(z)]$ for all $x, y, z \in \mathrm{~A}$.
The reminder of proof is similar to Theorem 2.1.

3 Stability of Derivations on Normed Lie Triple Systems

In this section, we prove the stability of derivations in normed Lie triple systems associated with the Cauchy-Jensen additive mapping.

Theorem 3.1. Let θ and $r, r^{\prime}, s^{\prime}, t^{\prime} \in \mathbb{R}^{+}$with $r^{\prime}+s^{\prime}+t^{\prime}>3$, and $f: A \rightarrow B$ be a mapping such that

$$
\begin{equation*}
\left\|J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq \theta \prod_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r} \cdot \prod_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{B} \leq \theta \cdot\|x\|_{A}^{r_{A}^{\prime}} \cdot\|y\|_{A}^{s^{\prime}} \cdot\|z\|_{A}^{t_{A}^{\prime}} \tag{3.2}
\end{equation*}
$$

for $\lambda=1, \mathbf{i}$ and all $x, y, z, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Assume that for each fixed $x \in A$ the function $t \rightarrow f(t x)$ is continuous on \mathbb{R}. Then there exists a unique derivation $D: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-D(x)\|_{B} \leq \frac{2^{(p+d) r} \theta}{\left(2(p+2 d)^{(p+d) r}-2^{(p+d) r}(p+2 d)\right)}\|x\|_{A}^{(p+d) r} \tag{3.3}
\end{equation*}
$$

for all $x \in A$.
Proof. Note that inequality (3.1) implies $f(0)=0$, put $\lambda=1$ and $x_{1}, \ldots, x_{p}=$ $y_{1}=\cdots=y_{d}=x$ and $s=1, t=2$ in (3.1), we obtain

$$
\begin{equation*}
\|f((p+2 d) x)-(p+2 d) f(x)\|_{\mathrm{B}} \leq \theta\|x\|_{\mathrm{A}}^{(p+d) r} \tag{3.4}
\end{equation*}
$$

for all $x \in \mathrm{~A}$. Therefore

$$
\left\|f(x)-(p+2 d) f\left(\frac{x}{p+2 d}\right)\right\|_{\mathrm{B}} \leq \frac{\theta}{(p+2 d)^{(p+d) r}}\|x\|_{\mathrm{A}}^{(p+d) r}
$$

for all $x \in \mathrm{~A}$. Then

$$
\begin{align*}
& \left\|(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)-(p+2 d)^{m} f\left(\frac{x}{(p+2 d)^{m}}\right)\right\|_{\mathrm{B}} \\
& \quad \leq \sum_{k=m}^{n-1}\left\|(p+2 d)^{k} f\left(\frac{x}{(p+2 d)^{k}}\right)-(p+2 d)^{k+1} f\left(\frac{x}{(p+2 d)^{k+1}}\right)\right\|_{\mathrm{B}} \\
& \quad \leq \frac{\theta}{(p+2 d)^{(p+d) r}} \sum_{k=m}^{n-1} \frac{(p+2 d)^{k}}{(p+2 d)^{(p+d) r k}}\|x\|_{\mathrm{A}}^{(p+d) r} \tag{3.5}
\end{align*}
$$

for all nonnegative integer $n>m$ and $x \in \mathrm{~A}$. It follows from the convergence of the series (3.5) that the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ is a Cauchy sequence. From the completeness of B , this sequence converges. So we can define the mapping $D: \mathrm{A} \rightarrow \mathrm{B}$ by

$$
D(x):=\lim _{n \rightarrow \infty}(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)
$$

for all $x \in \mathrm{~A}$.
Now by considering $m=0$ and taking the limit as $n \rightarrow \infty$ in (3.6), we obtain
(3.3). It follows from (3.2) that

$$
\begin{aligned}
\| D([x, y, z])-[D(x), y, z] & -[x, D(y), z]-[x, y, D(z)] \|_{\mathrm{B}} \\
= & \lim _{n \rightarrow \infty}(p+2 d)^{3 n} \| f\left(\frac{[x, y, z]}{(p+2 d)^{3 n}}\right) \\
& -\left[f\left(\frac{x}{(p+2 d)^{n}}\right), \frac{y}{(p+2 d)^{n}}, \frac{z}{(p+2 d)^{n}}\right] \\
& -\left[\frac{x}{(p+2 d)^{n}}, f\left(\frac{y}{(p+2 d)^{n}}\right), \frac{z}{(p+2 d)^{n}}\right] \\
& -\left[\frac{x}{(p+2 d)^{n}}, \frac{y}{(p+2 d)^{n}}, f\left(\frac{z}{(p+2 d)^{n}}\right)\right] \|_{\mathrm{B}} \\
= & \lim _{n \rightarrow \infty} \frac{\theta(p+2 d)^{3 n}}{(p+2 d)^{n\left(r^{\prime}+s^{\prime}+t^{\prime}\right)}}\left(\|x\|_{\mathrm{A}}^{r^{\prime}} \cdot\|y\|_{\mathrm{A}}^{\|_{\mathrm{A}}^{\prime}} \cdot\|z\|_{\mathrm{A}}^{t^{\prime}}\right)=0
\end{aligned}
$$

for all $x \in \mathrm{~A}$. So, $D([x, y, z])=[D(x), y, z]+[x, D(y), z]+[x, y, D(z)]$ for all $x, y, z \in \mathrm{~A}$. Similar to $H(x)$ in Theorem 2.3, one can show that the mapping $D(x)$ is a \mathbb{C}-linear too, and also the reminder is similar to the proof of Theorem 2.3.

Theorem 3.2. Let θ and $r, r^{\prime}, s^{\prime}, t^{\prime} \in \mathbb{R}^{+}$with $r^{\prime}+s^{\prime}+t^{\prime}<1$, and $f: A \rightarrow B$ be a mapping such that

$$
\left\|J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq \theta \prod_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r} \cdot \prod_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r}
$$

and

$$
\|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{B} \leq \theta \cdot\|x\|_{A}^{r_{A}^{\prime}} \cdot\|y\|_{A}^{s_{A}^{\prime}} \cdot\|z\|_{A}^{t^{\prime}}
$$

for $\lambda \in \mathbb{T}$ and all $x, y, z, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Then there exists a unique derivation $D: A \rightarrow B$ such that

$$
\|f(x)-D(x)\|_{B} \leq \frac{2^{(p+d) r} \theta}{\left(2^{(p+d) r}(p+2 d)-2(p+2 d)^{(p+d) r}\right)}\|x\|_{A}^{(p+d) r}
$$

for all $x \in A$.
Proof. First let us assume that $\|0\|_{\mathrm{A}}^{p}=\infty$ for $p<0$. We can define the mapping $D: A \rightarrow B$

$$
D(x):=\lim _{n \rightarrow \infty}(p+2 d)^{-n} f\left((p+2 d)^{n} x\right)
$$

for all $x \in \mathrm{~A}$. The rest of the proof is similar to the proof of Theorem 3.1.
Theorem 3.3. Let θ and $r^{\prime}, s^{\prime}, t^{\prime}, r_{1}, \ldots, r_{p}, s_{1}, \ldots, s_{d}$ be positive real numbers, with $r^{\prime}+s^{\prime}+t^{\prime} \neq 3$, and $f: A \rightarrow B$ be a mapping such that

$$
\begin{equation*}
\left\|J_{\lambda} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq \theta \prod_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r_{j}} \cdot \prod_{j=1}^{d}\left\|y_{j}\right\|_{A}^{s_{j}} \tag{3.6}
\end{equation*}
$$

and

$$
\|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{B} \leq \theta \cdot\|x\|_{A}^{r_{A}^{\prime}} \cdot\|y\|_{A}^{s^{\prime}} \cdot\|z\|_{A}^{t^{\prime}}
$$

for all $\lambda \in \mathbb{T}$ and all $x, y, z, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. In case $\lambda=1$, \mathbf{i} assume that for each fixed $x \in A$ the function $t \rightarrow f(t x)$ is continuous on \mathbb{R}. Then there exists a unique derivation $D: A \rightarrow B$ such that

$$
\|f(x)-D(x)\|_{B} \leq \frac{2^{(p+d) r} \theta}{\left|\left(2(p+2 d)^{(p+d) r}-2^{(p+d) r}(p+2 d)\right)\right|}\|x\|_{A}^{(p+d) r}
$$

for all $x \in A$.
Proof. Letting $\lambda=1$ and $x_{1}, \ldots, x_{p}=y_{1}=\cdots=y_{d}=x$ and $s=1, t=2$ in (3.6), then $r_{1}=\cdots=r_{p}=s_{1}=\cdots=s_{d}=r$, so (3.6) is same (3.1) in Theorem 3.1 and 3.2. Therefore, we can continue the proof similar to the proofs of Theorems 3.1 and 3.2.

References

[1] S.M. Ulam, Problem in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
[2] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222-224.
[3] T. Aoki, On the stability of linear trasformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[4] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[5] Th.M. Rassias, Problem 16; 2, Report of the 27th international symp. on functional equations, Aequationes Math. 39 (1990) 292-293.
[6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991) 431-434.
[7] Th.M. Rassias, P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992) 989-993.
[8] S. Czerwik, Functional equations and Inequalities in Several Variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002.
[9] D.H. Hyers, G. Isac, Th.M. Rssias, Stability of Functional Equation in Several Variables, Birkhäuse, Basel, 1998.
[10] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equation in Mathematical Analysis, Hadronic Press Inc. Palm Harbor, Florida, 2001.
[11] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[12] J. Chmieliński, S.M. Jung, On the stability of the Wigner equation on a restricted domain, J. Math. Anal. Appl. 254 (2001) 309-320.
[13] V. Faľiev, Th.M. Rassias, P.K. Sahoo, The space of (ψ, γ)-additive mappings on semigroups, Trans. Amer. Math. Sci. 345 (11) (2002) 4455-4472.
[14] Y.H. Lee, K.W. Jun, A generalization of Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999) 305-315.
[15] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264-284.
[16] A. Cayley, On the 34 concomitants of the ternary cubic, Am. J. Math. 4 (1) (1881) 1-15.
[17] M. Kapranov, I.M. gelfand, A. Zelevinskii, Discriminants, Resultants and Multidimensional Determinants, Birkhauser, Basel, 1994.
[18] V. Abramov, R. Kerner, B. Le Roy, hypersymmetry, A z_{3}-graded generalization of supersymmetry, J. Math. Phys. 38 (1997) 1650-1669.
[19] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in mathematics, Springer, New York, 2009.
[20] R. Kerner, The cubic chessboard: Geometry and physics, Class Quantum Grave 14 (1997) A203-A225.
[21] G.L. Sewell, Quantum Mechanics and its emergent Macrophysics, Princeton University Press, Princeton, NJ, 2002.
[22] M. Eshaghi Gordji, M.B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, A. Ebadian, On the stability of J*-derivations, Journal of Geometry and Physics 60 (2010) 454-459.
[23] M. Eshaghi Gordji, M. Bavand Savadkouhi, Approximation of generalized homomorphisms in quasi-Banach algebra, Aalele Univ. Ovidius Constata, Math. Series 17 (2009) 203-213.
[24] M. Eshaghi Gordji, A. Najati, Approximately J*-homomorphism: A fixed point approach, Journal of Geometry and Physics 60 (2010) 809-814.
[25] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983) 117-143.
[26] W.G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952) 217-242.
[27] N.C. Hopkins, Nilpotent ideals in Lie and anti-Lie triple systems, J. Algebra 178 (1995) 480-492.
[28] D. Burde, Lie algebra prederivation and strongly nilpotent Lie algebras, Comm. Algebra 30 (7) (2002) 3157-3175.
[29] S. Helgason, Differential Geometry, Lie Group and Symmetric Spaces, Academic Press, 1978.
[30] S. Okubo, Introduction to octonion and other non-associative algebra in physics, Montroll Memorial Lecture Series in Mathematical Physics Vol. 2, Cambridge University Press, Cambridge, 1995.
[31] A. Ebadian, M. Eshaghi Gordji, N. ghobadipour, Th.M. Rassias, A perturbation of double derivations on Banach algebras. Commun. Math. Anal. 11 (1) (2011) 51-60.
[32] C. Park, Lie *-homomporphism between Lie C^{*}-algebras and Lie *-derivation between C^{*}-algebras, J. Math. Anal. Appl. 293 (2004) 419-434.
[33] C. Park, Homomorphism between Lie JC ${ }^{*}$-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005) 393-414.
(Received 3 February 2011)
(Accepted 11 May 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: a.ebadian@urmia.ac.ir (A. Ebadian)
 Copyright (c) 2011 by the Mathematical Association of Thailand. All rights reserved.

