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1 Introduction

In this paper all rings are commutative with identity and all modules are
unitary. If K and N are submodules of an R-module M we recall that (N :R
K) = (N : K) = {r ∈ R | rK ⊆ N}, which is an ideal of R. A proper submodule
N of an R-module M is said to be prime if for every r ∈ R, x ∈M ; rx ∈ N implies
that x ∈ N or r ∈ (N : M). In such a case p = (N : M) is a prime ideal of R and
N is said to be p-prime. An R-module M is called a multiplication module if for
any submodule N of M there exists an ideal I of R such that N = IM . Clearly M
is a multiplication module if and only if N = (N : M)M for any submodule N of
M . If S is a non-empty subset of an R-module M , the annihilator of S, denoted by
AnnR(S) or simply Ann(S), is defined as {r ∈ R | rS = 0}. The set of all prime
(maximal) submodules of an R-module M is denoted by Spec(M) (Max(M)). If
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R is a ring (not necessarily an integral domain) and M is an R-module, the subset
T (M) of M is defined by T (M) = {m ∈ M | ∃r 6= 0, r ∈ R such that rm = 0}.
Clearly, if R is an integral domain then T (M) is a submodule of M called the
torsion submodule. If T (M) = 0 we say that M is torsion-free.

In Section 2, we introduce F -weak multiplication modules and then prove a
number different results concerning these modules. Section 3 deals with associated
and supported prime ideals (submodules) of a module. Here, among other things,
we find the supported prime ideals (submodules) of module S−1M in terms of
supported prime ideals (submodules) of M itself. Also some relations between the
sets of associated prime submodules, supported prime submodules and Spec(M)
has been found.

2 Some basic results

We begin this section with the following definitions which have the main role
in the whole work.

Definition 2.1. An R-module M is called weak multiplication if Spec(M) = ∅ or
for every prime submodule N of M we have N = IM , where I is an ideal of R.

It is clear that every multiplication module is weak multiplication. Also if N
is a p-prime submodule of a weak multiplication module M it can be shown that
N = pM .

Definition 2.2. An R-module M is said to be F -weak multiplication if it satisfies
the following conditions:

(1) M is weak multiplication;

(2) For every p ∈ Spec(R), pM is a prime submodule of M and (pM : M) = p.

For example we can show that the R-module M is F -weak multiplication in
the following cases:

(i) M is a finitely generated multiplication R-module such that Ann(M) ⊆ p

for every p ∈ Spec(R). In a very particular case, when M is a free weak
multiplication module, it is F -weak multiplication module.

(ii) In (i) we assume AnnR(M) = 0, that is, M is faithful.

Proposition 2.3. Let M be an F -weak multiplication R-module, where R is a
Noetherian ring. Then the number of minimal prime submodule of M is finite.

Proof. Let 0 = Q1 ∩ ...∩Qn be a normal primary decomposition of the zero ideal,
where Qi is pi-primary (1 ≤ i ≤ n). Then all the minimal prime ideals of R
can be found in the set {p1, p2, ..., pn}. Let {p1, p2, ..., pk}, where k ≤ n, be the
set of minimal prime ideals of R. We know that there is a one-to-one inclusion
preserving correspondence between prime ideals of R and prime submodules of M
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in such a way that if p ∈ Spec(R) corresponds to N ∈ Spec(M) then N = pM and
p = (N : M). This implies that {p1M, ..., pkM} is the set of all minimal prime
submodules of M .

Proposition 2.4. Let R be a non-trivial ring and M 6= 0 be an F -weak multipli-
cation R-module. Then M has a maximal submodule.

Proof. We know that R has a maximal ideal m-say. But m ∈ Spec(R) implies
that mM ∈ Spec(M) and (mM : M) = m. Let a submodule H of M be such that
mM ⊆ H $ M . By [1, Proposition 3], H is an m-prime submodule of M . Since
M is F -weak multiplication, H = mM and so mM is a maximal submodule of
M .

Remark 2.5. Let R be a non-trivial ring and M be an F -weak multiplication
R-module, then IM 6= M for each proper ideal I of R.

Proof. Let I be an arbitrary proper ideal of R, then there exists m ∈ Max(R)
containing I. Then IM ⊆ mM ⊂M , since mM is a prime submodule of M .

Proposition 2.6. Let R be an integral domain and M be an F -weak multiplication
R-module. Then M is torsion-free.

Proof. Let T (M) 6= 0 so there exists a non-zero element x ∈ T (M). Since
Ann(x) 6= 0 there exists c ∈ R, c 6= 0 such that cx = 0. We know that (0) ∈
Spec(R) and so (0)M = 0 ∈ Spec(M). Now cx = 0 implies that x ∈ (0)M = 0 or
c ∈ ((0)M : M) = AnnR(M) = (0). But c 6= 0, x 6= 0, a contradiction. Therefore
T (M) = 0, that is, M is torsion-free.

Note that under the hypotheses of above proposition we also conclude that M
is a faithful R-module.

Corollary 2.7. Let R be an integral domain and M be an F -weak multiplica-
tion R-module. Then every proper direct summand of M is prime. Hence M is
indecomposable.

Proof. By the preceding proposition M is torsion-free and by [1, Result 1], every
direct summand of M is a prime submodule. Now we show that M is indecompos-
able. IfM = M1⊕M2 whereM1, M2 6= 0 then by the current form of the corollary,
M1 is a p-prime for some prime ideal p of R. Thus M1 = pM = pM1⊕pM2. Hence
pM2 = 0. Since M is torsion-free and M2 6= 0, we have p = 0 and hence M1 = 0,
a contradiction.

Proposition 2.8. Let M be an F -weak multiplication R-module and let I � R,
p ∈ Spec(R). If IM ⊆ pM then I ⊆ p.

Proof. If IM ⊆ pM then (IM : pM) ⊆ (pM : M). But (pM : M) = p and clearly
I ⊆ (IM : M). Therefore I ⊆ p.
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Definition 2.9. An R-module M is called primeful, if M = 0 or the natural map
of Spec(M) is surjective.

We recall that the natural map of Spec(M) is defined as follows:

ψ : Spec(M) → Spec

(

R

AnnR(M)

)

such that ψ(P ) =
(P : M)

AnnR(M)
, ∀P ∈ Spec(M).

Proposition 2.10. Let M be an F -weak multiplication R-module. Then M is a
primeful R-module.

Proof. Let M 6= 0 and ψ be the natural map of Spec(M). We show that ψ is

a surjection. Let p′

AnnR(M) ∈ Spec( R
AnnR(M) ), where p′ ∈ Spec(R) is such that

AnnR(M) ⊆ p′. Thus p′M ∈ Spec(M) and (p′M : M) = p′. Hence p′

AnnR(M) =
(p′M :M)
AnnR(M) = ψ(p′M) and therefore M is primeful.

Proposition 2.11. Let M be a non-zero free R-module. Then M is a primeful
R-module.

Proof. It is clear that AnnR(M) = 0. Now we use [2, Result 1.4] to see that the
natural map of Spec(M) is surjective.

Theorem 2.12. Let M be an R-module and ψ : Spec(M) → Spec( R
AnnR(M) ) be

the natural map of Spec(M). Then M is F -weak multiplication in the following
cases:

(i) M is a free R-module and ψ is injective.

(ii) M is a faithful weak multiplication R-module and ψ is surjective.

Proof. (i) Since M is free, for every p ∈ Spec(R) we have pM ∈ Spec(M) and
(pM : M) = p. It remains to show that M is weak multiplication. It is clear that
AnnR(M) = 0 and so by the hypothesis ψ : Spec(M) → Spec(R) is injective. Let
P ∈ Spec(M). We show that P = (P : M)M . Since ψ(P ) = (P : M) ∈ Spec(R)
and M is free we have (P : M)M ∈ Spec(M) and hence ψ(P ) = ψ((P : M)M).
But ψ is injective and hence P = (P : M)M .

(ii) It is enough to show that for every p ∈ Spec(R), pM ∈ Spec(M) and
(pM : M) = p. Since AnnR(M) = 0, by the hypothesis ψ : Spec(M) → Spec(R)
is surjective and hence for every p ∈ Spec(R) there exists P ∈ Spec(M) such that
ψ(P ) = (P : M) = p. But P = (P : M)M = pM and so P = pM ∈ Spec(M).
Also (pM : M) = (P : M) = p and the proof is complete.

Lemma 2.13. Let M be an F -weak multiplication R-module such that every prime
submodule of M is finitely generated. Then M is a Noetherian module.
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Proof. We assume that M 6= 0. By Proposition 2.4, M has a maximal submodule
L-say. Since L $ M there exists x ∈ M \ L and by the maximal property of L
we have M = L + Rx. By [1, Proposition 4], L is a prime submodule of M and
as a result finitely generated. Therefore M = L + Rx is also finitely generated.
Now by [3, Theorem 2.7], M is a multiplication R-module. The result follows by
[4, Theorem 3.2].

Definition 2.14. An R-module M is called a prime cancellation module or a
p-cancellation module if for every p, q ∈ Spec(R), pM = qM implies that p = q.

Proposition 2.15. Let M be an F -weak multiplication R-module. Then M is a
p-cancellation module.

Proof. This is a particular case of Proposition 2.8.

Theorem 2.16. Let M be an F -weak multiplication R-module and let M ′ be an
R-module. Let φ : M → M ′ be an epimorphism such that kerφ is contained in
every prime submodules of M . Then M ′ is an F -weak multiplication R-module.

Proof. First, let L′ be an arbitrary prime submodules of M ′. Then there exists
a prime submodule L of M such that φ(L) = L′ and so φ−1(L′) = L. Since M
is F -weak multiplication, there exists an ideal p ∈ Spec(R) such that pM = L.
Hence L = pM = φ−1(L′) implies that φ(pM) = L′, that is, pφ(M) = L′ which
means pM ′ = L′. Therefore M ′ is a weak multiplication R-module.

Second, let p ∈ Spec(R) be an arbitrary prime ideal, we must prove that
pM ′ ∈ Spec(M ′) and (pM ′ : M ′) = p. But pM ′ = pφ(M) = φ(pM) ≤ M ′.
Since M is F -weak multiplication, then pM ∈ Spec(M) and so pM ′ = φ(pM) ∈
Spec(M ′). Now we must prove that (pM ′ : M ′) = p. Obviously, p ⊆ (pM ′ : M ′).
We show that (pM ′ : M ′) ⊆ p. But (pM ′ : M ′) = (pφ(M) : φ(M)) = (φ(pM) :
φ(M)). Let r ∈ (pM ′ : M ′) = (φ(pM) : φ(M)), so rφ(M) ⊆ φ(pM), that is,
φ(rM) ⊆ φ(pM). Since rM ⊆ φ−1(φ(rM)) ⊆ φ−1(φ(pM)) = φ−1(pφ(M)) =
φ−1(pM ′) = pφ−1(M ′) = pM , then rM ⊆ pM and so r ∈ (pM : M) = p.
Therefore (pM ′ : M ′) ⊆ p.

Hence, (pM ′ : M ′) = p and so M ′ is an F -weak multiplication R-module.

Corollary 2.17. Let M be an F -weak multiplication R-module and N be a sub-
module of M such that N is contained in every prime submodule of M . Then M

N

is an F -weak multiplication R-module.

Proof. The proof is clear by the above theorem.

Corollary 2.18. Let {Mi}, 1 ≤ i ≤ n, be a collection of R-modules. If M =
⊕n

i=1Mi is a weak multiplication R-module, then for every 1 ≤ i ≤ n, Mi is a
weak multiplication R-module.
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Proof. We define the map φi as follows:

φi : M =

n
⊕

i=1

Mi −→Mi , (∀i = 1, ..., n) by

φi(m1, . . . ,mn) = mi , ∀(m1, . . . ,mn) ∈
n
⊕

i=1

Mi.

Since φi is an epimorphism, the result follows by the first part of the proof of
Theorem 2.16.

3 Associated and supported primes

We recall some definitions and notions which are needed in the sequel.

Definition 3.1. Let M be an R-module.

(i) The prime ideal p of R is called an associated prime ideal of M if for some
non-zero x ∈ M , p = (0 : x) = AnnR(x). The set of all associated prime
ideals of M is denoted by AssR(M).

(ii) The prime ideal p of R is called a supported prime ideal of M if Mp 6= 0. The
set of all such prime ideals is denoted by SuppR(M), that is, SuppR(M) =
{p ∈ Spec(R) | Mp 6= 0}.

It can be proved that

SuppR(M) = {p ∈ Spec(R) | p ⊇ (0 : x) for some x ∈M, x 6= 0}.

It is clear that AssR(M) ⊆ SuppR(M). Also for a Noetherian ring R, p ∈
SuppR(M) if and only if p ⊇ q for some q ∈ AssR(M), see [5, Chapter IV,
Proposition 7].

Definition 3.2. Let M be an R-module and p be a prime ideal of R. We define

M(p) = {x ∈M | sx ∈ pM for some s ∈ R\p}.

Clearly M(p) is a submodule of M . Also we recall that an R-module M is said
to be weakly finitely generated if for any p ∈ SuppR(M) the submodule M(p) is
proper. In this situation it can be shown that M(p) is a p-prime submodule of M .

Definition 3.3. Let M be a weakly finitely generated R-module. The sets of
associated and supported prime submodules of M are defined, respectively, as fol-
lows:

AssP (M) = {M(p) | p ∈ AssR(M)} and SuppP (M) = {M(p) | p ∈ SuppR(M)}.

Lemma 3.4. Let R be a Noetherian ring and M be an R-module. Then the sets
of minimal elements of AssR(M) and that of SuppR(M) are equal.
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Proof. It is clear that AssR(M) ⊆ SuppR(M). If p0 ∈ AssR(M) is minimal in
SuppR(M), then p0 is minimal in AssR(M). Because if p ∈ AssR(M) and p ⊂ p0,
since p0 ∈ SuppR(M), this contradicts the minimality of p0 in SuppR(M). Let
p ∈ AssR(M) be minimal in AssR(M). If there exists q0 ∈ SuppR(M) such
that q0 ⊂ p, then there exists p0 ∈ AssR(M) such that p0 ⊆ q0. But then
p0 ⊂ p, a contradiction to minimality of p in AssR(M). Therefore p is minimal in
SuppR(M). Finally, we can show that no element of SuppR(M)\AssR(M) can be
minimal in SuppR(M).

Theorem 3.5. Let M be an F -weak multiplication R-module. Then:

(i) Spec(R) = SuppR(M), Spec(M) = SuppP (M) and the map p 7−→ pM is
an order preserving bijection from SuppR(M) to SuppP (M), under which
AssR(M) is mapped to AssP (M).

(ii) If R is an integral domain, then AssP (M) = 0.

(iii) If R is Noetherian, then minimal elements of SuppP (M) and AssP (M)
coincide.

Proof. (i): Let φ : Spec(R) → Spec(M) be the map defined by φ(p) = pM . By
the definition of an F -weak multiplication module and Proposition 2.15, it is clear
that φ is an order preserving bijection. Also for every prime ideal p of R, we
have M(p) = pM which is a prime submodule, thus φ(SuppR(M)) = SuppP (M)
and φ(AssR(M)) = AssP (M). Thus to prove (i) we just need to show that
SuppR(M) = Spec(R). Let p be a prime ideal of R. Since pM is p-prime, (pM)p

is a prime (and hence proper) submodule of Mp. Therefore Mp 6= 0 and p ∈
SuppR(M).

(ii): By (i), it is sufficient to show that AssR(M) = 0. But by Proposition 2.6,
M is torsion-free and hence AnnR(m) = 0 for every 0 6= m ∈M .

(iii): It follows from part (i) and Lemma 3.4.

Corollary 3.6. Let M be a finitely generated multiplication R-module. Then
SuppP (M) = Spec(M).

Proof. If M is finitely generated multiplication as an R-module, then it is so as an
R

AnnR(M) -module. Also Spec(M) and SuppP (M) remain the same if we consider

M as R
AnnR(M) -module. Thus we just need to prove the claim for faithful modules.

But a faithful finitely generated multiplication module is F -weak multiplication
and hence the claim holds by (i) of the above theorem.

In the rest of our work we prove some results in which the R-module M is not
necessarily F -weak multiplication.

Lemma 3.7. Let S be a multiplicatively closed subset of a ring R and let M be
an R-module. Then the set of supported prime ideals of the S−1R-module S−1M

is equal to:

SuppS−1R(S−1M) = {S−1p | p ∈ SuppR(M) and p ∩ S = ∅}.
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Proof. We recall that

SuppR(M) = {p ∈ Spec(R) | p ⊇ (0 : x) = AnnR(x) for some 0 6= x ∈M}.

Let p ∈ SuppR(M) and p ∩ S = ∅. Then p ⊇ AnnR(x) for some x ∈ M ,
x 6= 0. Hence S−1p ⊇ S−1(AnnR(x)) and S−1(AnnR(x)) = S−1(AnnR(Rx)) =
Ann(S−1(Rx)). It is easy to show that Ann(S−1(Rx)) = Ann(x

s
), where s ∈ S

(here x
s

6= 0 since p ∩ S = ∅). Therefore S−1p ⊇ Ann(x
s
) and so S−1p ∈

SuppS−1R(S−1M).
Conversely, let p′ ∈ SuppS−1R(S−1M) then p′ ⊇ Ann(x) for some x ∈ S−1M ,

x 6= 0. We know there exists a prime ideal p of R such that S−1p = p′ ( p is
the contraction of p′ in R ). We have p′ ⊇ Ann(S−1(Rx)) = S−1(Ann(Rx)) =
S−1(Ann(x)) and so S−1p ⊇ S−1(Ann(x)). This implies pS ⊇ (Ann(x))S , the S-
components of p and Ann(x), respectively. But pS = p and hence p ⊇ (Ann(x))S .
But AnnR(x) ⊆ (AnnR(x))S and consequently p ∈ SuppR(M).

Theorem 3.8. Let S be a multiplicatively closed subset of a ring R and let M be
a weakly finitely generated R-module. Then the set of supported prime submodules
of the S−1R-module S−1M is equal to:

SuppP (S−1M) = {S−1Q | Q ∈ SuppP (M), (Q : M) ∩ S = ∅}.

Proof. We recall that

SuppP (M) = {M(p) | p ∈ SuppR(M)},

SuppP (S−1M) = {M(p′) | p′ ∈ SuppS−1R(S−1M)}.

SinceM is a weakly finitely generatedR-module hence for every p ∈ SuppR(M) the
submoduleM(p) is p-prime. LetM(p′) ∈ SuppP (S−1M). But p′ ∈ SuppS−1R(S−1M)
and so p′ = S−1p, where p ∈ SuppR(M) and p ∩ S = ∅. We have

M(S−1p) = M(p′)

= {x′ ∈ S−1M | s′x′ ∈ S−1pS−1M for some s′ ∈ S−1R\S−1p}

= {x′ ∈ S−1M | s′x′ ∈ S−1(pM) for some s′ ∈ S−1(R\p)}

=

{

x

s
∈ S−1M | x ∈M, s ∈ S ,

σ

γ
.
x

s
∈ S−1(pM)

for some σ ∈ R\p, γ ∈ S
}

.

Now σx ∈ pM , σ ∈ R\p and x ∈M imply that x ∈M(p). Hence

M(S−1p) = {
x

s
∈ S−1M(p) | x ∈M(p), s ∈ S} = S−1p,

where p = M(p) ∈ SuppP (M). Finally we have (p : M) ∩ S = (M(p) : M) ∩ S =
p ∩ S = ∅.
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Proposition 3.9. Let M be a weakly finitely generated R-module and let {p1, ..., pn}
be a subset of the set of minimal elements of SuppR(M). If p1...pnM = 0 then
p1, ..., pn are the only minimal elements of SuppR(M).

Proof. Since p1...pnM = 0 we have p1...pn ⊆ AnnR(M). Now let p be any minimal
element of SuppR(M). Then p ⊇ AnnR(x) for some x ∈ M , x 6= 0. Hence
p1...pn ⊆ AnnR(M) ⊆ AnnR(x) ⊆ p. This implies pi ⊆ p for some 1 ≤ i ≤ n. But
by minimality of p we have p = pi.

Theorem 3.10. Let R be a Noetherian ring and let {Mi}i∈I be a family of R-
modules in which Mi is weakly finitely generated for every i ∈ I. Then:

AssP

(

⊕

i∈I

Mi

)

=

{

⊕

i∈I

Mi(p) | Mj(p) ∈ AssP (Mj) for some j ∈ I

}

.

Proof. Since each Mi is weakly finitely generated, for any p ∈ SuppR(Mi), the
submodule Mi(p) is p-prime. Now we have,

AssP

(

⊕

i∈I

Mi

)

=

{(

⊕

i∈I

Mi

)

(p) | p ∈ AssR

(

⊕

i∈I

Mi

)}

=

{

⊕

i∈I

Mi(p) | p ∈ AssR

(

⊕

i∈I

Mi

)}

=

{

⊕

i∈I

Mi(p) | p ∈
⋃

i∈I

AssR(Mi)

}

=

{

⊕

i∈I

Mi(p) | p ∈ AssR(Mj) for some j ∈ I

}

,

and by using the definition of AssP (M), for an R-module M , we have

AssP

(

⊕

i∈I

Mi

)

=

{

⊕

i∈I

Mi(p) | Mj(p) ∈ AssP (Mj) for some j ∈ I

}

.

The proof is now complete.

Here we recall that an R-module M is called a quasi multiplication module if
M(p) = pM , for all p ∈ SuppR(M). Also it is clear that every F -weak multiplica-
tion R-module is a quasi multiplication module.

Theorem 3.11. Let R be a Noetherian ring and M be a quasi multiplication R-
module. Let p ∈ Spec(R) be such that M(p) ∈ Spec(M). Then M(p) ∈ SuppP (M)
if and only if M(p) ⊇ Q for some Q ∈ AssP (M).
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Proof. Let M(p) ∈ SuppP (M) then M(p) = pM and p ∈ SuppR(M). Since R is
Noetherian, p ⊇ q for some q ∈ AssR(M). But Q = M(q) = qM ∈ AssP (M).
Hence pM ⊇ qM implies that M(p) ⊇ Q. On the other hand, let M(p) ⊇ Q

for some Q ∈ AssP (M). Then Q = M(q) = qM for some q ∈ AssR(M). But
M(p) ⊇ Q implies that (M(p) : M) ⊇ (Q : M), that is, p ⊇ q. Also q = AnnR(x)
for some x ∈ M , x 6= 0. Therefore we have p ∈ SuppR(M) and hence M(p) ∈
SuppP (M).
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