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Abstract : We prove the Hyers-Ulam-Rassias stability of homomorphism and
derivations on normed Lie triple systems for the following generalized Cauchy-
Jensen additive mapping:

r0f

(

s
∑p

j=1 xj + t
∑d

j=1 yj

r0

)

= s

p
∑

j=1

f(xj) + t

d
∑

j=1

f(yj)

and generalize some results concerning this functional equation.
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1 Introduction

The stability problem of functional equations originated from a question of
Ulam [1], posed in 1940, concerning the stability of group homomorphism. In 1941,
Hyers [2] gave a partial affirmative answer to the question of Ulam in the context of
Banach spaces. In 1950, a generalized version of Hyers’ theorem for approximate
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additive mappings was given by Aoki [3]. In 1978, Rassias [4] extended the theorem
of Hyers by considering the unbounded cauchy difference inequality

‖f(x+ y) − f(x) − f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (ε ≥ 0, p ∈ [0, 1)).

Rassias [4] was the first who proved the stability of the linear mappings between
Banach spaces. In 1990, Rassias [5] during the 27th international symposium on
functional equations asked the question whether such a theorem can also be proved
for p ≥ 1. In 1991, Gajda [6] following the same approach as in Rassias [4] gave
an affirmative solution to this question for p > 1. It was proved by Gajda [6],
as well as by Rassias and Semrl [7] that one cannot prove Rassias’ type theorem
when p = 1. Rassias Theorem for the stability of the linear mappings between
Banach spaces provided some influence for the development of the concept of
generalized Hyers-Ulam stability, a fact which rekindled interest in the subject
of stability of functional equations. This concept is known today as generalized
Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations; cf.
[8–11]. Several mathematicians worldwide followed the spirit of the approach in
the paper of Rassias [4] for the unbounded Cauchy difference obtained various
results.

During the last decades several stability problems of functional equations have
been investigated by a number of mathematicians; cf. [12–15] and references
therein.

One of the interesting functional equations is the following Cauchy-Jensen
additive mapping

r0f

(

s
∑p

j=1 xj + t
∑d

j=1 yj

r0

)

= s

p
∑

j=1

f(xj) + t

d
∑

j=1

f(yj),

where f is a mapping between linear spaces. It is easy to see that a function
f satisfies the above Cauchy-Jensen additive type equation if and only if it is
additive.

Ternary algebraic operations were considered in 19th century by several math-
ematicians such as Cayley [16] how introduced the notion of cubic matrix which in
turn was generalized by Kapranov et al. [17] in 1990. There are some applications,
although still hypothetical, in the fractional quantum Hall effect, the nonstandard
statistics, supersymmetric theory, and Yang-Baxter equation. The comments on
physical applications of ternary structures can be found in Refs. [18–25].

A normed (Banach) Lie triple system is a normed (Banach) space (A; ‖.‖) with
a trilinear mapping (x, y, z) 7−→ [x, y, z] from A×A×A to A satisfying the following
axioms

[x, y, z] = −[y, x, z],
[x, y, z] + [y, z, x] + [z, x, y] = 0
[u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]],
‖[x, y, z]‖ ≤ ‖x‖‖y‖‖z‖,
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for all u, v, x, y, z ∈ A. The concept of lie triple system was first introduced by
Lister [26] (see also [27]).

Let A and B be normed Lie triple systems. A C-linear mapping H : A → B is
said to be a homomorphism if H([x, y, z]) = [H(x), H(y), H(z)] for all x, y, z ∈ A.
A C-linear mapping A → B is called a derivation if D([x, y, z]) = [D(x), y, z] +
[x,D(y), z] + [x, y,D(z)] for all x, y, z ∈ A. The third identity asserts that the
mappings Du,v : x 7−→ [u, v, x] are (inner)derivation of A.

Clearly, every Lie algebra is at the same time a Lie triple system via [x, y, z] :=
[[x, y], z], and our definition of a homomorphism (derivation) coincides with that of
prehomomorphism (prederivation) on a Lie algebra [28]. Also, if U is an involutive
automorphism of a Lie algebra (L, [, ]), then the eigenspace E−1(U) is a Lie triple
system. Lie triple systems are important since they give the structure of the
tangent space of a symmetric space, see [29]. Also some application of Lie triple
systems can be found in Nambuòs approach by modifying the Heisenberg equation
of motion [30].

In this paper, we have analyzed the Hyers-Ulam-Rassias stability of homomor-
phism and derivation in Lie triple systems associated with the following generalized
Cauchy-Jensen additive mapping

r0f

(

s
∑p

j=1 xj + t
∑d

j=1 yj

r0

)

= s

p
∑

j=1

f(xj) + t

d
∑

j=1

f(yj),

and then apply our results to study stability of homomorphisms and derivations
associated to Cauchy-Jensen additive mapping in normed Lie triple systems, which
can be regarded as ternary structures. The reader is referred to [31–33] for some
other related results.

Throughout this paper, suppose that A is normed Lie triple system with norm
‖.‖A and that B is a Banach Lie triple system with norm ‖.‖B.

2 Stability of Homomorphisms in Normed Lie

Triple Systems

In this section, we prove the stability of homomorphisms in normed Lie triple
systems associated with the Cauchy-Jensen additive mapping. For given mapping
f : A :→ B and given subset E of C, we define

Jλf(x1, . . . , xp, y1, . . . , yd)

:= r0f

(

s
∑p

j=1 λxj + t
∑d

j=1 λyj

r0

)

− s

p
∑

j=1

λf(xj) − t

d
∑

j=1

λf(yj),

for all λ ∈ T = {z ∈ C : |z| = 1} and all x1, . . . , xp, y1, . . . , yd ∈ A. One can easily
show that a mapping f : A → B satisfies

Jλf(x1, . . . , xp, y1, . . . , yd) = 0
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for all λ ∈ T and all x1, . . . , xp, y1, . . . , yd ∈ A if and only if

f(µx+ λy) = µf(x) + λf(y)

for all µ, λ ∈ T and all x, y ∈ A.

Theorem 2.1. Let θ be a positive real number, let r < 3 and d ≥ 2. Suppose

f : A → B be a mapping with f(0) = 0 such that

‖Jλf(x1, . . . , xp, y1, . . . , yd)‖B ≤ θ





p
∑

j=1

‖xj‖
r
A +

d
∑

j=1

‖yj‖
r
A



 (2.1)

and

‖f([x, y, z])− [f(x), f(y), f(z)]‖B ≤ θ(‖x‖r
A

+ ‖y‖r
A

+ ‖z‖r
A
), (2.2)

for all λ ∈ T and all x, y, z ∈ A. Then there exists a unique homomorphism

H : A → B such that

‖f(x) −H(x)‖B ≤
θ

1 − dr−1
‖x‖r

A
(2.3)

for all x ∈ A.

Proof. First, we assume that ‖0‖r = ∞ for r < 0. Let λ = 1, x1 = · · · = xp =
0, y1 = · · · = yd = x and t = 1 in (2.1) we get

‖f(dx) − df(x)‖B ≤ dθ‖x‖r
A

(2.4)

for all x ∈ A. If we replace x by dnx in (2.4) and divide both sides of (2.4) to
dn+1, we get

‖
1

dn+1
f(dn+1x) −

1

dn
f(dnx)‖B ≤ θd(r−1)n‖x‖r

A

for all x ∈ A and all nonnegative integers n. Therefore, one can use induction to
show that

‖d−nf(dnx) − d−mf(dmx)‖B ≤ θ

n−1
∑

k=m

d(r−1)k‖x‖r
A (2.5)

for all nonnegative n > m and all x ∈ A. It follows from the convergence of

the series (2.5) that the sequence { f(dnx)
dn } is a Cauchy sequence. Due to the

completeness of B, this sequence is convergent. Now, by define the mapping H :
A → B by

H(x) := lim
n→∞

f(dnx)

dn
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for all x ∈ A. Set m = 0 in (2.5) and let n tend to infinity to get (2.3). It follows
from (2.1) that

∥

∥

∥r0H
(s
∑p

j=1 λxj + t
∑d

j=1 λyj

r0
) − s

p
∑

j=1

λH(xj

)

− t

d
∑

j=1

λH(yj)
∥

∥

∥

B

= lim
n→∞

1

dn

∥

∥

∥r0f
(

dn
s
∑p

j=1 λxj + t
∑d

j=1 λyj

r0

)

− s

p
∑

j=1

λf(dnxj) − t

d
∑

j=1

λf(dnyj)
∥

∥

∥

B

≤ lim
n→∞

dnr

dn
θ
(

p
∑

j=1

‖xj‖
r
A

+

d
∑

j=1

‖yj‖
r
A

)

= 0,

for all λ ∈ T and x1, . . . , xp, y1, . . . , yd ∈ A. Hence

r0H

(

s
∑p

j=1 λxj + t
∑d

j=1 λyj

r0

)

= s

p
∑

j=1

λH(xj) + t

d
∑

j=1

λH(yj)

for all λ ∈ T and x1, . . . , xp, y1, . . . , yd ∈ A. So H(λx + µy) = λH(x) + µH(y)
for all λ, µ ∈ T and all x, y ∈ A, then H ia an additive mapping. Obviously,
H(0x) = 0 = 0H(x). Next, let µ ∈ C(µ 6= 0), and let M be a natural number
greater then |µ|. By an easily geometric argument, one can coincide that there
exist two number λ1, λ2 ∈ T such that 2 µ

M
= λ1 + λ2. By additivity and also

definition of H we get H(1
2x) = 1

2H(x) for all x ∈ A. Therefore

H(µx) = H

(

M

2
.2.

µ

M
x

)

= MH

(

1

2
.2.

µ

M
x

)

=
M

2
H(λ1x+ λ2x) =

M

2
(H(λ1x) +H(λ2x))

=
M

2
(λ1 + λ2)H(x) =

M

2
.2.

µ

M
H(x) = µH(x),

for all x ∈ A, so that H is a C-linear mapping. It follows from (2.2) that

‖H([x, y, z]) − [H(x), H(y), H(z)]‖B

= lim
n→∞

1

d3n

∥

∥

∥f
(

[dnx, dny, dnz]
)

− [f(dnx), f(dny), f(dnz)]
∥

∥

∥

B

≤ θ lim
n→∞

dnr

d3n
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A) = 0

for all x, y, z ∈ A. So, H([x, y, z]) = [H(x), H(y), H(z)] for all x, y, z ∈ A.
Now we prove that H is the unique such additive mapping. Assume that there

exists another one, denote by H ′ : A → B. Then there exist a constant ε1 and
r′ (r′ < 1) with

‖f(x) −H ′(x)‖ ≤ ε1‖x‖
r′

A
.
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By the triangle inequality, (2.3) and above inequality we have

‖H(x) −H ′(x)‖B = d−n‖H(dnx) −H ′(dnx)‖B

≤ d−n
( θ

1 − dr−1
‖dnx‖r

A + ε1‖d
nx‖r′

A

)

= dn(r−1) θ

1 − dr−1
‖x‖r

A + dn(r′
−1)ε1‖x‖

r′

A

for n ∈ N. By letting n→ ∞ we get H(x) = H ′(x) for any x ∈ A.

Example 2.2. Let L : A → A be a norm one homomorphism between normed Lie

triple systems, let f : A → A be defined by

f(x) =

{

L(x) ‖x‖ < 1
0 ‖x‖ ≥ 1

,

let r = 0 and θ = 3. Then

‖Jλf(x1, . . . , xp, y1, . . . , yd)‖B ≤ 3 = θ,

and

‖f([x, y, z]) − [f(x), f(y), f(z)]‖B ≤ 2 ≤ θ,

for all λ ∈ T and all x, y, z ∈ A. Note also that f in not linear.

By the theorem 2.1 there is a homomorphism H given by H(x) = limn→∞

f(dnx)
dn .

Further, H(0) = limn→∞

f(0)
dn = 0 and for x 6= 0 we have

H(x) = lim
n→∞

f(dnx)

dn
= lim

n→∞

0

dn
= 0,

since for sufficiently large n, ‖dnx‖ ≥ 1. Thus H is identically zero and

‖f(x) −H(x)‖B ≤ 1 ≤
dθ

d− 1
=

3d

d− 1
,

for all x ∈ A and d ≥ 2.

Theorem 2.3. Let θ be a positive real number, let r > 3 and d ≥ 2. Suppose

f : A → B be a mapping with f(0) = 0 such that

‖Jλf(x1, . . . , xp, y1, . . . , yd)‖B ≤ θ





p
∑

j=1

‖xj‖
r
A +

d
∑

j=1

‖yj‖
r
A



 (2.6)

and

‖f([x, y, z])− [f(x), f(y), f(z)]‖B ≤ θ(‖x‖r
A + ‖y‖r

A + ‖z‖r
A), (2.7)

for all λ = 1, i and all x, y, z ∈ A. Assume that for each fixed x ∈ A the function

t → f(tx) is continuous on R. Then there exists a unique homomorphism H :
A → B such that

‖f(x) −H(x)‖B ≤
θ

dr−1 − 1
‖x‖r

A
(2.8)

for all x ∈ A.
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Proof. Applying the same argument as in the proof of 2.1 one can deduce the
existence of a unique additive mapping H : A → B given by

H(x) := lim
n→∞

dnf(d−nx)

satisfying the required inequalities. By the same reasoning as in the proof of the
theorem of [4], the additive mapping H is R-linear.

Letting x1 = x, x2 = · · · , xp = y1 = · · · = yd = 0 and t = s = 1 in (2.6), we
get

‖f(λx) − λf(x)‖B ≤ θ‖x‖r
A

then it follows that ‖f(ix)− if(x)‖ ≤ θ‖x‖r
A
, for all x ∈ A. Hence dn‖f(d−nix) −

if(d−nx) ≤ θ
dn(r−1) ‖x‖

r
A
, for all n ∈ N and all x ∈ A. The right hand side tends to

zero as n→ ∞, so that

H(ix) = lim
n→∞

dnf(
ix

dn
) = lim

n→∞

idnf(
x

dn
) = iH(x),

for all x ∈ A. For each µ ∈ C, µ = λ1 + iλ2(λ1, λ2 ∈ R). Hence

H(µx) = H(λ1x+ iλ2x) = λ1H(x) + λ2H(ix)

= λ1H(x) + iλ2H(x) = (λ1 + iλ2)H(x)

= µH(x),

thus H is C-linear. Note that inequality (2.6) implies that f(0) = 0. It follows
from (2.7) that

‖H([x, y, z])−[H(x), H(y), H(z)]‖B

= lim
n→∞

d3n
∥

∥

∥f
( [x, y, z]

d3n

)

−
[

f
( x

dn

)

, f
( y

dn

)

, f
( z

dn

)]∥

∥

∥

B

≤ θ lim
n→∞

d3n

dnr
(‖x‖r

A
+ ‖y‖r

A
+ ‖z‖r

A
) = 0

for all x, y, z ∈ A. So, H([x, y, z]) = [H(x), H(y), H(z)] for all x, y, z ∈ A.
The reminder of proof is similar to Theorem 2.1.

3 Stability of Derivations on Normed Lie Triple

Systems

In this section, we prove the stability of derivations in normed Lie triple sys-
tems associated with the Cauchy-Jensen additive mapping.

Theorem 3.1. Let θ and r, r′, s′, t′ ∈ R+ with r′ + s′ + t′ > 3, and f : A → B be

a mapping such that

‖Jλf(x1, . . . , xp, y1, . . . , yd)‖B ≤ θ

p
∏

j=1

‖xj‖
r
A
.

d
∏

j=1

‖yj‖
r
A

(3.1)
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and

‖f([x, y, z])− [f(x), y, z] − [x, f(y), z] − [x, y, f(z)]‖B ≤ θ.‖x‖r′

A .‖y‖
s′

A .‖z‖
t′

A (3.2)

for λ = 1, i and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. Assume that for each fixed

x ∈ A the function t → f(tx) is continuous on R. Then there exists a unique

derivation D : A → B such that

‖f(x) −D(x)‖B ≤
2(p+d)rθ

(

2(p+ 2d)(p+d)r − 2(p+d)r(p+ 2d)
)‖x‖

(p+d)r
A

(3.3)

for all x ∈ A.

Proof. Note that inequality (3.1) implies f(0) = 0, put λ = 1 and x1, . . . , xp =
y1 = · · · = yd = x and s = 1, t = 2 in (3.1), we obtain

‖f((p+ 2d)x) − (p+ 2d)f(x)‖B ≤ θ‖x‖
(p+d)r
A

(3.4)

for all x ∈ A. Therefore

∥

∥

∥

∥

f(x) − (p+ 2d)f

(

x

p+ 2d

)∥

∥

∥

∥

B

≤
θ

(p+ 2d)(p+d)r
‖x‖

(p+d)r
A

for all x ∈ A. Then

∥

∥

∥

∥

(p+ 2d)nf

(

x

(p+ 2d)n

)

− (p+ 2d)mf

(

x

(p+ 2d)m

)∥

∥

∥

∥

B

≤

n−1
∑

k=m

∥

∥

∥

∥

(p+ 2d)kf

(

x

(p+ 2d)k

)

− (p+ 2d)k+1f

(

x

(p+ 2d)k+1

)∥

∥

∥

∥

B

≤
θ

(p+ 2d)(p+d)r

n−1
∑

k=m

(p+ 2d)k

(p+ 2d)(p+d)rk
‖x‖

(p+d)r
A

(3.5)

for all nonnegative integer n > m and x ∈ A. It follows from the convergence of the
series (3.5) that the sequence {(p+ 2d)nf( x

(p+2d)n )} is a Cauchy sequence. From

the completeness of B, this sequence converges. So we can define the mapping
D : A → B by

D(x) := lim
n→∞

(p+ 2d)nf

(

x

(p+ 2d)n

)

for all x ∈ A.

Now by considering m = 0 and taking the limit as n→ ∞ in (3.6), we obtain
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(3.3). It follows from (3.2) that

‖D([x, y, z]) − [D(x), y, z]− [x,D(y), z] − [x, y,D(z)]‖B

= lim
n→∞

(p+ 2d)3n
∥

∥

∥f
( [x, y, z]

(p+ 2d)3n

)

−
[

f
( x

(p+ 2d)n

)

,
y

(p+ 2d)n
,

z

(p+ 2d)n

]

−
[ x

(p+ 2d)n
, f
( y

(p+ 2d)n

)

,
z

(p+ 2d)n

]

−
[ x

(p+ 2d)n
,

y

(p+ 2d)n
, f
( z

(p+ 2d)n

)]∥

∥

∥

B

= lim
n→∞

θ(p+ 2d)3n

(p+ 2d)n(r′+s′+t′)
(‖x‖r′

A .‖y‖
s′

A .‖z‖
t′

A) = 0

for all x ∈ A. So, D([x, y, z]) = [D(x), y, z] + [x,D(y), z] + [x, y,D(z)] for all
x, y, z ∈ A. Similar to H(x) in Theorem 2.3, one can show that the mapping D(x)
is a C-linear too, and also the reminder is similar to the proof of Theorem 2.3.

Theorem 3.2. Let θ and r, r′, s′, t′ ∈ R+ with r′ + s′ + t′ < 1, and f : A → B be

a mapping such that

‖Jλf(x1, . . . , xp, y1, . . . , yd)‖B ≤ θ

p
∏

j=1

‖xj‖
r
A
.

d
∏

j=1

‖yj‖
r
A

and

‖f([x, y, z])− [f(x), y, z] − [x, f(y), z] − [x, y, f(z)]‖B ≤ θ.‖x‖r′

A
.‖y‖s′

A
.‖z‖t′

A

for λ ∈ T and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. Then there exists a unique

derivation D : A → B such that

‖f(x) −D(x)‖B ≤
2(p+d)rθ

(

2(p+d)r(p+ 2d) − 2(p+ 2d)(p+d)r
)‖x‖

(p+d)r
A

for all x ∈ A.

Proof. First let us assume that ‖0‖p
A

= ∞ for p < 0. We can define the mapping
D : A → B

D(x) := lim
n→∞

(p+ 2d)−nf((p+ 2d)nx)

for all x ∈ A. The rest of the proof is similar to the proof of Theorem 3.1.

Theorem 3.3. Let θ and r′, s′, t′, r1, . . . , rp, s1, . . . , sd be positive real numbers,

with r′ + s′ + t′ 6= 3, and f : A → B be a mapping such that

‖Jλf(x1, . . . , xp, y1, . . . , yd)‖B ≤ θ

p
∏

j=1

‖xj‖
rj

A
.

d
∏

j=1

‖yj‖
sj

A
(3.6)
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and

‖f([x, y, z])− [f(x), y, z]− [x, f(y), z] − [x, y, f(z)]‖B ≤ θ.‖x‖r′

A
.‖y‖s′

A
.‖z‖t′

A

for all λ ∈ T and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. In case λ = 1, i assume that

for each fixed x ∈ A the function t→ f(tx) is continuous on R. Then there exists

a unique derivation D : A → B such that

‖f(x) −D(x)‖B ≤
2(p+d)rθ

|(2(p+ 2d)(p+d)r − 2(p+d)r(p+ 2d))|
‖x‖

(p+d)r
A

for all x ∈ A.

Proof. Letting λ = 1 and x1, . . . , xp = y1 = · · · = yd = x and s = 1, t = 2 in (3.6),
then r1 = · · · = rp = s1 = · · · = sd = r, so (3.6) is same (3.1) in Theorem 3.1 and
3.2. Therefore, we can continue the proof similar to the proofs of Theorems 3.1
and 3.2.
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Variables, Birkhäuse, Basel, 1998.

[10] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equation in Mathe-
matical Analysis, Hadronic Press Inc. Palm Harbor, Florida, 2001.



Hyers-Ulam-Rassias Stability of Homomorphisms and Derivations ... 459

[11] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer
Academic Publishers, Dordrecht, Boston and London, 2003.
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