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Abstract : Let R be a commutative ring with identity and M be a unitary
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1 Introduction

In this paper all rings are commutative with identity and all modules are
unitary. If K and N are submodules of an R-module M we recall that (N :g
K)=(N:K)={reR|rK C N}, which is an ideal of R. A proper submodule
N of an R-module M is said to be prime if for every r € R, x € M; rx € N implies
that z € N or r € (N : M). In such a case p = (N : M) is a prime ideal of R and
N is said to be p-prime. An R-module M is called a multiplication module if for
any submodule N of M there exists an ideal I of R such that N = IM. Clearly M
is a multiplication module if and only if N = (N : M )M for any submodule N of
M. If S is a non-empty subset of an R-module M, the annihilator of S, denoted by
Anng(S) or simply Ann(S), is defined as {r € R | rS = 0}. The set of all prime
(maximal) submodules of an R-module M is denoted by Spec(M) (Max(M)). If
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R is a ring (not necessarily an integral domain) and M is an R-module, the subset
T (M) of M is defined by T(M) = {m € M | 3Ir # 0, r € R such that rm = 0}.
Clearly, if R is an integral domain then 7'(M) is a submodule of M called the
torsion submodule. If (M) = 0 we say that M is torsion-free.

In Section 2, we introduce F-weak multiplication modules and then prove a
number different results concerning these modules. Section 3 deals with associated
and supported prime ideals (submodules) of a module. Here, among other things,
we find the supported prime ideals (submodules) of module S~™'M in terms of
supported prime ideals (submodules) of M itself. Also some relations between the
sets of associated prime submodules, supported prime submodules and Spec(M)
has been found.

2 Some basic results

We begin this section with the following definitions which have the main role
in the whole work.

Definition 2.1. An R-module M is called weak multiplication if Spec(M) = @ or
for every prime submodule N of M we have N = IM, where [ is an ideal of R.

It is clear that every multiplication module is weak multiplication. Also if N
is a p-prime submodule of a weak multiplication module M it can be shown that
N =pM.

Definition 2.2. An R-module M is said to be F-weak multiplication if it satisfies
the following conditions:

(1) M is weak multiplication;
(2) For every p € Spec(R), pM is a prime submodule of M and (pM : M) = p.

For example we can show that the R-module M is F-weak multiplication in
the following cases:

(i) M is a finitely generated multiplication R-module such that Ann(M) C p
for every p € Spec(R). In a very particular case, when M is a free weak
multiplication module, it is F-weak multiplication module.

(ii) In (i) we assume Anngr(M) = 0, that is, M is faithful.

Proposition 2.3. Let M be an F-weak multiplication R-module, where R is a
Noetherian ring. Then the number of minimal prime submodule of M is finite.

Proof. Let 0 = @1 N...NQ, be a normal primary decomposition of the zero ideal,
where @Q; is p;-primary (1 < ¢ < mn). Then all the minimal prime ideals of R
can be found in the set {p1,p2,...,pn}. Let {p1,p2,...,pk}, where k < n, be the
set of minimal prime ideals of R. We know that there is a one-to-one inclusion
preserving correspondence between prime ideals of R and prime submodules of M
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in such a way that if p € Spec(R) corresponds to N € Spec(M) then N = pM and
p = (N : M). This implies that {p1M,...,pr M} is the set of all minimal prime
submodules of M. O

Proposition 2.4. Let R be a non-trivial ring and M # 0 be an F-weak multipli-
cation R-module. Then M has a maximal submodule.

Proof. We know that R has a maximal ideal m-say. But m € Spec(R) implies
that mM € Spec(M) and (mM : M) = m. Let a submodule H of M be such that
mM C H ; M. By [1, Proposition 3], H is an m-prime submodule of M. Since
M is F-weak multiplication, H = mM and so mM is a maximal submodule of
M. O

Remark 2.5. Let R be a non-trivial ring and M be an F-weak multiplication
R-module, then IM # M for each proper ideal I of R.

Proof. Let I be an arbitrary proper ideal of R, then there exists m € Maxz(R)
containing I. Then IM C mM C M, since mM is a prime submodule of M. O

Proposition 2.6. Let R be an integral domain and M be an F-weak multiplication
R-module. Then M is torsion-free.

Proof. Let T(M) # 0 so there exists a non-zero element = € T(M). Since
Ann(z) # 0 there exists ¢ € R, ¢ # 0 such that cx = 0. We know that (0) €
Spec(R) and so (0)M =0 € Spec(M). Now cx = 0 implies that = € (0)M = 0 or
€ ((0)M : M) = Anng(M) = (0). But ¢ # 0,z # 0, a contradiction. Therefore
( ) =0, that is, M is torsion-free. O

Note that under the hypotheses of above proposition we also conclude that M
is a faithful R-module.

Corollary 2.7. Let R be an integral domain and M be an F-weak multiplica-
tion R-module. Then every proper direct summand of M is prime. Hence M is
indecomposable.

Proof. By the preceding proposition M is torsion-free and by [1, Result 1], every
direct summand of M is a prime submodule. Now we show that M is indecompos-
able. If M = M1& Ms where M7, My # 0 then by the current form of the corollary,
Mj is a p-prime for some prime ideal p of R. Thus My = pM = pM; &pM,. Hence
pMs = 0. Since M is torsion-free and Ms # 0, we have p = 0 and hence M; = 0,
a contradiction. |

Proposition 2.8. Let M be an F-weak multiplication R-module and let I < R,
p € Spec(R). If IM C pM then I C p.

Proof. It IM C pM then (IM : pM) C (pM : M). But (pM : M) = p and clearly
I C(IM : M). Therefore I C p. O
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Definition 2.9. An R-module M is called primeful, if M = 0 or the natural map
of Spec(M) is surjective.

We recall that the natural map of Spec(M) is defined as follows:

such that ¢(P) = P M) , VP € Spec(M).

¥ : Spec(M) — Spec ( = Annn (i)

R
Anng(M)
Proposition 2.10. Let M be an F-weak multiplication R-module. Then M is a
primeful R-module.

Proof. Let M # 0 and ¢ be the natural map of Spec(M). We show that 1 is
a surjection. Let W;(M) € Spec(ﬁ@), where p’ € Spec(R) is such that
Anng(M) C p’. Thus p’M € Spec(M) and (p'M : M) = p’. Hence W;(M) =

% = (p’ M) and therefore M is primeful. O

Proposition 2.11. Let M be a non-zero free R-module. Then M is a primeful
R-module.

Proof. Tt is clear that Annr(M) = 0. Now we use [2, Result 1.4] to see that the
natural map of Spec(M) is surjective. O

Theorem 2.12. Let M be an R-module and ) : Spec(M) — Spec(ﬁ%) be

the natural map of Spec(M). Then M is F-weak multiplication in the following
cases:

(i) M is a free R-module and v is injective.

(i1) M is a faithful weak multiplication R-module and i is surjective.

Proof. (i) Since M is free, for every p € Spec(R) we have pM € Spec(M) and
(pM : M) = p. Tt remains to show that M is weak multiplication. It is clear that
Anng(M) = 0 and so by the hypothesis ¢ : Spec(M) — Spec(R) is injective. Let
P € Spec(M). We show that P = (P : M)M. Since ¢(P) = (P : M) € Spec(R)
and M is free we have (P : M)M € Spec(M) and hence ¢(P) = ¢((P : M)M).
But ¢ is injective and hence P = (P : M)M.

(ii) It is enough to show that for every p € Spec(R), pM € Spec(M) and
(pM : M) = p. Since Anng(M) = 0, by the hypothesis 1 : Spec(M) — Spec(R)
is surjective and hence for every p € Spec(R) there exists P € Spec(M) such that
Y(P)=(P:M)=p. But P=(P: M)M = pM and so P = pM € Spec(M).
Also (pM : M) = (P : M) = p and the proof is complete. O

Lemma 2.13. Let M be an F-weak multiplication R-module such that every prime
submodule of M s finitely generated. Then M is a Noetherian module.
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Proof. We assume that M # 0. By Proposition 2.4, M has a maximal submodule
L-say. Since L ; M there exists © € M \ L and by the maximal property of L
we have M = L + Rz. By [1, Proposition 4], L is a prime submodule of M and
as a result finitely generated. Therefore M = L + Rz is also finitely generated.
Now by [3, Theorem 2.7], M is a multiplication R-module. The result follows by
[4, Theorem 3.2]. O

Definition 2.14. An R-module M is called a prime cancellation module or a
p-cancellation module if for every p,q € Spec(R), pM = ¢M implies that p = gq.

Proposition 2.15. Let M be an F-weak multiplication R-module. Then M is a
p-cancellation module.

Proof. This is a particular case of Proposition 2.8. O

Theorem 2.16. Let M be an F-weak multiplication R-module and let M’ be an
R-module. Let ¢ : M — M’ be an epimorphism such that ker ¢ is contained in
every prime submodules of M. Then M’ is an F-weak multiplication R-module.

Proof. First, let L' be an arbitrary prime submodules of M’. Then there exists
a prime submodule L of M such that ¢(L) = L’ and so ¢~ '(L’) = L. Since M
is F-weak multiplication, there exists an ideal p € Spec(R) such that pM = L.
Hence L = pM = ¢~ 1(L') implies that ¢(pM) = L', that is, p¢p(M) = L’ which
means pM’ = L'. Therefore M’ is a weak multiplication R-module.

Second, let p € Spec(R) be an arbitrary prime ideal, we must prove that
pM’ € Spec(M’) and (pM’' : M') = p. But pM’' = pp(M) = ¢(pM) < M.
Since M is F-weak multiplication, then pM € Spec(M) and so pM' = ¢(pM) €
Spec(M'). Now we must prove that (pM’ : M’) = p. Obviously, p C (pM' : M').
We show that (pM’ : M) C p. But (pM' : M') = (pp(M) : $(M)) = (¢(pM) :
H(M)). Let 1 € (pM' : M) = ($(pM) : (M), 50 r6(M) C G(pM), that i,
B(rM) C d(pM). Since rM C &1 (o(rM)) C ¢~ (B(pM)) = 6~} (p3(M)) =
¢~ L (pM') = pp~t(M') = pM, then rM C pM and so r € (pM : M) = p.
Therefore (pM’' : M) C p.

Hence, (pM' : M’) = p and so M’ is an F-weak multiplication R-module. O

Corollary 2.17. Let M be an F-weak multiplication R-module and N be a sub-
module of M such that N is contained in every prime submodule of M. Then %
is an F-weak multiplication R-module.

Proof. The proof is clear by the above theorem. O

Corollary 2.18. Let {M;},1 < i < n, be a collection of R-modules. If M =
@?:1 M; is a weak multiplication R-module, then for every 1 < i < n, M; is a
weak multiplication R-module.
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Proof. We define the map ¢; as follows:

¢i: M =M, — M; , (Vi=1,..,n) by
=1

(bi(ml,...,mn) =m; , V(ml,...,mn) S @Ml

Since ¢; is an epimorphism, the result follows by the first part of the proof of
Theorem 2.16. o

3 Associated and supported primes

We recall some definitions and notions which are needed in the sequel.

Definition 3.1. Let M be an R-module.

(i) The prime ideal p of R is called an associated prime ideal of M if for some
non-zero x € M, p = (0 : ) = Anng(x). The set of all associated prime
ideals of M is denoted by Assg(M).

(ii) The prime ideal p of R is called a supported prime ideal of M if M,, # 0. The
set of all such prime ideals is denoted by Suppr(M), that is, Suppr(M) =

{p € Spec(R) | M, £0}.
It can be proved that
Suppr(M) = {p € Spec(R) | p 2 (0: ) for some x € M, z # 0}.

It is clear that Assgp(M) C Suppr(M). Also for a Noetherian ring R, p €
Suppr(M) if and only if p O ¢ for some ¢ € Assg(M), see [5, Chapter IV,
Proposition 7).

Definition 3.2. Let M be an R-module and p be a prime ideal of R. We define
M(p)={x e M |sxepM forsome sec R\p}.

Clearly M(p) is a submodule of M. Also we recall that an R-module M is said
to be weakly finitely generated if for any p € Suppr(M) the submodule M (p) is
proper. In this situation it can be shown that M (p) is a p-prime submodule of M.

Definition 3.3. Let M be a weakly finitely generated R-module. The sets of
associated and supported prime submodules of M are defined, respectively, as fol-
lows:

Assp(M) = {M(p) | p € Assr(M)} and Suppp(M) = {M(p) | p € Suppr(M)}.

Lemma 3.4. Let R be a Noetherian ring and M be an R-module. Then the sets
of minimal elements of Assr(M) and that of Suppr(M) are equal.
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Proof. 1t is clear that Assgr(M) C Suppr(M). If pg € Assr(M) is minimal in
Suppr(M), then pg is minimal in Assg(M). Because if p € Assgr(M) and p C po,
since pg € Suppr(M), this contradicts the minimality of py in Suppr(M). Let
p € Assp(M) be minimal in Assgp(M). If there exists ¢o € Suppr(M) such
that go C p, then there exists py € Assr(M) such that po C qo. But then
po C p, a contradiction to minimality of p in Assg(M). Therefore p is minimal in
Suppr(M). Finally, we can show that no element of Suppgr(M)\Assr(M) can be
minimal in Suppr(M). O

Theorem 3.5. Let M be an F-weak multiplication R-module. Then:

(i) Spec(R) = Suppr(M), Spec(M) = Suppp(M) and the map p — pM is
an order preserving bijection from Suppr(M) to Suppp(M), under which
Assp(M) is mapped to Assp(M).

(i1) If R is an integral domain, then Assp(M) = 0.

(i1i) If R is Noetherian, then minimal elements of Suppp(M) and Assp(M)
coincide.

Proof. (i): Let ¢ : Spec(R) — Spec(M) be the map defined by ¢(p) = pM. By
the definition of an F-weak multiplication module and Proposition 2.15, it is clear
that ¢ is an order preserving bijection. Also for every prime ideal p of R, we
have M (p) = pM which is a prime submodule, thus ¢(Suppr(M)) = Suppp(M)
and ¢(Assp(M)) = Assp(M). Thus to prove (i) we just need to show that
Suppr(M) = Spec(R). Let p be a prime ideal of R. Since pM is p-prime, (pM),
is a prime (and hence proper) submodule of M,. Therefore M, # 0 and p €
Suppr(M).

(ii): By (i), it is sufficient to show that Assr(M) = 0. But by Proposition 2.6,
M is torsion-free and hence Annpg(m) = 0 for every 0 # m € M.

(iii): It follows from part (i) and Lemma 3.4. O

Corollary 3.6. Let M be a finitely generated multiplication R-module. Then
Suppp(M) = Spec(M).

Proof. If M is finitely generated multiplication as an R-module, then it is so as an
m—module. Also Spec(M) and Suppp(M) remain the same if we consider

M as ﬁi(M)—module. Thus we just need to prove the claim for faithful modules.
But a faithful finitely generated multiplication module is F-weak multiplication
and hence the claim holds by (i) of the above theorem. O

In the rest of our work we prove some results in which the R-module M is not
necessarily F-weak multiplication.

Lemma 3.7. Let S be a multiplicatively closed subset of a ring R and let M be
an R-module. Then the set of supported prime ideals of the S™'R-module S™'M
is equal to:

Supps-1r(ST'M) ={S7'p | p € Suppr(M) and pN S =0}.
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Proof. We recall that
Suppr(M) = {p € Spec(R) | p 2 (0: z) = Anng(x) for some 0# x € M}.

Let p € Suppr(M) and pNS = . Then p DO Anng(z) for some z € M,
x # 0. Hence S™p O S71(Anng(x)) and S~ Y(Anng(z)) = S~ (Anng(Rz)) =
Ann(S~!(Rz)). It is easy to show that Ann(S™'(Rxz)) = Ann(%), where s € S
(here £ % 0 since pN S = 0). Therefore S~'p 2 Ann(%) and so S™'p €
Suppg-1(S™'M).

Conversely, let p’ € Suppg-15(S™tM) then p’ DO Ann(T) for some T € S~ M,
Z # 0. We know there exists a prime ideal p of R such that S~™!'p = p/ ( pis
the contraction of p’ in R ). We have p’ O Ann(S™!(Rx)) = S~} (Ann(Rz)) =
S~ (Ann(z)) and so S~'p D S~1(Ann(x)). This implies p° O (Ann(x))®, the S-

components of p and Ann(z), respectively. But p® = p and hence p O (Ann(z))”.

But Anng(x) C (Anng(z))® and consequently p € Suppr(M). O

Theorem 3.8. Let S be a multiplicatively closed subset of a ring R and let M be
a weakly finitely generated R-module. Then the set of supported prime submodules
of the S~*R-module S~*M is equal to:

Suppp(S~'M) ={57'Q | Q € Suppp(M), (Q : M)NS =0}
Proof. We recall that
Suppp(M) = {M(p) | p € Suppr(M)},

Suppp(ST'M) = {M(p') | p’ € Supps-1r(S™"M)}.

Since M is a weakly finitely generated R-module hence for every p € Suppgr(M) the
submodule M (p) is p-prime. Let M (p') € Suppp(S~1M). But p’ € Suppg-1z(S~1M)
and so p’ = S~!p, where p € Suppr(M) and pN S = (). We have

M(S™'p) = M(p')
={2'cS'M | sz’ € ST'pST'M for some s’ € ST'R\S 'p}
={2' €S 'M |52 € ST (pM) for some s € ST (R\p)}

—{5651M|:176M, seS, z.fesfl(pM)
s ~'s
for some o € R\p, 'VES}.
Now oz € pM, o € R\p and = € M imply that x € M(p). Hence
M(S7'p) = {= € ST\ M(p) |z € M(p), s€ S} =575,

where p = M (p) € Suppp(M). Finally we have (p: M)NS = (M(p): M)NS =
pNS=40. O
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Proposition 3.9. Let M be a weakly finitely generated R-module and let {p1, ..., pn}
be a subset of the set of minimal elements of Suppr(M). If p1..pnM = 0 then
D1, ..., Pn are the only minimal elements of Suppr(M).

Proof. Since p1...p, M = 0 we have py...p,, € Anng(M). Now let p be any minimal
element of Suppr(M). Then p O Anng(x) for some z € M, xz # 0. Hence
p1...pn C Anng(M) C Anng(z) C p. This implies p; C p for some 1 < i < n. But
by minimality of p we have p = p;. O

Theorem 3.10. Let R be a Noetherian ring and let {M;}icr be a family of R-
modules in which M; is weakly finitely generated for every i € I. Then:

Assp (@MJ = {@Mz(p) | M;(p) € Assp(M;) for some j € I}.

i€l i€l

Proof. Since each M; is weakly finitely generated, for any p € Suppr(M;), the
submodule M;(p) is p-prime. Now we have,

Assp <€B Mi) _ {(@ Mi> (p) | p € Assg (EB Mz)}

(@ 1re von (@)}

iel el
= {@Mz(p) |pe UASSR(Mi)}
iel el

= {@Mz(p) | p € Assgr(M;) for some j € I},

icl

and by using the definition of Assp (M), for an R-module M, we have

Assp (@ Ml-) = {@Mi(p) | M;(p) € Assp(M;) for some j € 1} :

il iel
The proof is now complete. [l

Here we recall that an R-module M is called a quasi multiplication module if
M(p) = pM, for all p € Suppr(M). Also it is clear that every F-weak multiplica-
tion R-module is a quasi multiplication module.

Theorem 3.11. Let R be a Noetherian ring and M be a quasi multiplication R-
module. Let p € Spec(R) be such that M (p) € Spec(M). Then M (p) € Suppp(M)
if and only if M(p) 2 Q for some Q € Assp(M).
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Proof. Let M(p) € Suppp(M) then M(p) = pM and p € Suppr(M). Since R is
Noetherian, p D ¢ for some q € Assp(M). But Q = M(q) = gM € Assp(M).
Hence pM D gM implies that M(p) 2 Q. On the other hand, let M(p) 2O @
for some Q € Assp(M). Then Q = M(q) = ¢M for some q € Assp(M). But
M(p) 2 Q implies that (M (p) : M) D (Q : M), that is, p D ¢q. Also ¢ = Anng(z)
for some z € M, © # 0. Therefore we have p € Suppr(M) and hence M(p) €
Suppp(M). O
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