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Abstract : Let R be a ring and M a right R-module. M is called Rad-®-s-
module if every submodule of M has a Rad-supplement that is a direct summand
of M, and M is called completely Rad-®-s-module if every direct summand of M is
Rad-®-s-module. In this paper various properties of such modules are developed.
It is shown that any finite direct sum of Rad-&-s-modules is Rad-&-s-module. We
also show that if M is Rad-@®-s-module with (D3), then M is completely Rad-&-
s-module.
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1 Introduction

In this paper all rings are associative with identity and all modules are unital
right modules. Let R be a ring and M be an R-module. N < M will mean N is
a submodule of M. E(M), Rad(M), Z(M) will indicate injective hull, Jacobson
radical and singular submodule of M, respectively. We set Z*(M) = {m € M :mR
issmallin E(mR)}, which is a submodule of M. A submodule E of M is called
essential in M (notation E <., M) if EN A # 0 for any non-zero submodule A
of M. Dually, a submodule S of M is called small in M (notation S <« M) if
M # S+ T for any proper submodule T' of M. Let A C B C M, submodule B is
said to be a closure of A in M if A is a essential submodule of B and B a closed
submodule in M. Let N and L be submodules of M, N is called a supplement of L
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in M if N+ L = M and N is minimal with respect to this property, or equivalenty,
M =N+Land NNL < N. M is called an amply supplemented module if for
any two submodules A and B of M with A+ B = M, B contains a supplement
of A. M is called a supplemented module if every submodule M has a supplement
in M. A non-zero module M is called hollow if every proper submodule of M is
small in M and M is called local if the sum of all proper submodules of M is also a
proper submodule of M. Every local module is hollow. M has property (p*) (see
[1]) if for any submodule N of M, there exists a direct summand K of M such
that K < N and N/K < Rad(M/K). The notions which are not explained here
will be found in [2].

Lemma 1.1 ([2]). Let M be a module and K supplement submodule of M. Then
K N Rad(M) = Rad(K).

Let M be a module. We consider the following conditions.

(D1) For every submodule N of M, M has a decoposition with M = M; & Ma,
My < N and My N N is small in Ms.

(D3) If My and M; are direct summands of M with M = M; + Ms, then M7 N My
is also a direct summand of M.

By [3, Lemma 4.6 and Proposition 4.38], every quasi-projective module has
(Ds).

2 Rad-®-s-modules

Let M be a module. If U, U’ < M and M = U + U’, then U’ is called a Rad-
supplement of U in case U N U’ < Rad(U’). Clearly, each supplement submodule
is a Rad-supplement submodule. M is called a Rad-®-supplemented module if
every submodule of M has a Rad-supplement that is a direct summand of M,
denoted by Rad-@-s-module. For example, hollow modules and modules with (p*)
are Rad-®-s-module.

Let M be a module. Then by [3, Proposition 4.8], M has (D) if and only
if M is amply supplemented and every supplement submodule of M is a direct
summand. Therefore every (D;)-module is Rad-@-s-module. But in general the
converse is not true as the following example shows.

Example 2.1. Let R be a discrete valuation ring with field of fractions K. Let P
be the unique mazimal ideal of R such that P = Ra for some element a € P. Let

M = (K/R) ® (R/P). By [3, Proposition A.7], M is Rad-®-s-module.

Recall that a projective module M is semiperfect if every homomorphic image
of M has a projective cover. Then we have the following lemma.

Lemma 2.2. Let M be a projective module. Consider the following conditions.

(i) M is a semiperfect module.
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(1) M is a Rad-®-s-module.
Then (i) = (i1) and if M is a finitely generated module then (ii) = (7).

Proof. (i) = (ii). Let N be a submodule of M. Then by assumption, there exists
a projective cover m: P — M/N. For the canonical epimorphism ¢ : M — M/N,
since M is projective, there exists a homomorphism f : M — P such that 7o f = o.
Since 7 is small, f is epic by [2] and so f splits (P is projective). Then, by [2],
there exists some homomorphism g : P — M such that f o g = 1p, and hence
m=mo fog=o0o0g. Note that M = Kerf @ g(P) and Kerf < N; therefore,
M = N+g(p). Let u be the restriction of o to g(p). Then © = pog and so p is epic.
Therefore since 7 is small, p is small by [2]. That is, Kerp = N N g(p) < g(p).
Hence, g(p) is a supplement of N.

(#7) = (i). Let M be a finitely generated module and N be a submodule of
M. Since M is Rad-@®-s-module, there exist submodules K and K’ of M such that
M=N+K, NNK < Rad(K), and K ® K' = M. Clearly, K is projective. For
the inclusion homomorphism ¢ : K — M and the canonical epimorphism o : M —
M/N, coi: K — M/N is an epimorphism, and by hypothesis Rad(M) < M,
this implies that Rad(K) <« K and hence Kercoi=NNK < K. O

Lemma 2.3. Let N, L be submodules of a module M such that N + L has a
Rad-supplement H in M and N N (H + L) has a Rad-supplement G in N. Then
H + G is a Rad-supplement of L in M.

Proof. Let H be a Rad-supplement of N + L in M and G be a Rad-supplement of
NN(H+L)in N. Then M = (N + L)+ H such that (N+ L)NH < Rad(H) and
N =[Nn(H+ L)]+ G such that (H+ L)NG < Rad(G). Since (H+G)NL <
(G+L)NH|+[(H+L)NG] < Rad(H) + Rad(G) < Rad(H+G), H+ G is a
Rad-supplement of L in M. O

Theorem 2.4. Let My and Ms be Rad-®-s-modules. If M = My & My, then M
is a Rad-®-s-module.

Proof. Let L be any submodule of M. Then M = M;+ Ms+ L so that My+Ms+L
has a Rad-supplement 0 in M. Let H be a Rad-supplement of MaN(My+L) in M,
such that H is a direct summand of M. By Lemma 2.3, H is a Rad-supplement
of M1+ L in M. Let K be a Rad-supplement of My N (L+ H) in M; such that K
is a direct summand of M;. Again by applying Lemma 2.3, we have that H + K
is a Rad-supplement of L in M. Since H is a direct summand of My and K is a
direct summand of My, it follows that H + K = H & K is a direct summand of
M. Thus M = M; & M5 is Rad-®-s-module. O

Corollary 2.5. Any finite direct sum of Rad-®-s-modules is a Rad-®-s-module.
Corollary 2.6. Any finite direct sum of modules with (p*) is Rad-@®-s-module.

Corollary 2.7. Any finite direct sum of hollow (or local) modules is Rad-®-s-
module.
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Let M be a module. A Submodule X of M is called fully invariant if, for
every h € Endgr(M), h(X) C X. The module M is called duo module, if every
submodule of M is fully invariant.

Lemma 2.8. Let M be a duo module. If M = My ® Ms, then A= (ANM;)®
(AN My) for any submodule A of M.

Proof. See [4]. O

Now we investigate conditions which ensure that a factor module of a Rad-&®-
s-module will be a Rad-@®-s-module.

Proposition 2.9. Assume that M is a Rad-®-s-duo module and N < M. Then
M/N is a Rad-®-s-module.

Proof. For any submodule K of M containing N, since M is a Rad-@®-s-module,
there exist submodules L and L’ of M such that M = K + L = L & L/, and
K NL < Rad(L). Note that M/N = K/N + (L + N)/N, and KN (L+ N) =
(KNL)+N. Since KNL < Rad(L), we have K/NN(L+N)/N = [(KNL)+N]/N <
Rad((L+ N)/N). This implies that (L + N)/N is a Rad-supplemented of K/N in
M/N. Now by Lemma 2.8, N = (NNL)®(NNL') , implies that (L+N)N(L'+N) <
N+(L+NNL+NNnL)NnL. It follows that (L + N)N (L' + N) < N and
M/N = ((L+ N)/N)& ((L' + N)/N). Then (L+ N)/N is a direct summand of
M/N. Consequently, M/N is a Rad-@®-s-module. O

A module M is called distributive if its lattice of submodules is a distributive
lattice, equivalently for submodules K,L,N of M, N+(KNL) = (N+K)N(N+L)
or NN(K+L)=(NNK)+ (NNL).

Theorem 2.10.

(1) Let M be a Rad-®-s-module and N a submodule of M. If for every direct
summand K of M, (N + K)/N s a direct summand of M/N then M/N is
a Rad-®-s-module.

(2) Let M be a distributive Rad-®-s-module. Then M /N is a Rad-®-s-module
for every submodule N of M.

Proof. (1) For any submodule X of M containing N, since M is a Rad-®-s-module,
there exists a direct summand D of M such that M = X + D = D @ D’ and
X ND < Rad(D) for some submodule D’ of M. Now M/N = X/N+(D+ N)/N.
By hypothesis, (D + N)/N is a direct summand of M/N. Note that (X/N) N
(D+ N)/N)=[XNn(D+ N)]/N =[N+ (DnX)]/N. Since X N D < Rad(D),
we have [(DNX)+ N|/N < Rad((D + N)/N). This implies that (D + N)/N is a
Rad-supplement submodule of X/N in M/N. Hence M/N is a Rad-®-s-module.
(2) Let D be a direct summand of M. Then M = D& D’ for some submodule
D" of M. Now M/N = [(D+ N)/N]+[(D'+ N)/Nland N =N+ (DnD’) =
(N 4+ D)n (N + D) by distributivity of M. This implies that M/N = [(D +
N)/N]& [(D'+ N)/N]. By (1), M/N is a Rad-®-s-module. O



oOn Rad-@-Supplemented Modules 377

3 Completely Rad-®-s-modules

While the properties lifting, amply supplemented and supplemented are in-
herited by summands, it is unknown (and unlikely) that the same is true for the
property Rad-@-s-module. In this vein we call a module M completely Rad-®-s-
module if every direct summand of M is Rad-@&-s-module.

Given a positive integer n, the modules M; (1 < i < n) are called relatively
projective if M; is Mj-projective for all (1 < i # j < n).

Theorem 3.1. Let M; (1 < i <n) be any finite collection of relatively projective
modules. Then the module M = My & - - - & M, is Rad-®-s-module if and only if
M; is Rad-®-s-module for each 1 <i<mn.

Proof. The sufficiency is proved in Theorem 2.4. Conversely, we only prove M; to
be Rad-®-s-module. Let A < M;. Then there exists B < M such that M = A+ B,
B is a direct summand of M and AN B < Rad(B). Since M = A+ B = M; + B,
By [3, Lemma 4.47], there exists By < B such that M = M; @ B;. Then B =
B; ® (M1 N B). Note that My = A+ (M; N B) and M; N B is a direct summand
of My. Therefore ANB=AN(M;NB)and ANB < Rad(M), ANB < M; N B,
then AN B < (M; N B)N Rad(M) = Rad(M; N B) by Lemma 1.1. Hence M, is
Rad-@-s-module. O

Proposition 3.2. Let M be a Rad-®-s-module with (Ds). Then M is completely
Rad-®-s-module.

Proof. Let N be a direct summand of M and A a submodule of N. We show
that A has a Rad-supplement in N that is direct summand of N. Since M is Rad-
@®-s-module, there exists a direct summand B of M such that M = A + B and
ANB < Rad(B). Hence N = A4+ (NNB). Furthermore NNB is a direct summand
of M because M has (D3). Then AN(NNB)=ANB and AN B < Rad(M),
AN B < NN B, then have AN B < (NN B)N Rad(M) = Rad(N N B). O

A module M is said to have the summand sum property (SSP) if the sum of
any pair of direct summands of M is a direct summands of M, i.e., if N and K
are direct summands of M then N 4 K is also a direct summand of M.

Theorem 3.3. Let M be a Rad-®-s-module with the SSP. Then M is completely
Rad-®-s-module.

Proof. Let N be a direct summand of M. Then M = N & N’ for some N’ < M.
We want to show that M/N’ is a Rad-®-s-module. Assume that L is a direct
summand of M. Since M has the SSP, L + N’ is a direct summand of M. Let
M= (L+N'")@ K for some K < M. Then M/N' = (L+ N')/N'& (K +N')/N".
Therefore M /N’ is a Rad-®-s-module by Theorem 2.10(1). O

A module M is said to have the Summand Intersection Property (SIP) if the
intersection of any pair of direct summands of M is a direct summand of M, i.e.,
if N and K are direct summands of M then N N K is also a direct summand of
M.
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Lemma 3.4 ([4, Corollary 18]). Let M be a duo module. Then M has the SIP
and the SSP.

As a result of Theorem 3.3 and Lemma 3.4, we can obtain the following Corol-
lary;

Corollary 3.5. Let M be a Rad-®-s-duo module. Then M is completely Rad-®-
s-module.

In [5], Smith calls a module M a (UC)-module if every submodule of M has
a unique closure in M. M is called extending module if every closed submodule of
M is a direct summand of M.

Theorem 3.6. Let M be a UC extending module. Then M is Rad-®-s-module if
and only if M is completely Rad-®-s-module.

Proof. Sufficiency is clear. Conversly, assume that M is Rad-®-s-module. By [6,
Lemma 2.4], M has (D3). Hence M is completely Rad-@-s-module from Proposi-
tion 3.2. O

The module M has finite Goldie dimension if M does not contain an infinite
direct sum of non-zero submodules. It is well-known that a module M has finite
Goldie dimension if and only if there exists a positive integer n and uniform sub-
modules U; (1 < i <n) of M such that Uy & ---® U, is an essential submodule of
M and in this case n is an invariant of the module M called the Goldie dimension
of M (see, for example [7, p. 294 Ex. 2]).

Let M be a module. M is called monoform if each non-zero partial endomor-
phism of M is monomorphism. M is called polyform if each partial endomorphism
has closed kernel. M is called locally finite dimensional if every finitely generated
submodule has finite Goldie dimension, following [8], note that polyform extending
modules have (D3) [9, Lemma 1.11] and every monoform module is polyform.

Corollary 3.7. Let M be a polyform (monoform) extending module. Then M is
Rad-@-s-module if and only if M is completely Rad-®-s-module.

Proof. By [8, Proposition 2.2], M is a (UC)-module. Then by Theorem 3.6, we
have the result. O

Theorem 3.8. Suppose that M is a locally finite dimensional polyform module.
If M is quasi-injective, then for any index set I, M) is Rad-®-s-module if and
only if M is completely Rad-@®-s-module.

Proof. Suppose that M is Rad-@-s-module. Since M is polyform, M) is poly-
form from [10, Proposition 3.3] and M) is quasi-injective from [8, Corollary 3.4].
Hence M) is extending since every quasi-injective module is extending (see [3]).
By Corollary 3.7, MD is completely Rad-@-s-module. O

Lemma 3.9. Let M be a supplemented module and N be a submodule of M such
that NN Rad(M) = 0. Then N is semisimple.
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Proof. By [2], M/Rad(M) is semisimple. Hence N is semisimple. O

Proposition 3.10. Let M be a Rad-®-s-module. Then M = My & Mo, where My

is a semisimple module and My is a module whit Rad(Ms) essential in M.

Proof. For Rad(M), there exists My < M such that M; N Rad(M) = 0 and
Mi®Rad(M) <. M. Since M is a Rad-@-s-module, there exists a direct summand
M of M such that My + My = M and My N My < Rad(Ms). Since My N My =
M1 N (Ml n MQ) S M1 N Rad(MQ) S M1 N Rad(M) = O, M = M1 (&) MQ. By
Lemma 3.9, M is semisimple. Thus Rad(M) = Rad(My)® Rad(Msz) = Rad(Ma).
Since My @& Rad(M) <. M = My & My, i.e., M1 & Rad(Ms) <. M = My & Ma,
Rad(Ms) <. Ms by [7, Proposition 5.20]. This completes the proof. O

Proposition 3.11. Let M be a Rad-®-s-module. Then M = My & My , where
M is a module with Z*(My) < Rad(My) and Ms is a module with Z*(Msy) = Ma.

Proof. Since M is Rad-@®-s-module, there exists a direct summand M; of M such
that M = Z*(M) + My, Z*(My) = Z*(M) N M; < Rad(M1) and M = My @ M,
for some submodule My of M. Since Z*(M) = Z*(M1) ® Z*(Mz), then Z*(Mz) =
M. ([l

Theorem 3.12. For a module M with (Ds3) the following statements are equiva-
lent.

(i) M is completely Rad-@®-s-module.
(ii) M is Rad-@-s-module.

(i1i)) M = My & Mo, where My is a semisimple module and My is a Rad-®-s-
module with Rad(Ms) essential in M.

(iv) M = M; & Ms, where My is a Rad-®-s-module with Z*(M;) < Rad(M)
and Ms is a Rad-®-s-module with Z*(Ms) = Mo.

Proof. (i) = (ii). Clear from definition.

(i4) = (7). It follows from Proposition 3.2.

(1) = (i19). By Proposition 3.10, M = M; @ Mz, where M; is semisimple and
Rad(Ms) is essential in M. By (i), My is Rad-@®-s-module.

(i) = (iv). By Proposition 3.11, we have M = My & M, where Z*(M;) <
Rad(My) and Z*(M3) = My and hence M; and My are Rad-®-s-module by (2).

(i4i) = (41), (iv) = (i1). It follows by Theorem 2.4. O

Theorem 3.13. The following statements are equivalent for a projective module
M.

(i) M is a direct sum of Rad-®-s-modules and Rad(M) has finite Goldie di-

MEension.

(it) M = My®Ms for some semisimple module My and module Ma such that Ms
has finite Goldie dimension and My is a (finite) direct sum of local modules.
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Proof. (i) = (i). Clear. (i) = (ii). Assume M = ®;e;1M;, M; is Rad-®-s-module
and Rad(M) has finite Goldie dimension. Since Rad(M) = ®;erRad(M;), then
there is a finite subset J of I such that Rad(M;) = 0 for all ¢ € I — J. Therefore
M; is semisimple for all ¢ € I —J. Hence there is a semisimple submodule M; of M
such that M = M; & (;esM;). By Proposition 3.10, without loss of generality,
we may assume Rad(M;) is essential in M;(j € J). Then M;(j € J) has finite
Goldie dimension by [11, Proposition 3.20]. Next we prove each M; is local or a
finite direct sum of local modules, for j € J. Set H = M; for any j € J. First, note
that Rad(H) # H because H is projective [7, Proposition 17.14]. Assume H has
Goldie dimension 1, and take some x € H — Rad(H). Since H is Rad-®-s-module,
there exists a submodule K of H such that H = zR+ K, xRN K < Rad(K)
and H = K @ K; for some submodule K; of M. Then K = 0 or K; = 0. If
K, =0, then 2R becomes a submodule of Rad(H). This is a contradiction. Hence
K =0, thus H = zR. It follows that H is local. Let n > 1 be a positive integer
and assume each M; having Goldie dimension k(1 < k < n) is local or a finite
direct sum of local submodules. Let j € J and H = M, and assume H has Goldie
dimension n. Suppose H is not local. Let « € H — Rad(H) such that H # zR.
Then since H is Rad-®-s-module there exists submodules K ,K; of H such that
H=2R+K=K&®K; and zRN K < Rad(K). It is clear that K7 # 0. Also
K # 0. Since projective modules satisfy (Ds) and then by Proposition 3.2, any
direct summand of M is Rad-®-s-module. Thus K and K; are Rad-®-s-modules
by induction, K and K; are local or finite direct sums of local submodules. This
completes the proof of (i) = (ii). O

Lemma 3.14. Let M be an indecomposable module. Then M is a hollow module
if and only if M is a completely Rad-®-s-module.

Proof. Clear from definitions. O

Proposition 3.15. Let M = U @&V such that U and V' have local endomorphism
rings. Then M is completely Rad-@-s-module if and only if U and V are hollow
modules.

Proof. The necessity is clear from Lemma 3.14. Conversly, let K be a direct
summand of M. If K = M then by Corollary 2.7, K is Rad-®-s-module. Assume
K # M. Then either K 2 U or K =2 V by Krull-Schmidt-Azumaya Theorem
[7, Corollary 12.7]. In either case K is Rad-®-s-module. Thus M is completely
Rad-®-s-module. O

Theorem 3.16. Let M be a non-zero module with finite Goldie dimension. Then
the following statements are equivalent.

(i) Every direct summand of M is a finite direct sum of hollow modules.

(1)) M is a completely Rad-®-s-module.
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Proof. (i) = (i1). Clear by Corollary 2.7. (ii) = (7). Let N be a direct summand
of M. Since N has finite Goldie dimension, N has a decomposition N = L1 ®--- P
L,,, where each L; is indecomposable for 1 < i < n for some finite integer 1 < n.
Hence each L; (1 <i < n) is hollow from Lemma 3.14. O
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