Some Remarks on F-weak Multiplication Modules

Hamid Agha Tavallaee ${ }^{1}$ and Robabeh Mahtabi Oghani
School of Mathematics Iran University of Science and Technology,
Narmak, Tehran 16844, Iran
e-mail : tavallaee@iust.ac.ir,
r.mahtabi@gmail.com

Abstract

Let R be a commutative ring with identity and M be a unitary R-module. In this work we introduce a weak multiplication module of certain kind and consider various properties of such a module. Also a number of results concerning associated and supported prime submodules of a module are proved.

Keywords : Weak multiplication module; Primeful module; Associated prime submodule.
2010 Mathematics Subject Classification : 13E05; 13E10; 13C99.

1 Introduction

In this paper all rings are commutative with identity and all modules are unitary. If K and N are submodules of an R-module M we recall that $\left(N:_{R}\right.$ $K)=(N: K)=\{r \in R \mid r K \subseteq N\}$, which is an ideal of R. A proper submodule N of an R-module M is said to be prime if for every $r \in R, x \in M ; r x \in N$ implies that $x \in N$ or $r \in(N: M)$. In such a case $p=(N: M)$ is a prime ideal of R and N is said to be p-prime. An R-module M is called a multiplication module if for any submodule N of M there exists an ideal I of R such that $N=I M$. Clearly M is a multiplication module if and only if $N=(N: M) M$ for any submodule N of M. If S is a non-empty subset of an R-module M, the annihilator of S, denoted by $A n n_{R}(S)$ or simply $\operatorname{Ann}(S)$, is defined as $\{r \in R \mid r S=0\}$. The set of all prime (maximal) submodules of an R-module M is denoted by $\operatorname{Spec}(M)(\operatorname{Max}(M))$. If

[^0]R is a ring (not necessarily an integral domain) and M is an R-module, the subset $T(M)$ of M is defined by $T(M)=\{m \in M \mid \exists r \neq 0, r \in R$ such that $r m=0\}$. Clearly, if R is an integral domain then $T(M)$ is a submodule of M called the torsion submodule. If $T(M)=0$ we say that M is torsion-free.

In Section 2, we introduce F-weak multiplication modules and then prove a number different results concerning these modules. Section 3 deals with associated and supported prime ideals (submodules) of a module. Here, among other things, we find the supported prime ideals (submodules) of module $S^{-1} M$ in terms of supported prime ideals (submodules) of M itself. Also some relations between the sets of associated prime submodules, supported prime submodules and $\operatorname{Spec}(M)$ has been found.

2 Some basic results

We begin this section with the following definitions which have the main role in the whole work.

Definition 2.1. An R-module M is called weak multiplication if $\operatorname{Spec}(M)=\emptyset$ or for every prime submodule N of M we have $N=I M$, where I is an ideal of R.

It is clear that every multiplication module is weak multiplication. Also if N is a p-prime submodule of a weak multiplication module M it can be shown that $N=p M$.

Definition 2.2. An R-module M is said to be F-weak multiplication if it satisfies the following conditions:
(1) M is weak multiplication;
(2) For every $p \in \operatorname{Spec}(R), p M$ is a prime submodule of M and $(p M: M)=p$.

For example we can show that the R-module M is F-weak multiplication in the following cases:
(i) M is a finitely generated multiplication R-module such that $\operatorname{Ann}(M) \subseteq p$ for every $p \in \operatorname{Spec}(R)$. In a very particular case, when M is a free weak multiplication module, it is F-weak multiplication module.
(ii) In (i) we assume $A n n_{R}(M)=0$, that is, M is faithful.

Proposition 2.3. Let M be an F-weak multiplication R-module, where R is a Noetherian ring. Then the number of minimal prime submodule of M is finite.

Proof. Let $0=Q_{1} \cap \ldots \cap Q_{n}$ be a normal primary decomposition of the zero ideal, where Q_{i} is p_{i}-primary $(1 \leq i \leq n)$. Then all the minimal prime ideals of R can be found in the set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Let $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, where $k \leq n$, be the set of minimal prime ideals of R. We know that there is a one-to-one inclusion preserving correspondence between prime ideals of R and prime submodules of M
in such a way that if $p \in \operatorname{Spec}(R)$ corresponds to $N \in \operatorname{Spec}(M)$ then $N=p M$ and $p=(N: M)$. This implies that $\left\{p_{1} M, \ldots, p_{k} M\right\}$ is the set of all minimal prime submodules of M.

Proposition 2.4. Let R be a non-trivial ring and $M \neq 0$ be an F-weak multiplication R-module. Then M has a maximal submodule.

Proof. We know that R has a maximal ideal \underline{m}-say. But $\underline{m} \in \operatorname{Spec}(R)$ implies that $\underline{m} M \in \operatorname{Spec}(M)$ and $(\underline{m} M: M)=\underline{m}$. Let a submodule H of M be such that $\underline{m} M \subseteq H \varsubsetneqq M$. By [1, Proposition 3], H is an \underline{m}-prime submodule of M. Since M is F-weak multiplication, $H=\underline{m} M$ and so $\underline{m} M$ is a maximal submodule of M.

Remark 2.5. Let R be a non-trivial ring and M be an F-weak multiplication R-module, then $I M \neq M$ for each proper ideal I of R.

Proof. Let I be an arbitrary proper ideal of R, then there exists $\underline{m} \in \operatorname{Max}(R)$ containing I. Then $I M \subseteq \underline{m} M \subset M$, since $\underline{m} M$ is a prime submodule of M.

Proposition 2.6. Let R be an integral domain and M be an F-weak multiplication R-module. Then M is torsion-free.

Proof. Let $T(M) \neq 0$ so there exists a non-zero element $x \in T(M)$. Since $\operatorname{Ann}(x) \neq 0$ there exists $c \in R, c \neq 0$ such that $c x=0$. We know that $(0) \in$ $\operatorname{Spec}(R)$ and so $(0) M=0 \in \operatorname{Spec}(M)$. Now $c x=0$ implies that $x \in(0) M=0$ or $c \in((0) M: M)=A n n_{R}(M)=(0)$. But $c \neq 0, x \neq 0$, a contradiction. Therefore $T(M)=0$, that is, M is torsion-free.

Note that under the hypotheses of above proposition we also conclude that M is a faithful R-module.

Corollary 2.7. Let R be an integral domain and M be an F-weak multiplication R-module. Then every proper direct summand of M is prime. Hence M is indecomposable.

Proof. By the preceding proposition M is torsion-free and by [1, Result 1], every direct summand of M is a prime submodule. Now we show that M is indecomposable. If $M=M_{1} \oplus M_{2}$ where $M_{1}, M_{2} \neq 0$ then by the current form of the corollary, M_{1} is a p-prime for some prime ideal p of R. Thus $M_{1}=p M=p M_{1} \oplus p M_{2}$. Hence $p M_{2}=0$. Since M is torsion-free and $M_{2} \neq 0$, we have $p=0$ and hence $M_{1}=0$, a contradiction.

Proposition 2.8. Let M be an F-weak multiplication R-module and let $I \unlhd R$, $p \in \operatorname{Spec}(R)$. If $I M \subseteq p M$ then $I \subseteq p$.

Proof. If $I M \subseteq p M$ then $(I M: p M) \subseteq(p M: M)$. But $(p M: M)=p$ and clearly $I \subseteq(I M: M)$. Therefore $I \subseteq p$.

Definition 2.9. An R-module M is called primeful, if $M=0$ or the natural map of $\operatorname{Spec}(M)$ is surjective.

We recall that the natural map of $\operatorname{Spec}(M)$ is defined as follows:
$\psi: \operatorname{Spec}(M) \rightarrow \operatorname{Spec}\left(\frac{R}{\operatorname{Ann}_{R}(M)}\right)$ such that $\psi(P)=\frac{(P: M)}{A n n_{R}(M)}, \forall P \in \operatorname{Spec}(M)$.
Proposition 2.10. Let M be an F-weak multiplication R-module. Then M is a primeful R-module.

Proof. Let $M \neq 0$ and ψ be the natural map of $\operatorname{Spec}(M)$. We show that ψ is a surjection. Let $\frac{p^{\prime}}{\operatorname{Ann} n_{R}(M)} \in \operatorname{Spec}\left(\frac{R}{A n n_{R}(M)}\right)$, where $p^{\prime} \in \operatorname{Spec}(R)$ is such that $A n n_{R}(M) \subseteq p^{\prime}$. Thus $p^{\prime} M \in \operatorname{Spec}(M)$ and $\left(p^{\prime} M: M\right)=p^{\prime}$. Hence $\frac{p^{\prime}}{A n n_{R}(M)}=$ $\frac{\left(p^{\prime} M: M\right)}{A n n_{R}(M)}=\psi\left(p^{\prime} M\right)$ and therefore M is primeful.

Proposition 2.11. Let M be a non-zero free R-module. Then M is a primeful R-module.

Proof. It is clear that $\operatorname{Ann}_{R}(M)=0$. Now we use [2, Result 1.4] to see that the natural map of $S \operatorname{pec}(M)$ is surjective.

Theorem 2.12. Let M be an R-module and $\psi: \operatorname{Spec}(M) \rightarrow \operatorname{Spec}\left(\frac{R}{\operatorname{Ann}_{R}(M)}\right)$ be the natural map of $\operatorname{Spec}(M)$. Then M is F-weak multiplication in the following cases:
(i) M is a free R-module and ψ is injective.
(ii) M is a faithful weak multiplication R-module and ψ is surjective.

Proof. (i) Since M is free, for every $p \in \operatorname{Spec}(R)$ we have $p M \in \operatorname{Spec}(M)$ and $(p M: M)=p$. It remains to show that M is weak multiplication. It is clear that $A n n_{R}(M)=0$ and so by the hypothesis $\psi: \operatorname{Spec}(M) \rightarrow \operatorname{Spec}(R)$ is injective. Let $P \in \operatorname{Spec}(M)$. We show that $P=(P: M) M$. Since $\psi(P)=(P: M) \in \operatorname{Spec}(R)$ and M is free we have $(P: M) M \in \operatorname{Spec}(M)$ and hence $\psi(P)=\psi((P: M) M)$. But ψ is injective and hence $P=(P: M) M$.
(ii) It is enough to show that for every $p \in \operatorname{Spec}(R), p M \in \operatorname{Spec}(M)$ and $(p M: M)=p$. Since $A n n_{R}(M)=0$, by the hypothesis $\psi: \operatorname{Spec}(M) \rightarrow \operatorname{Spec}(R)$ is surjective and hence for every $p \in \operatorname{Spec}(R)$ there exists $P \in \operatorname{Spec}(M)$ such that $\psi(P)=(P: M)=p$. But $P=(P: M) M=p M$ and so $P=p M \in \operatorname{Spec}(M)$. Also $(p M: M)=(P: M)=p$ and the proof is complete.

Lemma 2.13. Let M be an F-weak multiplication R-module such that every prime submodule of M is finitely generated. Then M is a Noetherian module.

Proof. We assume that $M \neq 0$. By Proposition $2.4, M$ has a maximal submodule L-say. Since $L \varsubsetneqq M$ there exists $x \in M \backslash L$ and by the maximal property of L we have $M=L+R x$. By [1, Proposition 4], L is a prime submodule of M and as a result finitely generated. Therefore $M=L+R x$ is also finitely generated. Now by [3, Theorem 2.7], M is a multiplication R-module. The result follows by [4, Theorem 3.2].

Definition 2.14. An R-module M is called a prime cancellation module or a p-cancellation module if for every $p, q \in \operatorname{Spec}(R), p M=q M$ implies that $p=q$.

Proposition 2.15. Let M be an F-weak multiplication R-module. Then M is a p-cancellation module.

Proof. This is a particular case of Proposition 2.8.

Theorem 2.16. Let M be an F-weak multiplication R-module and let M^{\prime} be an R-module. Let $\phi: M \rightarrow M^{\prime}$ be an epimorphism such that $\operatorname{ker} \phi$ is contained in every prime submodules of M. Then M^{\prime} is an F-weak multiplication R-module.

Proof. First, let L^{\prime} be an arbitrary prime submodules of M^{\prime}. Then there exists a prime submodule L of M such that $\phi(L)=L^{\prime}$ and so $\phi^{-1}\left(L^{\prime}\right)=L$. Since M is F-weak multiplication, there exists an ideal $p \in \operatorname{Spec}(R)$ such that $p M=L$. Hence $L=p M=\phi^{-1}\left(L^{\prime}\right)$ implies that $\phi(p M)=L^{\prime}$, that is, $p \phi(M)=L^{\prime}$ which means $p M^{\prime}=L^{\prime}$. Therefore M^{\prime} is a weak multiplication R-module.

Second, let $p \in \operatorname{Spec}(R)$ be an arbitrary prime ideal, we must prove that $p M^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ and $\left(p M^{\prime}: M^{\prime}\right)=p$. But $p M^{\prime}=p \phi(M)=\phi(p M) \leq M^{\prime}$. Since M is F-weak multiplication, then $p M \in \operatorname{Spec}(M)$ and so $p M^{\prime}=\phi(p M) \in$ $\operatorname{Spec}\left(M^{\prime}\right)$. Now we must prove that $\left(p M^{\prime}: M^{\prime}\right)=p$. Obviously, $p \subseteq\left(p M^{\prime}: M^{\prime}\right)$. We show that $\left(p M^{\prime}: M^{\prime}\right) \subseteq p$. But $\left(p M^{\prime}: M^{\prime}\right)=(p \phi(M): \phi(M))=(\phi(p M):$ $\phi(M))$. Let $r \in\left(p M^{\prime}: M^{\prime}\right)=(\phi(p M): \phi(M))$, so $r \phi(M) \subseteq \phi(p M)$, that is, $\phi(r M) \subseteq \phi(p M)$. Since $r M \subseteq \phi^{-1}(\phi(r M)) \subseteq \phi^{-1}(\phi(p M))=\phi^{-1}(p \phi(M))=$ $\phi^{-1}\left(p M^{\prime}\right)=p \phi^{-1}\left(M^{\prime}\right)=p M$, then $r M \subseteq p M$ and so $r \in(p M: M)=p$. Therefore $\left(p M^{\prime}: M^{\prime}\right) \subseteq p$.

Hence, $\left(p M^{\prime}: M^{\prime}\right)=p$ and so M^{\prime} is an F-weak multiplication R-module.

Corollary 2.17. Let M be an F-weak multiplication R-module and N be a submodule of M such that N is contained in every prime submodule of M. Then $\frac{M}{N}$ is an F-weak multiplication R-module.

Proof. The proof is clear by the above theorem.

Corollary 2.18. Let $\left\{M_{i}\right\}, 1 \leq i \leq n$, be a collection of R-modules. If $M=$ $\bigoplus_{i=1}^{n} M_{i}$ is a weak multiplication R-module, then for every $1 \leq i \leq n$, M_{i} is a weak multiplication R-module.

Proof. We define the map ϕ_{i} as follows:

$$
\begin{gathered}
\phi_{i}: M=\bigoplus_{i=1}^{n} M_{i} \longrightarrow M_{i},(\forall i=1, \ldots, n) \text { by } \\
\phi_{i}\left(m_{1}, \ldots, m_{n}\right)=m_{i}, \quad \forall\left(m_{1}, \ldots, m_{n}\right) \in \bigoplus_{i=1}^{n} M_{i} .
\end{gathered}
$$

Since ϕ_{i} is an epimorphism, the result follows by the first part of the proof of Theorem 2.16.

3 Associated and supported primes

We recall some definitions and notions which are needed in the sequel.
Definition 3.1. Let M be an R-module.
(i) The prime ideal p of R is called an associated prime ideal of M if for some non-zero $x \in M, p=(0: x)=A n n_{R}(x)$. The set of all associated prime ideals of M is denoted by $A s s_{R}(M)$.
(ii) The prime ideal p of R is called a supported prime ideal of M if $M_{p} \neq 0$. The set of all such prime ideals is denoted by $\operatorname{Supp}_{R}(M)$, that is, $\operatorname{Supp}_{R}(M)=$ $\left\{p \in \operatorname{Spec}(R) \mid M_{p} \neq 0\right\}$.

It can be proved that

$$
\operatorname{Supp}_{R}(M)=\{p \in \operatorname{Spec}(R) \mid p \supseteq(0: x) \text { for some } x \in M, x \neq 0\}
$$

It is clear that $\operatorname{Ass}_{R}(M) \subseteq \operatorname{Supp}_{R}(M)$. Also for a Noetherian ring $R, p \in$ $\operatorname{Supp}_{R}(M)$ if and only if $p \supseteq q$ for some $q \in A s s_{R}(M)$, see [5, Chapter IV, Proposition 7].

Definition 3.2. Let M be an R-module and p be a prime ideal of R. We define

$$
M(p)=\{x \in M \mid s x \in p M \quad \text { for some } \quad s \in R \backslash p\}
$$

Clearly $M(p)$ is a submodule of M. Also we recall that an R-module M is said to be weakly finitely generated if for any $p \in S u p p_{R}(M)$ the submodule $M(p)$ is proper. In this situation it can be shown that $M(p)$ is a p-prime submodule of M.

Definition 3.3. Let M be a weakly finitely generated R-module. The sets of associated and supported prime submodules of M are defined, respectively, as follows:

$$
\operatorname{Ass}_{P}(M)=\left\{M(p) \mid p \in A s s_{R}(M)\right\} \text { and } \operatorname{Supp}_{P}(M)=\left\{M(p) \mid p \in \operatorname{Supp}_{R}(M)\right\}
$$

Lemma 3.4. Let R be a Noetherian ring and M be an R-module. Then the sets of minimal elements of $\operatorname{Ass}_{R}(M)$ and that of $S u p p_{R}(M)$ are equal.

Proof. It is clear that $\operatorname{Ass}_{R}(M) \subseteq \operatorname{Supp}_{R}(M)$. If $p_{0} \in \operatorname{Ass}_{R}(M)$ is minimal in $S u p p_{R}(M)$, then p_{0} is minimal in $A s s_{R}(M)$. Because if $p \in A s s_{R}(M)$ and $p \subset p_{0}$, since $p_{0} \in \operatorname{Supp}_{R}(M)$, this contradicts the minimality of p_{0} in $\operatorname{Supp} p_{R}(M)$. Let $p \in A s s_{R}(M)$ be minimal in $A s s_{R}(M)$. If there exists $q_{0} \in S u p p_{R}(M)$ such that $q_{0} \subset p$, then there exists $p_{0} \in \operatorname{Ass} s_{R}(M)$ such that $p_{0} \subseteq q_{0}$. But then $p_{0} \subset p$, a contradiction to minimality of p in $A s s_{R}(M)$. Therefore p is minimal in $\operatorname{Supp}_{R}(M)$. Finally, we can show that no element of $S u p p_{R}(M) \backslash A s s_{R}(M)$ can be minimal in $\operatorname{Supp}_{R}(M)$.

Theorem 3.5. Let M be an F-weak multiplication R-module. Then:
(i) $\operatorname{Spec}(R)=\operatorname{Supp}_{R}(M), \operatorname{Spec}(M)=\operatorname{Supp}_{P}(M)$ and the map $p \longmapsto p M$ is an order preserving bijection from $\operatorname{Supp}_{R}(M)$ to $\operatorname{Supp}_{P}(M)$, under which $A_{s s_{R}}(M)$ is mapped to $\operatorname{Ass}_{P}(M)$.
(ii) If R is an integral domain, then Ass $_{P}(M)=0$.
(iii) If R is Noetherian, then minimal elements of $\operatorname{Supp}_{P}(M)$ and $A s s_{P}(M)$ coincide.

Proof. (i): Let $\phi: \operatorname{Spec}(R) \rightarrow \operatorname{Spec}(M)$ be the map defined by $\phi(p)=p M$. By the definition of an F-weak multiplication module and Proposition 2.15, it is clear that ϕ is an order preserving bijection. Also for every prime ideal p of R, we have $M(p)=p M$ which is a prime submodule, thus $\phi\left(\operatorname{Supp}_{R}(M)\right)=S u p p_{P}(M)$ and $\phi\left(A s s_{R}(M)\right)=A s s_{P}(M)$. Thus to prove (i) we just need to show that $S u p p_{R}(M)=\operatorname{Spec}(R)$. Let p be a prime ideal of R. Since $p M$ is p-prime, $(p M)_{p}$ is a prime (and hence proper) submodule of M_{p}. Therefore $M_{p} \neq 0$ and $p \in$ $\operatorname{Supp}_{R}(M)$.
(ii): By (i), it is sufficient to show that $A s s_{R}(M)=0$. But by Proposition 2.6, M is torsion-free and hence $A n n_{R}(m)=0$ for every $0 \neq m \in M$.
(iii): It follows from part (i) and Lemma 3.4.

Corollary 3.6. Let M be a finitely generated multiplication R-module. Then $\operatorname{Supp}_{P}(M)=\operatorname{Spec}(M)$.
Proof. If M is finitely generated multiplication as an R-module, then it is so as an $\frac{R}{A n n_{R}(M)}$-module. Also $\operatorname{Spec}(M)$ and $\operatorname{Supp}_{P}(M)$ remain the same if we consider M as $\frac{R}{A n n_{R}(M)}$-module. Thus we just need to prove the claim for faithful modules. But a faithful finitely generated multiplication module is F-weak multiplication and hence the claim holds by (i) of the above theorem.

In the rest of our work we prove some results in which the R-module M is not necessarily F-weak multiplication.

Lemma 3.7. Let S be a multiplicatively closed subset of $a \operatorname{ring} R$ and let M be an R-module. Then the set of supported prime ideals of the $S^{-1} R$-module $S^{-1} M$ is equal to:

$$
\operatorname{Supp}_{S^{-1} R}\left(S^{-1} M\right)=\left\{S^{-1} p \mid p \in \operatorname{Supp}_{R}(M) \text { and } p \cap S=\emptyset\right\}
$$

Proof. We recall that

$$
\operatorname{Supp}_{R}(M)=\left\{p \in \operatorname{Spec}(R) \mid p \supseteq(0: x)=A n n_{R}(x) \text { for some } 0 \neq x \in M\right\} .
$$

Let $p \in \operatorname{Supp}_{R}(M)$ and $p \cap S=\emptyset$. Then $p \supseteq A n n_{R}(x)$ for some $x \in M$, $x \neq 0$. Hence $S^{-1} p \supseteq S^{-1}\left(A n n_{R}(x)\right)$ and $S^{-1}\left(A n n_{R}(x)\right)=S^{-1}\left(A n n_{R}(R x)\right)=$ $\operatorname{Ann}\left(S^{-1}(R x)\right)$. It is easy to show that $\operatorname{Ann}\left(S^{-1}(R x)\right)=\operatorname{Ann}\left(\frac{x}{s}\right)$, where $s \in S$ (here $\frac{x}{s} \neq 0$ since $p \cap S=\emptyset$). Therefore $S^{-1} p \supseteq \operatorname{Ann}\left(\frac{x}{s}\right)$ and so $S^{-1} p \in$ $\operatorname{Supp}_{S^{-1} R}\left(S^{-1} M\right)$.

Conversely, let $p^{\prime} \in S u p p_{S^{-1} R}\left(S^{-1} M\right)$ then $p^{\prime} \supseteq \operatorname{Ann}(\bar{x})$ for some $\bar{x} \in S^{-1} M$, $\bar{x} \neq 0$. We know there exists a prime ideal p of R such that $S^{-1} p=p^{\prime}(p$ is the contraction of p^{\prime} in R). We have $p^{\prime} \supseteq \operatorname{Ann}\left(S^{-1}(R x)\right)=S^{-1}(A n n(R x))=$ $S^{-1}(\operatorname{Ann}(x))$ and so $S^{-1} p \supseteq S^{-1}(\operatorname{Ann}(x))$. This implies $p^{S} \supseteq(A n n(x))^{S}$, the S components of p and $\operatorname{Ann}(x)$, respectively. But $p^{S}=p$ and hence $p \supseteq(A n n(x))^{S}$. But $A n n_{R}(x) \subseteq\left(A n n_{R}(x)\right)^{S}$ and consequently $p \in S u p p_{R}(M)$.

Theorem 3.8. Let S be a multiplicatively closed subset of a ring R and let M be a weakly finitely generated R-module. Then the set of supported prime submodules of the $S^{-1} R$-module $S^{-1} M$ is equal to:

$$
\operatorname{Supp}_{P}\left(S^{-1} M\right)=\left\{S^{-1} Q \mid Q \in \operatorname{Supp}_{P}(M),(Q: M) \cap S=\emptyset\right\}
$$

Proof. We recall that

$$
\begin{gathered}
\operatorname{Supp}_{P}(M)=\left\{M(p) \mid p \in \operatorname{Supp}_{R}(M)\right\} \\
\operatorname{Supp}_{P}\left(S^{-1} M\right)=\left\{M\left(p^{\prime}\right) \mid p^{\prime} \in \operatorname{Supp}_{S^{-1} R}\left(S^{-1} M\right)\right\}
\end{gathered}
$$

Since M is a weakly finitely generated R-module hence for every $p \in S u p p_{R}(M)$ the submodule $M(p)$ is p-prime. Let $M\left(p^{\prime}\right) \in \operatorname{Supp}_{P}\left(S^{-1} M\right)$. But $p^{\prime} \in \operatorname{Supp}_{S^{-1} R}\left(S^{-1} M\right)$ and so $p^{\prime}=S^{-1} p$, where $p \in S u p p_{R}(M)$ and $p \cap S=\emptyset$. We have

$$
\begin{aligned}
M\left(S^{-1} p\right)= & M\left(p^{\prime}\right) \\
= & \left\{x^{\prime} \in S^{-1} M \mid s^{\prime} x^{\prime} \in S^{-1} p S^{-1} M \text { for some } s^{\prime} \in S^{-1} R \backslash S^{-1} p\right\} \\
= & \left\{x^{\prime} \in S^{-1} M \mid s^{\prime} x^{\prime} \in S^{-1}(p M) \text { for some } s^{\prime} \in S^{-1}(R \backslash p)\right\} \\
= & \left\{\left.\frac{x}{s} \in S^{-1} M \right\rvert\, x \in M, s \in S, \frac{\sigma}{\gamma} \cdot \frac{x}{s} \in S^{-1}(p M)\right. \\
& \text { for some } \sigma \in R \backslash p, \gamma \in S\} .
\end{aligned}
$$

Now $\sigma x \in p M, \sigma \in R \backslash p$ and $x \in M$ imply that $x \in M(p)$. Hence

$$
M\left(S^{-1} p\right)=\left\{\left.\frac{x}{s} \in S^{-1} M(p) \right\rvert\, x \in M(p), s \in S\right\}=S^{-1} \bar{p}
$$

where $\bar{p}=M(p) \in \operatorname{Supp}_{P}(M)$. Finally we have $(\bar{p}: M) \cap S=(M(p): M) \cap S=$ $p \cap S=\emptyset$.

Proposition 3.9. Let M be a weakly finitely generated R-module and let $\left\{p_{1}, \ldots, p_{n}\right\}$ be a subset of the set of minimal elements of $\operatorname{Supp}_{R}(M)$. If $p_{1} \ldots p_{n} M=0$ then p_{1}, \ldots, p_{n} are the only minimal elements of $\operatorname{Supp}_{R}(M)$.

Proof. Since $p_{1} \ldots p_{n} M=0$ we have $p_{1} \ldots p_{n} \subseteq A n n_{R}(M)$. Now let p be any minimal element of $\operatorname{Supp}_{R}(M)$. Then $p \supseteq \operatorname{Ann}_{R}(x)$ for some $x \in M, x \neq 0$. Hence $p_{1} \ldots p_{n} \subseteq \operatorname{Ann}_{R}(M) \subseteq A n n_{R}(x) \subseteq p$. This implies $p_{i} \subseteq p$ for some $1 \leq i \leq n$. But by minimality of p we have $p=p_{i}$.

Theorem 3.10. Let R be a Noetherian ring and let $\left\{M_{i}\right\}_{i \in I}$ be a family of R modules in which M_{i} is weakly finitely generated for every $i \in I$. Then:

$$
\text { Ass }_{P}\left(\bigoplus_{i \in I} M_{i}\right)=\left\{\bigoplus_{i \in I} M_{i}(p) \mid M_{j}(p) \in \text { Ass }{ }_{P}\left(M_{j}\right) \text { for some } j \in I\right\}
$$

Proof. Since each M_{i} is weakly finitely generated, for any $p \in S u p p_{R}\left(M_{i}\right)$, the submodule $M_{i}(p)$ is p-prime. Now we have,

$$
\begin{aligned}
\operatorname{Ass}_{P}\left(\bigoplus_{i \in I} M_{i}\right) & =\left\{\left(\bigoplus_{i \in I} M_{i}\right)(p) \mid p \in \operatorname{Ass}_{R}\left(\bigoplus_{i \in I} M_{i}\right)\right\} \\
& =\left\{\bigoplus_{i \in I} M_{i}(p) \mid p \in \operatorname{Ass_{R}}\left(\bigoplus_{i \in I} M_{i}\right)\right\} \\
& =\left\{\bigoplus_{i \in I} M_{i}(p) \mid p \in \bigcup_{i \in I} \operatorname{Ass}_{R}\left(M_{i}\right)\right\} \\
& =\left\{\bigoplus_{i \in I} M_{i}(p) \mid p \in \operatorname{Ass_{R}}\left(M_{j}\right) \text { for some } j \in I\right\},
\end{aligned}
$$

and by using the definition of $A s s_{P}(M)$, for an R-module M, we have

$$
\operatorname{Ass}_{P}\left(\bigoplus_{i \in I} M_{i}\right)=\left\{\bigoplus_{i \in I} M_{i}(p) \mid M_{j}(p) \in \operatorname{Ass}_{P}\left(M_{j}\right) \text { for some } j \in I\right\}
$$

The proof is now complete.
Here we recall that an R-module M is called a quasi multiplication module if $M(p)=p M$, for all $p \in \operatorname{Supp}_{R}(M)$. Also it is clear that every F-weak multiplication R-module is a quasi multiplication module.

Theorem 3.11. Let R be a Noetherian ring and M be a quasi multiplication R module. Let $p \in \operatorname{Spec}(R)$ be such that $M(p) \in \operatorname{Spec}(M)$. Then $M(p) \in \operatorname{Supp}_{P}(M)$ if and only if $M(p) \supseteq Q$ for some $Q \in A s s_{P}(M)$.

Proof. Let $M(p) \in \operatorname{Supp}_{P}(M)$ then $M(p)=p M$ and $p \in \operatorname{Supp}_{R}(M)$. Since R is Noetherian, $p \supseteq q$ for some $q \in A s s_{R}(M)$. But $Q=M(q)=q M \in \operatorname{Ass}_{P}(M)$. Hence $p M \supseteq q M$ implies that $M(p) \supseteq Q$. On the other hand, let $M(p) \supseteq Q$ for some $Q \in A s s_{P}(M)$. Then $Q=M(q)=q M$ for some $q \in A s s_{R}(M)$. But $M(p) \supseteq Q$ implies that $(M(p): M) \supseteq(Q: M)$, that is, $p \supseteq q$. Also $q=A n n_{R}(x)$ for some $x \in M, x \neq 0$. Therefore we have $p \in \operatorname{Supp}_{R}(M)$ and hence $M(p) \in$ $\operatorname{Supp}_{P}(M)$.

Acknowledgements : We would like to thank the referees for his comments and suggestions on the manuscript.

References

[1] C.P. Lu, Prime submodules of modules, Comment. Math. Univ. Sancti Pauli 33 (1) (1984) 61-69.
[2] R.L. McCasland, M.E. Moore, Prime submodules, Comm. in Algebra 20 (6) (1992) 1803-1817.
[3] A. Azizi, Weak multiplication modules, Czech. Math. J. 53 (2003) 529-536.
[4] A. Gaur, A.K. Maloo, A. Parkash, Prime submodules in multiplication modules, Int. J. Algebra 1 (8) (2007) 375-380.
[5] N. Bourbaki, Commutative algebra, Elements of Mathematics, Chap. 1-7, Springer-Verlag, 1989.
(Received 17 February 2010)
(Accepted 12 April 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: tavallaee@iust.ac.ir (H.A. Tavallaee)

 Copyright (c) 2011 by the Mathematical Association of Thailand. All rights reserved.

