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n−1xn)),

xn+1 = P (γnf(yn) + (1 − γn)(δnyn + (1 − δn)T1(PT1)
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1 Introduction

The concept of asymptotically nonexpansive self-mappings which is a gener-
alization of the class of nonexpansive self-mappings was first introduced in 1972
by Goebel and Kirk [1]. They proved that any asymptotically nonexpansive self-
mapping of a nonempty closed convex bounded subset of a uniformly convex Ba-
nach space possesses a fixed point. Since then, the weak and strong convergence
problems of iterative sequences (with errors) for asymptotically nonexpansive self-
mappings have been studied by many authors (see, for examples, [2–7]). In 2003,
Chidume et al. [8] introduced the concept of asymptotically nonexpansive nonself-
mappings. Such a nonself mapping is defined as follows. Let X be a real normed
space, C a nonempty subset of X and P : X → C the nonexpansive retraction of
X onto C. A nonself mapping T : C → X is called asymptotically nonexpansive if
there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that

‖T (PT )n−1x − T (PT )n−1y‖ ≤ kn‖x − y‖,

for all x, y ∈ C and n ≥ 1. They proved the following.

Theorem 1.1. Let E be a real uniformly convex Banach space, K closed convex
nonempty subset of E. Let T : K → E be completely continuous and asymptotically
nonexpansive mapping with sequence {kn} ⊂ [1,∞) such that

∑

n≥1(kn

2−1) < ∞
and F (T ) 6= ∅. Let αn ∈ (0, 1) be such that ǫ ≤ 1 − αn ≤ 1 − ǫ, ∀n ≥ 1 and some
ǫ > 0. From arbitrary x1 ∈ K, define the sequence {xn} by

xn = P ((1 − αn)xn + αnT (PT )n−1xn), n ≥ 1.

Then {xn} converges strongly to some fixed point of T.

They also proved the following theorem which was about the weak convergence
of {xn} to some fixed point of T.

Theorem 1.2. Let E be a real uniformly convex Banach space which has a Frechet
differentiable norm, K closed convex nonempty subset of E. Let T : K → E
be asymptotically nonexpansive mapping with sequence {kn} ⊂ [1,∞) such that
∑

n≥1(kn

2 − 1) < ∞ and F (T ) 6= ∅. Let αn ∈ (0, 1) be such that ǫ ≤ 1 − αn ≤
1 − ǫ, ∀n ≥ 1 and some ǫ > 0. From arbitrary x1 ∈ K, define the sequence {xn}
by

xn = P ((1 − αn)xn + αnT (PT )n−1xn), n ≥ 1.

Then {xn} converges weakly to some fixed point of T.

Recently, in 2008, Lou et al. [6] studied the viscosity approximation fixed point
for asymptotically nonexpansive self-mappings in Banach spaces. They proved the
following theorems.
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Theorem 1.3. Let K be a nonempty closed convex subset of a Banach space X
which has a uniformly Gâteaux differentiable norm and T : K → K an asymp-
totically nonexpansive mapping with F (T ) 6= ∅ and f a contraction on C. Let
{αn}, {βn} be sequences in (0, 1) satisfying

C1 : lim
n→∞

αn = 0; C2 : lim
n→∞

kn − 1

αn

= 0.

Then the sequence {zn} defined by

zn+1 = αnf(zn) + (1 − αn)T nzn,

converges strongly to the unique solution of the variational inequality:

p ∈ F (T ) such that 〈(I − f)p, j(p − x∗)〉 ≤ 0 ∀x∗ ∈ F (T ).

Theorem 1.4. Let K be a nonempty closed convex subset of a uniformly convex
Banach space X which has a uniformly Gâteaux differentiable norm and T : K →
K an asymptotically nonexpansive mapping with F (T ) 6= ∅ and f a contraction
on C. Let {αn}, {βn} be sequences in (0, 1) satisfying

C1 : lim
n→∞

αn = 0; C2 :

∞
∑

n=1

αn = ∞ C3 : lim
n→∞

kn − 1

αn

= 0.

For arbitrary x0 ∈ K, let the sequence {xn} be defined iteratively by

xn+1 = αnf(xn) + βnxn + γnT nxn.

Assume

(i) αn, βn, γn ∈ [0, 1], αn + βn + γn = 1;

(ii) 0 < lim infn→∞ βn ≤ lim sup
n→∞ βn < 1;

(iii) T satisfies the asymptotically regularity; limn→∞ ‖T n+1xn − T nxn‖ = 0.

Then the sequence {xn} converges strongly to the unique solution of the variational
inequality:

p ∈ F (T ) such that 〈(I − f)p, j(p − x∗)〉 ≤ 0 ∀x∗ ∈ F (T ).

2 Preliminaries

In this paper, we study a viscosity approximation for some common fixed point
of asymptotically nonexpansive nonself mappings in Banach spaces as follows.

Let X be a real arbitrary Banach space and let C be a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. A mapping
f : C → C is called a contractive mapping if there exists a constant α ∈ (0, 1) such
that

‖f(x) − f(y)‖ ≤ α‖x − y‖,
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for all x, y ∈ C. We use d(x, F ) for the distance from the point x to the set F and
F (T ) for the set of all fixed points of the mapping T. For i = 1, 2, let Ti : C → X
be an asymptotically nonexpansive nonself mapping such that F (T1)∩F (T2) 6= ∅.
Let f : C → C be a contractive mapping and let {αn}, {βn}, {γn} and {δn} be
real sequences in [0, 1]. For arbitrary x1 ∈ C, let {xn} and {yn} be the iterative
sequences defined by

yn = P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)T2(PT2)
n−1xn)),

xn+1 = P (γnf(yn) + (1 − γn)(δnyn + (1 − δn)T1(PT1)
n−1yn)), n ≥ 1. (2.1)

Here, for convenience, we use the following definition of asymptotically nonexpan-
sive nonself mapping. A nonself mapping T : C → X is called asymptotically
nonexpansive if there exists a sequence {rn} ⊂ [0, 1) with rn → 0 as n → ∞ such
that

‖T (PT )n−1x − T (PT )n−1y‖ ≤ (1 + rn)‖x − y‖,

for all x, y ∈ C and n ≥ 1.

We need the following lemmas for the main results in this paper.

Lemma 2.1 ([9, Lemma 2.1]). Let {an}, {bn} and {δn} be sequences of nonnega-
tive real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn for all n.

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then

(1) limn→∞ an exists.

(2) limn→∞ an = 0 if {an} has a subsequence converging to zero.

Lemma 2.2. Let C be a nonempty closed subset of a Banach space X and T :
C → X be an asymptotically nonexpansive nonself mapping with the fixed point
set F (T ) 6= ∅. Then F (T ) is a closed subset in C.

Proof. Assume that T : C → X is an asymptotically nonexpansive nonself map-
ping with respect to {rn}. Let {pn} be a sequence in F (T ) such that pn → p as
n → ∞. Since C is closed and {pn} is a sequence in C, we must have p ∈ C. Since
T : C → X is asymptotically nonexpansive, we obtain

‖Tp− pn‖ = ‖Tp− Tpn‖ ≤ (1 + r1)‖p − pn‖.

Taking limit as n → ∞ and using the continuity of the norm, we obtain ‖Tp−p‖ ≤
0, which implies that Tp = p. The proof is complete.
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3 Main Results

In this section, we present our main results. The first theorem gives the nec-
essary and sufficient condition for the convergence of the sequence {xn} defined
by (2.1).

Theorem 3.1. Let X be a real arbitrary Banach space and let C be a nonempty
closed convex nonexpansive retract of X with P as a nonexpansive retraction. For
i = 1, 2, let Ti : C → X be an asymptotically nonexpansive nonself mapping with

respect to {r
(n)
i

} such that F (T1) ∩ F (T2) 6= ∅ and
∑∞

n=1 rn < ∞, where rn =

max{r
(n)
1 , r

(n)
2 }. Let f : C → C be a contractive mapping and let {αn}, {βn}, {γn}

and {δn} be real sequences in [0, 1] such that
∑∞

n=1 αn < ∞ and
∑∞

n=1 γn < ∞.
Then, the iterative sequence {xn} defined by (2.1) converges to a common fixed
point of T1 and T2 if and only if lim infn→∞ d(xn, F (T1) ∩ F (T2)) = 0.

Proof. The necessity is obvious, so it is omitted. We now prove the sufficiency.
Assume that Ti : C → X is an asymptotically nonexpansive nonself mapping

with respect to {r
(i)
n }. Let p ∈ F (T1) ∩ F (T2). Note that Ti(PTi)

n−1p = p. By
assumption, we have

‖yn − p‖ = ‖P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)T2(PT2)
n−1xn)) − Pp‖

≤ ‖αnf(xn) + (1 − αn)(βnxn + (1 − βn)T2(PT2)
n−1xn) − p‖

≤ αn‖f(xn) − p‖ + (1 − αn)βn‖xn − p‖

+ (1 − αn)(1 − βn)‖T2(PT2)
n−1xn − p‖

≤ αnα‖xn − p‖ + αn‖f(p) − p‖ + (1 − αn)βn‖xn − p‖

+ (1 − αn)(1 − βn)(1 + r(2)
n

)‖xn − p‖

≤ αnα‖xn − p‖ + αn‖f(p) − p‖ + (1 − αn)βn‖xn − p‖

+ (1 − αn)(1 − βn)‖xn − p‖ + r(2)
n

(1 − αn)(1 − βn)‖xn − p‖

≤ (1 − (1 − α)αn + rn)‖xn − p‖ + αn‖f(p)− p‖

≤ (1 + rn)‖xn − p‖ + αn‖f(p) − p‖. (3.1)

Similarly we have that

‖xn+1 − p‖ ≤ (1 + rn)‖yn − p‖ + γn‖f(p) − p‖.

From this and (3.1), we have

‖xn+1 − p‖ ≤ (1 + rn){(1 + rn)‖xn − p‖ + αn‖f(p) − p‖} + γn‖f(p) − p‖

≤ (1 + rn)(1 + rn)‖xn − p‖ + [(1 + rn)αn + γn]‖f(p) − p‖

≤ (1 + rn(2 + rn))‖xn − p‖ + [(1 + rn)αn + γn]‖f(p) − p‖

= (1 + cn)‖xn − p‖ + bn, (3.2)

where cn = rn(2+rn) and bn = [(1+rn)αn+γn]‖f(p)−p‖. Since
∑∞

n=1 rn < ∞, we
have that {2+ rn} and {1+ rn} are bounded. Thus

∑∞

n=1 cn < ∞ and
∑∞

n=1 bn <
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∞ because
∑∞

n=1 αn < ∞ and
∑∞

n=1 γn < ∞. Hence Lemma 2.1 implies that
limn→∞ ‖xn − p‖ exists. Thus {xn} is bounded and so are {T1(PT2)

n−2xn} and
{f(xn)} because T1 is asymptotically nonexpansive and f is contractive. Now
since {xn} is bounded and from (3.1), we conclude that {yn} is bounded and so
are {T1(PT1)

n−1yn} and {f(yn)}.
We next turn to another calculation for ‖yn − p‖ and ‖xn+1 − p‖ as follows.

‖yn − p‖ = ‖P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)T2(PT2)
n−1xn)) − Pp‖

≤ ‖αnf(xn) + (1 − αn)(βnxn + (1 − βn)T2(PT2)
n−1xn) − p‖

≤ αn‖f(xn) − T2(PT2)
n−1xn‖ + (1 − αn)βn‖xn − p‖

+ (1 − βn + αnβn)‖T2(PT2)
n−1xn − p‖

≤ αn‖f(xn) − T2(PT2)
n−1xn‖ + (1 − αn)βn‖xn − p‖

+ (1 − βn + αnβn)(1 + r(2)
n

)‖xn − p‖

≤ αn‖f(xn) − T2(PT2)
n−1xn‖ + (1 − αn)βn‖xn − p‖

+ (1 − βn + αnβn)‖xn − p‖ + r(2)
n

(1 − βn + αnβn)‖xn − p‖

= (1 + rn(1 + αnβn))‖xn − p‖ + αn‖f(xn) − T2(PT2)
n−1xn‖

≤ (1 + 2rn)‖xn − p‖ + αn‖f(xn) − T2(PT2)
n−1xn‖. (3.3)

Similarly, we have that

‖xn+1 − p‖ ≤ (1 + 2rn)‖yn − p‖ + γn‖f(yn) − T1(PT1)
n−1yn‖. (3.4)

Putting (3.3) in (3.4), we obtain that

‖xn+1 − p‖ ≤ (1 + 2rn)2‖xn − p‖ + (1 + 2rn)αn‖f(xn) − T2(PT2)
n−1xn‖

+ γn‖f(yn) − T1(PT1)
n−1yn‖

= (1 + dn)‖xn − p‖ + en, (3.5)

where dn = 4rn(1+rn) and en = (1+2rn)αn‖f(xn)−T2(PT2)
n−1xn‖+γn‖f(yn)−

T1(PT1)
n−1yn‖. By the assumption that

∑∞

n=1 rn < ∞,
∑∞

n=1 αn < ∞,
∑∞

n=1 γn <
∞, and {T2(PT2)

n−1xn}, {T1(PT1)
n−1yn}, {f(xn)} and {f(yn)} are bounded, we

have that
∑∞

n=1 dn < ∞ and
∑∞

n=1 en < ∞. Hence Lemma 2.1 tells us that
limn→∞ ‖xn − p‖ exists. Thus {‖xn − p‖} is bounded. Let L = sup

n
‖xn − p‖. We

can rewrite (3.5) as

‖xn+1 − p‖ ≤ ‖xn − p‖ + Ldn + en for n ≥ 1. (3.6)

From this and by induction, we obtain, for m, n ≥ 1 and p ∈ F (T1) ∩ F (T2), that

‖xn+m − p‖ ≤ ‖xn − p‖ + L

n+m−1
∑

i=n

di +

n+m−1
∑

i=n

ei. (3.7)

Also from (3.6), we obtain

d(xn+1, F (T1) ∩ F (T2)) ≤ d(xn, F (T1) ∩ F (T2)) + Ldn + en.
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But, the assumption lim infn→∞ d(xn, F (T1)∩F (T2)) = 0 implies that there exists
a subsequence of {d(xn, F (T1)∩F (T2))} converging to zero. From this and because
∑∞

n=1(Ldn + en) < ∞, Lemma 2.1 tells us that

lim
n→∞

d(xn, F (T1) ∩ F (T2)) = 0. (3.8)

We now show that {xn} is a Cauchy sequence in X. Let ǫ > 0. From (3.8),
∑∞

n=1 dn < ∞ and
∑∞

n=1 en < ∞, there exists n0 such that, for n ≥ n0, we have

d(xn, F (T1) ∩ F (T2)) < ǫ/6,

∞
∑

i=n

di < ǫ/(3L) and

∞
∑

i=n

ei < ǫ/3. (3.9)

By the first inequality in (3.9) and the definition of infimum, there exists p0 ∈
F (T1) ∩ F (T2) such that

‖xn0
− p0‖ < ǫ/6. (3.10)

Combining (3.6), (3.9) and (3.10), we obtain

‖xn0+m − xn0
‖ ≤ ‖xn0+m − p0‖ + ‖xn0

− p0‖

≤ 2‖xn0
− p0‖ + L

n0+m−1
∑

i=n0

di +

n0+m−1
∑

i=n0

ei

< ǫ/3 + ǫ/3 + ǫ/3 = ǫ,

which implies that {xn} is a Cauchy sequence in X. But X is a Banach space,
so there must be some q ∈ X such that xn → q. Since C is closed and {xn} is a
sequence in C, we have that q ∈ C. Now d(xn, F (T1)∩F (T2)) → 0 and xn → q as
n → ∞, the continuity of d(·, F (T1)∩F (T2)) implies that d(q, F (T1)∩F (T2)) = 0.
Thus q ∈ F (T1)∩F (T2) because F (T1)∩F (T2) is closed, by Lemma 2.2. Therefore
{xn} converges to a common fixed point of T1 and T2, as desired.

If T1 = T2 = T, then the iterative sequences (2.1) become

yn = P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)T (PT )n−1xn)),

xn+1 = P (γnf(yn) + (1 − γn)(δnyn + (1 − δn)T (PT )n−1yn)), n ≥ 1. (3.11)

We then have the following result for a fixed point of a single asymptotically
nonexpansive nonself mapping.

Corollary 3.2. Let X be a real Banach space and let C be a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T :
C → X be an asymptotically nonexpansive nonself mapping with respect to {rn}
such that F (T ) 6= ∅ in C and

∑∞

n=1 rn < ∞. Let f : C → C be a contractive
mapping and let {αn}, {βn}, {γn} and {δn} be real sequences in [0, 1] such that
∑∞

n=1 αn < ∞ and
∑∞

n=1 γn < ∞. Then, the sequence {xn}, defined by (3.11),
converges to a fixed point of T if and only if lim infn→∞ d(xn, F (T )) = 0.
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We also have the following results involving asymptotic regularity as in Lou
et al. [6] and an auxiliary strictly increasing nonnegative function as in Ayaragar-
nchanakul [10].

Corollary 3.3. Let X, C, Ti (i = 1, 2) and the iterative sequence {xn} be as in
Theorem 3.1. Suppose that the conditions in Theorem 3.1 hold and

(1) the mapping Ti (i = 1, 2) is asymptotically regular in xn, i.e.,

lim inf
n→∞

‖xn − Tixn‖ = 0, i = 1, 2;

(2) lim infn→∞ ‖xn − Tixn‖ = 0 implies that

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.

Then the sequences {xn} converges to a common fixed point of T1 and T2.

Theorem 3.4. Let X, C, Ti (i = 1, 2) and the iterative sequence {xn} be as in
Theorem 3.1. Suppose that the conditions in Theorem 3.1 hold, the mapping Ti is
asymptotically regular in xn, and there exists an increasing function g : R+ → R+

with g(r) > 0 for all r > 0 such that for i = 1, 2,

‖xn − Tixn‖ ≥ g(d(xn, F (T1) ∩ F (T2)), ∀n ≥ 1.

Then the sequence {xn} converges to a common fixed point of T1 and T2.

Proof. To apply Theorem 3.1, we prove that lim infn→∞ d(xn, F (T1)∩F (T2)) = 0.
From the assumption that ‖xn − Tixn‖ ≥ g(d(xn, F (T1)∩F (T2))) for i = 1, 2 and
for all n ≥ 1, we have

1

2

2
∑

i=1

‖xn − Tixn‖ ≥ g(d(xn, F (T1) ∩ F (T2))),

for all n ≥ 1. Since Ti is asymptotically regular in xn, this implies that

lim inf
n→∞

g(d(xn, F (T1) ∩ F (T2))) = 0. (3.12)

Suppose that lim infn→∞ d(xn, F (T1)∩F (T2)) = L > 0. By definition of infimum,
there exists an N such that

∣

∣

∣

∣

inf
n≥m

d(xn, F (T1) ∩ F (T2)) − L

∣

∣

∣

∣

<
L

2
, for all m ≥ N.

Equivalently,

d(xn, F (T1) ∩ F (T2)) >
L

2
, for all n ≥ m ≥ N.
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Since g is increasing, we have that

g(d(xn, F (T1) ∩ F (T2))) ≥ g

(

L

2

)

, for all n ≥ m ≥ N.

This implies that

lim inf
n→∞

g(d(xn, F (T1) ∩ F (T2))) ≥ g

(

L

2

)

> 0,

which contradicts (3.12). Hence lim infn→∞ d(xn, F (T1) ∩ F (T2)) = 0, as desired.

If Ti is a self-mapping, then the iterative sequences (2.1) become

yn = αnf(xn) + (1 − αn)(βnxn + (1 − βn)T n

2 xn),

xn+1 = γnf(yn) + (1 − γn)(δnyn + (1 − δn)T n

1 yn), n ≥ 1. (3.13)

We have the following theorem for common fixed point of two asymptotically
nonexpansive self-mappings.

Corollary 3.5. Let X be a real Banach space and let C be a nonempty closed
convex subset of X. For i = 1, 2, let Ti : C → C be an asymptotically nonexpansive

self-mapping with respect to {r
(n)
i

} such that F (T1)∩F (T2) 6= ∅ and
∑∞

n=1 rn < ∞,

where rn = max{r
(n)
1 , r

(n)
2 }. Let f : C → C be a contractive mapping and let

{αn}, {βn}, {γn} and {δn} be real sequences in [0, 1] such that
∑∞

n=1 αn < ∞ and
∑∞

n=1 γn < ∞. Then, the iterative sequence {xn} defined by (3.13) converges to a
common fixed point of T1 and T2 if and only if lim infn→∞ d(xn, F (T1)∩F (T2)) = 0.
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