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Abstract : A semigroup S is said to be E-inversive if for each a ∈ S there
exists x ∈ S such that ax is an idempotent. In this paper we have obtained a
characterization on E-inversive semigroup S in which Reg(S) is completely simple
sub semigroup of S. It is also proved that in an orthodox semigroup S if a ≤ b

then W (a) ⊆ W (b) and we have given an example for which the converse is not
true. Finally in his paper, Certain congruences on E-inversive E-semigroups, the
author has obtained regular congruences on an E-inversive semigroup S in which
W (a) has maximal element for all a in S. This motivates us to find the smallest
regular congruence on an E-inversive semigroup in which each W (a) has greatest
element.
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1 Introduction

A semigroup S is said to be an E-inversive semigroup, if for each a ∈ S there
exists x ∈ S such that ax is an idempotent. A semigroup S is said to be an
E-semigroup if E(S) is a sub semigroup of S. In Lemma-1.2 of this paper it is
proved that in an E-inversive semigroup S, Reg(S) is a completely simple sub
semigroup of S only when W (a) = V (a) for all a ∈ S. In [1], it is observed that
if S is an E-inversive semigroup then E(S) is a rectangular band if and only if
W (a) ∩ W (b) 6= ∅ implies W (a) = W (b). In this paper we have proved that if S
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is an E-inversive semigroup such that for any a, b ∈ S, W (a) ∩ W (b) 6= ∅ implies
either W (a) ⊆ W (b) or W (b) ⊆ W (a) then E(S) is a sub semigroup of S such
that for any e, f ∈ E(S), either efe = e or fef = f . In an orthodox semigroup
S for any a, b ∈ S if a ≤ b then W (a) ⊆ W (b) which is proved in Theorem 1.7 of
this paper. Finally in [2], regular congruences on an E-inversive semigroup S in
which each W (a) has a maximal element are studied. This motivates us to find the
smallest regular congruence on an E-inversive semigroup S in which each W (a)
has greatest element.

We start with the following lemma.

Lemma 1.1. Let S be an E-inversive semigroup such that for any a, x ∈ S,
a = axa implies x = xax. Then S is completely simple and W (a) = V (a), for all
a ∈ S.

Proof. Obviously W (a) = V (a). Let a ∈ S. Since S is E-inversive there exists
x ∈ S such that xax = x and hence by hypothesis axa = a. Thus S is regular.
Therefore S is completely simple by Theorem IV 2.4 [3].

In general if S is an E-inversive semigroup such that W (a) = V (a), for all
a ∈ Reg(S), then a = axa need not imply x = xax in S. The following is the
example.

Example 1.2. Let S be a zero semigroup with |S| > 1. Then 0 is the only regular
element in S and W (0) = V (0). For any a 6= 0 ∈ S, 0a0 = 0 but a0a 6= a.

The following lemma gives the characterization of an E-inversive semigroup S

in which Reg(S) is a completely simple sub semigroup of S.

Lemma 1.3. Let S be an E-inversive semigroup then W (a) = V (a), for all a ∈
Reg(S) if and only if Reg(S) is completely simple sub semigroup of S.

Proof. Suppose that W (a) = V (a), for all a ∈ Reg(S) and let a, b ∈ Reg(S) so
there exists x, y ∈ S such that a = axa and b = byb. Choose t ∈ W (ab) then
abtaxabt = abt so that abt ∈ W (ax) = V (ax), since ax is idempotent and hence
axabtax = ax which implies abtab = ab. Therefore ab is regular. Thus Reg(S) is a
sub semigroup and hence by Lemma-1.1, Res(S) is completely simple. Conversely
assume that Reg(S) is a completely simple sub semigroup of S. Let a ∈ Reg(S)
and x ∈ W (a). Then xax = x so that x ∈ Reg(S) and hence by Theorem IV 2.4
[3], axa = a. Therefore x ∈ V (a). Thus W (a) = V (a), for all a ∈ Reg(S).

In [1], the author has observed that if S is an E-semigroup then E(S) is a
rectangular band if and only if W (a) ∩ W (b) 6= ∅ implies W (a) = W (b). This
motivates us to find the following theorem.

Theorem 1.4. If S is an E-inversive semigroup such that for any a, b ∈ S,
W (a) ∩ W (b) 6= ∅ implies either W (a) ⊆ W (b) or W (b) ⊆ W (a) then E(S) is a
sub semigroup of S such that for any e, f ∈ S either efe = e or fef = f .
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Proof. Let e, f ∈ E(S). Then W (e)∩W (f) 6= ∅ so that W (e) ⊆ W (f) or W (f) ⊆
W (e). Therefore either efe = e or fef = f and hence E(S) is a subsemigroup of
S.

The above condition is only sufficient but not necessary because of the following
example.

Example 1.5. Let G be a group with |G| > 2 and let S = G ∪ {0}. Then E(S)
is a sub semigroup of S such that for any e, f ∈ E(S) either efe = e or fef = f .
Further for any a 6= b ∈ G, 0 ∈ W (a) ∩ W (b) but neither W (a) ⊆ W (b) nor
W (b) ⊆ W (a).

Corollary 1.6. If S is an E-inversive semigroup such that for any a, b ∈ S,
W (a) ∩ W (b) 6= ∅ implies either W (a) ⊆ W (b) or W (b) ⊆ W (a) then E(S) is a
rectangular band if and only if W (a) = V (a), for all a ∈ Reg(S).

In the following theorem we have proved that if S is an orthodox semigroup
then a ≤ b in S implies W (a) ⊆ W (b).

Theorem 1.7. Let S be an orthodox semigroup. For any a, b ∈ S, if a ≤ b then
W (a) ⊆ W (b).

Proof. Let a, b ∈ S such that a ≤ b then a = eb, for some idempotent e ∈ Ra ≤ Rb.
Let c ∈ W (a) then c = cac so that cebc = c. Hence ce ∈ W (b) and since S is E-
semigroup we have ceac ∈ W (b). Therefore c ∈ W (b). Thus W (a) ⊆ W (b).

If S is a regular semigroup such that for any a, b ∈ S, a ≤ b implies W (a) ⊆
W (b) then S need not be an orthodox semigroup because of the following example.

Example 1.8. Consider the semigroup S = {a, b, c, d, e, f, g, h} with the following
multiplication table

a f c h c f a h

e b g d e d g b

c h a f a h c f

g d e b g b e d

e d g b g d e b

e f a h c h a f

g b e d e b g d

a h c f a f c h

Clearly S is a regular semigroup. There exist no x 6= y ∈ S such that x ≤ y.
Therefore S satisfies the condition that for any a, b ∈ S, a ≤ b implies W (a) ⊆
W (b) but S is not orthodox.

Theorem 1.9. Let S be an E-inversive E-semigroup then the following are equiv-
alent.

(1) W (a) = V (a), for all a ∈ Res(S).
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(2) W (e) = V (e), for all e ∈ E(S).

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (1) : Assume (2). Let e, f ∈ E(S) then efe ∈ W (e) = V (e) so that
eefee = e which implies efe = e. Hence E(S) is a rectangular band. Therefore
by Theorem 4.6 in [4], W (a) = V (a), for all a ∈ Reg(S).

In the following theorem we have obtained characterizations of a semigroup S

in which E(S) is a chain of rectangular groups.

Theorem 1.10. Let S be a semigroup in which E(S) is non-empty. Then the
following are equivalent.

(1) E(S) is a chain of rectangular groups.

(2) E(S) is a band and for any e, f ∈ E(S) either efe = e or fef = f .

(3) {W (e)|e ∈ E(S)} is a chain.

Proof. (1) ⇔ (2) follows by Problem 4 in page no. 120 in [3].

(2) ⇒ (3) : Let e, f ∈ E(S) then by hypothesis either efe = e or fef = f

and since E(S) is a band we have W (e) ⊆ W (f) or W (f) ⊆ W (e). Therefore
{W (e)|e ∈ E(S)} is a chain.

(3) ⇒ (2) : Let e, f ∈ E(S) then either W (e) ⊆ W (f) or W (f) ⊆ W (e) so
that efe = e or fef = f and hence efef = ef therefore E(S) is a band.

In Lemmas 3.6 and 3.7 in [1], it is proved that if S is an E-inversive E-
semigroup then it satisfies the conditions (2) and (3) in the following theorem
where as we have proved the equivalence.

Proposition 1.11. Let S be a semigroup such that E(S) 6= ∅. Then the following
are equivalent.

(1) E(S) is a band.

(2) For any a ∈ S, a′ ∈ W (a) and e ∈ E(S), ea′, a′e ∈ W (a).

(3) For any a ∈ S and a′ ∈ V (a), W (a) = E(S).a′.E(S).

Proof. (2) ⇒ (1) : Let e, f ∈ E(S) since e ∈ W (e), by hypothesis ef ∈ W (e) so
that efeef = ef that is efef = ef and hence E(S) is a band.

(3) ⇒ (1) : Let e, f ∈ E(S). Since e ∈ V (e), we have W (e) = E(S)eE(S).
Now eef ∈ E(S)eE(S) = W (e) so that efef = ef Hence E(S) is a band.

The following is an example in which S is an E-inversive E-semigroup and
a ∈ W (b) such that W (b) = E(S)aE(S) but b is not regular.
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Example 1.12. Let S = {a, b, c, d} be a semigroup with the following multiplica-
tion table

a a a a

a a b a

a a c a

a b a d

Proposition 1.13. If S an E-inversive semigroup such that E(S) is a semilattice
and {W (a)}a∈S is a chain then E(S) is a chain.

Proof. Let e, f ∈ E(S). Then either W (e) ⊆ W (f) or W (f) ⊆ W (e) so that
either efe = e or fef = f . Since E(S) is a semilattice either ef = fe = e or
ef = fe = f . Hence either e ≤ f or f ≤ e. Thus E(S) is a chain.

In the following example it is observed that the converse of the above propo-
sition is not true.

Example 1.14. Let S be a group with identity e and |S| > 2 then E(S) = {e} so
that E(S) is a chain and W (a) = V (a), for all a ∈ S but {W (a)}a∈S is not chain.

Theorem 1.15. Let S be an E-semigroup. Then the following are equivalent.

(1) E(S) is a semilattice.

(2) W (e) has greatest element, for all e ∈ E(S).

(3) For every a ∈ S, V (a) contains at most one element.

Proof. (1) ⇒ (2) : Suppose E(S) is a semilattice and let e ∈ E(S). Then for
any f ∈ W (e), fef = f and E(S) is semilattice so that we have ef = fe = f .
Therefore f ≤ e and e ∈ W (e). Hence W (e) has greatest element for all e ∈ W (e).

(2) ⇒ (3) : Suppose W (e) has greatest element for all e ∈ E(S). Then e is
the greatest element in W (e), for any e ∈ E(S). Let a ∈ S and a′, a′′ ∈ V (a) then
aa′a = a ,a′aa′ = a′ and aa′′a = a, a′′aa′′ = a′′. Then aa′aa′′aa′ = aa′ so that we
have aa′ ≤ aa′′. Similarly we can prove that aa′′ ≤ aa′. Therefore aa′ = aa′′. By
a similar argument we have a′a = a′′a. Thus a′ = a′′ as required.

(3) ⇒ (1) follows by Theorem 3.12 [1].

Definition 1.16. A congruence ρ on an E-inversive semigroup S is said to be
regular congruence if for each a ∈ S, there exists a′ ∈ W (a) such that aρaa′a.

Let S be an E-inversive semigroup in which each W (a) has maximal element.
Let ρ be the relation defined by aρb ⇔ there exists z ∈ W (a)∩W (b) such that for
all a′ ∈ W (a), a′ ≥ z there exists b′ ∈ W (b) such that a′a = b′b, aa′ = bb′ and for
all b′ ∈ W (b), b ≥ z there exists a′ ∈ W (a) such that a′a = b′b, aa′ = bb′.

In Theorem 5.9 [2] it is observed that the congruence generated by ρ is a
regular congruence. Now it is interesting to find the smallest regular congruence
on E-inversive semigroup. In this connection we have obtained the smallest regular
congruence on E-inversive semigroups when ever W (a) has greatest element for
all a ∈ S.
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Theorem 1.17. Let S be an E-inversive semigroup such that W (a) has great-
est element for all a ∈ S. Then the congruence generated by the relation R =
{(a, aa′a)|a ∈ S and a′ ∈ W (a) is the greatest element of W (a)} is the smallest
regular congruence on S. If E(S) is a sub semigroup of S then the congruence
generated by R is the smallest inverse congruence on S.

Proof. Let ρ be a regular congruence on S and a ∈ S. Let a′ ∈ W (a) be the
greatest element of W (a). Since ρ is a regular congruence there exists a∗ ∈ W (a)
such that aρaa∗a. Then a∗ ≤ a′ so that aa∗ ≤ aa′ and a∗a ≤ a′a (see [1]). We
have aρaa∗a = aa∗aa′aρaa′a. Therefore R ⊆ ρ. Thus the congruence generated
by R is the smallest regular congruence on S. If E(S) is a sub semigroup S then
E(S) becomes a semilattice by the above theorem-1.15 and hence the congruence
generated by R is the smallest inverse congruence on S.

The following example shows that the above defined congruence is in general
not trivial.

Example 1.18. Let S be the set of all non-negative integers. Then S is a semi-
group with respect to the usual multiplication. Here R = {(1, 1)} ∪ {(a, 0)|a ∈
S−{1}} and hence the congruence generated by R is {(1, 1)}∪{(a, b)|a, b ∈ S−{1}}.

Let S be an E-inversive semigroup and ρ be the relation defined by ρ =
{(a, b) ∈ E(S) × E(S) such that eaf = ebf , for all e, f ∈ E(S)}. In Proposition
2.1 [5], it is proved that if E(S) is a rectangular band then ρ is rectangular band
and it is also observed that if E(S) is a normal band then ρ is a semilattice
congruence on E(S). In fact if E(S) is a rectangular band then ρ becomes the
trivial congruence E(S) × E(S) and the result can be effectively modified.

Theorem 1.19. Let S be an E-inversive semigroup then the relation ρ defined
above is a congruence when ever E(S) is a band and more over ρ is the smallest
semilattice congruence if and only E(S) is a normal band.

Proof. Suppose E(S) is a band. Obviously ρ is an equivalence relation. Let
(a, b) ∈ ρ and c ∈ E(S) then eaf = ebf , for all e, f ∈ E(S). Since ec, cf are
also idempotents we have eacf = ebcf and eacf = ebcf , for all e, f ∈ E(S).
Therefore (ac, bc), (ca, cb) ∈ ρ. Therefore ρ is a congruence on E(S) and hence
a band congruence. Now let us assume that E(S) is a normal band. For any
a, b ∈ E(S), we have eabf = ebaf , for all e, f ∈ E(S). Therefore ρ is a semilattice
congruence on E(S). Since D is the smallest semilattice congruence on E(S),
D ⊆ ρ. Suppose (a, b) ∈ ρ then eaf = ebf , for all e, f ∈ E(S) so that SaS = SbS

and hence (a, b) ∈ J = D. Thus D = ρ. Therefore ρ is the smallest semilattice
congruence on E(S). Conversely suppose ρ is the smallest semilattice congruence
on E(S) and hence a semilattice congruence on E(S) so that (ab, ba) ∈ ρ, for all
a, b ∈ E(S). Therefore eabf = ebaf , for all e, f ∈ E(S). Thus E(S) is a normal
band.
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In Theorem 2.6 [5] it is proved that if S is an E-inversive semigroup then
the relation ν defined by ν = {(a, b) ∈ S × S|∃a′ ∈ W (a), b′ ∈ W (b) such that
W (aea′) = W (beb′), for all e ∈ E(S)} is an inverse congruence on S when ever
E(S) is a rectangular band . In fact this congruence ν is trivial congruence S×S on
S when ever E(S) is a rectangular band this is because for any a ∈ S, a′ ∈ W (a),
e ∈ E(S), we have aea′ is an idempotent and W (f) = E(S), for all f ∈ E(S).

Definition 1.20. A semi group S is said to satisfy the condition (∗) if for any
x, y ∈ S, xy, yx ∈ E(S) implies xy = yx.

For any a ∈ S, E(a) = {e ∈ E(S)|a ≥ e}.

Theorem 1.21. If S an E-inversive semigroup then the following are equivalent.

(1) S satisfies the condition (∗).

(2) The relation η = {(a, b) ∈ S × S|E(a) = E(b)} is a semilattice congruence
on S.

(3) For any a, b ∈ S if ab = e ∈ E(S) then bea = e.

Proof. (1) ⇒ (2) and (1) ⇒ (3) follow by Theorem 2.5 [5] and Lemma 2.3 [5]
respectively.

(2) ⇒ (1) : Suppose η is a semilattice congruence on S and a, b ∈ S such
that ab, ba ∈ E(S). Put e = ab and f = ba. Since η is a semilattice congruence
(ab, ba) ∈ η so that (e, f) ∈ η. Therefore E(e) = E(f). Since e ∈ E(e) = E(f) we
have f ≥ e. Similarly we can prove that e ≥ f . Thus e = f as required.

(3) ⇒ (1) : Assume the condition (3). Let a, b ∈ S such that ab, ba ∈ E(S).
Put ab = e ∈ E(S) then by assumption bea = e so that baba = ab and ba is an
idempotent therefore ba = ab. Hence S satisfies the condition (∗).

Proposition 1.22. Let S be an E-inversive semigroup satisfying the condition
(∗). If for any a ∈ S, W (a) ⊆ E(S) implies a is an idempotent then E(S) is a
semilattice.

Proof. Let e, f ∈ E(S). Choose x ∈ W (ef) then fxe ∈ W (e) ∩ W (f) so that
efxe = fxef = fxe and hence efxef = fxe ∈ E(S). Put g = efxef . Then
x = xgx = xggx = xg ∈ E(S), as xg, gx ∈ E(S). Therefore W (ef) ⊆ E(S) and
hence ef is an idempotent. Thus E(S) is a semilattice.

If S is an E-inversive semigroup satisfying (∗) and E(S) is a semilattice then
W (a) ⊆ E(S) need not imply that a is an idempotent.

Example 1.23. Let S be the set of all non-negative integers. Then S is an E-
inversive semigroup satisfying (∗) and E(S) is a semilattice but for any a 6= 1,
W (a) ⊆ E(S) and a is not an idempotent.
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