On Rad- - -Supplemented Modules

Yahya Talebi ${ }^{1}$ and Azadeh Mahmoudi
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
e-mail: talebi@umz.ac.ir,
a.mahmoudi.60@gmail.com

Abstract

Let R be a ring and M a right R-module. M is called Rad- $\oplus-s$ module if every submodule of M has a Rad-supplement that is a direct summand of M, and M is called completely Rad- \oplus-s-module if every direct summand of M is Rad- \oplus-s-module. In this paper various properties of such modules are developed. It is shown that any finite direct sum of $\operatorname{Rad}-\oplus-\mathrm{s}$-modules is $R a d-\oplus-\mathrm{s}-$ module. We also show that if M is $\operatorname{Rad}-\oplus$-s-module with $\left(D_{3}\right)$, then M is completely $\operatorname{Rad}-\oplus$ -s-module.

Keywords : Supplemented modules; Rad- \oplus-s-module; Completely Rad- \oplus-s-module. 2010 Mathematics Subject Classification : 16D10; 16D80; 16D99.

1 Introduction

In this paper all rings are associative with identity and all modules are unital right modules. Let R be a ring and M be an R-module. $N \leq M$ will mean N is a submodule of $M . E(M), \operatorname{Rad}(M), Z(M)$ will indicate injective hull, Jacobson radical and singular submodule of M, respectively. We set $Z^{*}(M)=\{m \in M: \mathrm{mR}$ is small $i n \mathrm{E}(\mathrm{mR})$ \}, which is a submodule of M. A submodule E of M is called essential in M (notation $E \leq_{e} M$) if $E \cap A \neq 0$ for any non-zero submodule A of M. Dually, a submodule S of M is called small in M (notation $S \ll M$) if $M \neq S+T$ for any proper submodule T of M. Let $A \subseteq B \subseteq M$, submodule B is said to be a closure of A in M if A is a essential submodule of B and B a closed submodule in M. Let N and L be submodules of M, N is called a supplement of L

[^0]in M if $N+L=M$ and N is minimal with respect to this property, or equivalenty, $M=N+L$ and $N \cap L \ll N . M$ is called an amply supplemented module if for any two submodules A and B of M with $A+B=M, B$ contains a supplement of $A . M$ is called a supplemented module if every submodule M has a supplement in M. A non-zero module M is called hollow if every proper submodule of M is small in M and M is called local if the sum of all proper submodules of M is also a proper submodule of M. Every local module is hollow. M has property (p^{*}) (see [1]) if for any submodule N of M, there exists a direct summand K of M such that $K \leq N$ and $N / K \leq \operatorname{Rad}(M / K)$. The notions which are not explained here will be found in [2].

Lemma 1.1 ([2]). Let M be a module and K supplement submodule of M. Then $K \cap \operatorname{Rad}(M)=\operatorname{Rad}(K)$.

Let M be a module. We consider the following conditions.
$\left(D_{1}\right)$ For every submodule N of M, M has a decoposition with $M=M_{1} \oplus M_{2}$, $M_{1} \leq N$ and $M_{2} \cap N$ is small in M_{2}.
$\left(D_{3}\right)$ If M_{1} and M_{2} are direct summands of M with $M=M_{1}+M_{2}$, then $M_{1} \cap M_{2}$ is also a direct summand of M.
By [3, Lemma 4.6 and Proposition 4.38], every quasi-projective module has $\left(D_{3}\right)$.

$2 \quad$ Rad- \oplus-s-modules

Let M be a module. If $U, U^{\prime} \leq M$ and $M=U+U^{\prime}$, then U^{\prime} is called a Radsupplement of U in case $U \cap U^{\prime} \leq \operatorname{Rad}\left(U^{\prime}\right)$. Clearly, each supplement submodule is a Rad-supplement submodule. M is called a Rad- \oplus-supplemented module if every submodule of M has a Rad-supplement that is a direct summand of M, denoted by Rad- \oplus-s-module. For example, hollow modules and modules with (p^{*}) are $R a d-\oplus$-s-module.

Let M be a module. Then by [3, Proposition 4.8], M has $\left(D_{1}\right)$ if and only if M is amply supplemented and every supplement submodule of M is a direct summand. Therefore every $\left(D_{1}\right)$-module is $R a d-\oplus$-s-module. But in general the converse is not true as the following example shows.

Example 2.1. Let R be a discrete valuation ring with field of fractions K. Let P be the unique maximal ideal of R such that $P=R a$ for some element $a \in P$. Let $M=(K / R) \oplus(R / P)$. By [3, Proposition A.7], M is Rad- \oplus-s-module.

Recall that a projective module M is semiperfect if every homomorphic image of M has a projective cover. Then we have the following lemma.

Lemma 2.2. Let M be a projective module. Consider the following conditions.
(i) M is a semiperfect module.
(ii) M is a Rad- \oplus-s-module.

Then $(i) \Rightarrow(i i)$ and if M is a finitely generated module then $(i i) \Rightarrow(i)$.
Proof. $(i) \Rightarrow(i i)$. Let N be a submodule of M. Then by assumption, there exists a projective cover $\pi: P \rightarrow M / N$. For the canonical epimorphism $\sigma: M \rightarrow M / N$, since M is projective, there exists a homomorphism $f: M \rightarrow P$ such that $\pi \circ f=\sigma$. Since π is small, f is epic by [2] and so f splits (P is projective). Then, by [2], there exists some homomorphism $g: P \rightarrow M$ such that $f \circ g=1_{P}$, and hence $\pi=\pi \circ f \circ g=\sigma \circ g$. Note that $M=\operatorname{Kerf} \oplus g(P)$ and $\operatorname{Ker} f \leq N$; therefore, $M=N+g(p)$. Let μ be the restriction of σ to $g(p)$. Then $\pi=\mu \circ g$ and so μ is epic. Therefore since π is small, μ is small by [2]. That is, $\operatorname{Ker} \mu=N \cap g(p) \ll g(p)$. Hence, $g(p)$ is a supplement of N.
(ii) $\Rightarrow(i)$. Let M be a finitely generated module and N be a submodule of M. Since M is $R a d-\oplus$-s-module, there exist submodules K and K^{\prime} of M such that $M=N+K, N \cap K \leq \operatorname{Rad}(K)$, and $K \oplus K^{\prime}=M$. Clearly, K is projective. For the inclusion homomorphism $i: K \rightarrow M$ and the canonical epimorphism $\sigma: M \rightarrow$ $M / N, \sigma \circ i: K \rightarrow M / N$ is an epimorphism, and by hypothesis $\operatorname{Rad}(M) \ll M$, this implies that $\operatorname{Rad}(K) \ll K$ and hence $\operatorname{Ker} \sigma \circ i=N \cap K \ll K$.

Lemma 2.3. Let N, L be submodules of a module M such that $N+L$ has a Rad-supplement H in M and $N \cap(H+L)$ has a Rad-supplement G in N. Then $H+G$ is a Rad-supplement of L in M.

Proof. Let H be a Rad-supplement of $N+L$ in M and G be a Rad-supplement of $N \cap(H+L)$ in N. Then $M=(N+L)+H$ such that $(N+L) \cap H \leq \operatorname{Rad}(H)$ and $N=[N \cap(H+L)]+G$ such that $(H+L) \cap G \leq \operatorname{Rad}(G)$. Since $(H+G) \cap L \leq$ $[(G+L) \cap H]+[(H+L) \cap G] \leq \operatorname{Rad}(H)+\operatorname{Rad}(G) \leq \operatorname{Rad}(\mathrm{H}+\mathrm{G}), H+G$ is a Rad-supplement of L in M.

Theorem 2.4. Let M_{1} and M_{2} be $\operatorname{Rad}-\oplus$-s-modules. If $M=M_{1} \oplus M_{2}$, then M is a $\mathrm{Rad}-\oplus-s$-module.

Proof. Let L be any submodule of M. Then $M=M_{1}+M_{2}+L$ so that $M_{1}+M_{2}+L$ has a Rad-supplement 0 in M. Let H be a Rad-supplement of $M_{2} \cap\left(M_{1}+L\right)$ in M_{2} such that H is a direct summand of M_{2}. By Lemma $2.3, H$ is a Rad-supplement of $M_{1}+L$ in M. Let K be a Rad-supplement of $M_{1} \cap(L+H)$ in M_{1} such that K is a direct summand of M_{1}. Again by applying Lemma 2.3, we have that $H+K$ is a Rad-supplement of L in M. Since H is a direct summand of M_{2} and K is a direct summand of M_{1}, it follows that $H+K=H \oplus K$ is a direct summand of M. Thus $M=M_{1} \oplus M_{2}$ is $R a d-\oplus$-s-module.

Corollary 2.5. Any finite direct sum of $\operatorname{Rad}-\oplus-s-m o d u l e s$ is a $\operatorname{Rad}-\oplus-s$-module.
Corollary 2.6. Any finite direct sum of modules with $\left(p^{*}\right)$ is $\operatorname{Rad}-\oplus$-s-module.
Corollary 2.7. Any finite direct sum of hollow (or local) modules is $\operatorname{Rad}-\oplus-s$ module.

Let M be a module. A Submodule X of M is called fully invariant if, for every $h \in \operatorname{End}_{R}(M), h(X) \subseteq X$. The module M is called duo module, if every submodule of M is fully invariant.

Lemma 2.8. Let M be a duo module. If $M=M_{1} \oplus M_{2}$, then $A=\left(A \cap M_{1}\right) \oplus$ $\left(A \cap M_{2}\right)$ for any submodule A of M.
Proof. See [4].
Now we investigate conditions which ensure that a factor module of a $\operatorname{Rad}-\oplus$ -s-module will be a $R a d-\oplus$-s-module.

Proposition 2.9. Assume that M is a $\operatorname{Rad}-\oplus-s$-duo module and $N \leq M$. Then M / N is a Rad- \oplus-s-module.

Proof. For any submodule K of M containing N, since M is a Rad- \oplus-s-module, there exist submodules L and L^{\prime} of M such that $M=K+L=L \oplus L^{\prime}$, and $K \cap L \leq \operatorname{Rad}(L)$. Note that $M / N=K / N+(L+N) / N$, and $K \cap(L+N)=$ $(K \cap L)+N$. Since $K \cap L \leq \operatorname{Rad}(L)$, we have $K / N \cap(L+N) / N=[(K \cap L)+N] / N \leq$ $\operatorname{Rad}((L+N) / N)$. This implies that $(L+N) / N$ is a Rad-supplemented of K / N in M / N. Now by Lemma 2.8, $N=(N \cap L) \oplus\left(N \cap L^{\prime}\right)$, implies that $(L+N) \cap\left(L^{\prime}+N\right) \leq$ $N+\left(L+N \cap L+N \cap L^{\prime}\right) \cap L^{\prime}$. It follows that $(L+N) \cap\left(L^{\prime}+N\right) \leq N$ and $M / N=((L+N) / N) \oplus\left(\left(L^{\prime}+N\right) / N\right)$. Then $(L+N) / N$ is a direct summand of M / N. Consequently, M / N is a $R a d-\oplus$-s-module.

A module M is called distributive if its lattice of submodules is a distributive lattice, equivalently for submodules K, L, N of $M, N+(K \cap L)=(N+K) \cap(N+L)$ or $N \cap(K+L)=(N \cap K)+(N \cap L)$.

Theorem 2.10.

(1) Let M be a Rad- $\oplus-s$-module and N a submodule of M. If for every direct summand K of $M,(N+K) / N$ is a direct summand of M / N then M / N is $a \operatorname{Rad}-\oplus-s-m o d u l e$.
(2) Let M be a distributive Rad- \oplus-s-module. Then M / N is a Rad- \oplus-s-module for every submodule N of M.

Proof. (1) For any submodule X of M containing N, since M is a $R a d-\oplus$-s-module, there exists a direct summand D of M such that $M=X+D=D \oplus D^{\prime}$ and $X \cap D \leq \operatorname{Rad}(D)$ for some submodule D^{\prime} of M. Now $M / N=X / N+(D+N) / N$. By hypothesis, $(D+N) / N$ is a direct summand of M / N. Note that $(X / N) \cap$ $((D+N) / N)=[X \cap(D+N)] / N=[N+(D \cap X)] / N$. Since $X \cap D \leq \operatorname{Rad}(D)$, we have $[(D \cap X)+N] / N \leq \operatorname{Rad}((D+N) / N)$. This implies that $(D+N) / N$ is a Rad-supplement submodule of X / N in M / N. Hence M / N is a $R a d-\oplus$-s-module.
(2) Let D be a direct summand of M. Then $M=D \oplus D^{\prime}$ for some submodule D^{\prime} of M. Now $M / N=[(D+N) / N]+\left[\left(D^{\prime}+N\right) / N\right]$ and $N=N+\left(D \cap D^{\prime}\right)=$ $(N+D) \cap\left(N+D^{\prime}\right)$ by distributivity of M. This implies that $M / N=[(D+$ $N) / N] \oplus\left[\left(D^{\prime}+N\right) / N\right]$. By (1), M / N is a $R a d-\oplus$-s-module.

3 Completely Rad- \oplus-s-modules

While the properties lifting, amply supplemented and supplemented are inherited by summands, it is unknown (and unlikely) that the same is true for the property $R a d-\oplus$-s-module. In this vein we call a module M completely $R a d-\oplus$-smodule if every direct summand of M is $R a d-\oplus$-s-module.

Given a positive integer n, the modules $M_{i}(1 \leq i \leq n)$ are called relatively projective if M_{i} is M_{j}-projective for all $(1 \leq i \neq j \leq n)$.
Theorem 3.1. Let $M_{i}(1 \leq i \leq n)$ be any finite collection of relatively projective modules. Then the module $M=M_{1} \oplus \cdots \oplus M_{n}$ is $\operatorname{Rad}-\oplus$-s-module if and only if M_{i} is Rad- \oplus-s-module for each $1 \leq i \leq n$.

Proof. The sufficiency is proved in Theorem 2.4. Conversely, we only prove M_{1} to be Rad- \oplus-s-module. Let $A \leq M_{1}$. Then there exists $B \leq M$ such that $M=A+B$, B is a direct summand of M and $A \cap B \leq \operatorname{Rad}(B)$. Since $M=A+B=M_{1}+B$, By [3, Lemma 4.47], there exists $B_{1} \leq B$ such that $M=M_{1} \oplus B_{1}$. Then $B=$ $B_{1} \oplus\left(M_{1} \cap B\right)$. Note that $M_{1}=A+\left(M_{1} \cap B\right)$ and $M_{1} \cap B$ is a direct summand of M_{1}. Therefore $A \cap B=A \cap\left(M_{1} \cap B\right)$ and $A \cap B \leq \operatorname{Rad}(M), A \cap B \leq M_{1} \cap B$, then $A \cap B \leq\left(M_{1} \cap B\right) \cap \operatorname{Rad}(M)=\operatorname{Rad}\left(M_{1} \cap B\right)$ by Lemma 1.1. Hence M_{1} is Rad- \oplus-s-module.

Proposition 3.2. Let M be a Rad- \oplus-s-module with $\left(D_{3}\right)$. Then M is completely Rad- \oplus-s-module.
Proof. Let N be a direct summand of M and A a submodule of N. We show that A has a $R a d$-supplement in N that is direct summand of N. Since M is $R a d-$ \oplus-s-module, there exists a direct summand B of M such that $M=A+B$ and $A \cap B \leq \operatorname{Rad}(B)$. Hence $N=A+(N \cap B)$. Furthermore $N \cap B$ is a direct summand of M because M has $\left(D_{3}\right)$. Then $A \cap(N \cap B)=A \cap B$ and $A \cap B \leq \operatorname{Rad}(M)$, $A \cap B \leq N \cap B$, then have $A \cap B \leq(N \cap B) \cap \operatorname{Rad}(M)=\operatorname{Rad}(N \cap B)$.

A module M is said to have the summand sum property (SSP) if the sum of any pair of direct summands of M is a direct summands of M, i.e., if N and K are direct summands of M then $N+K$ is also a direct summand of M.

Theorem 3.3. Let M be a Rad- \oplus-s-module with the $S S P$. Then M is completely Rad- \oplus-s-module.
Proof. Let N be a direct summand of M. Then $M=N \oplus N^{\prime}$ for some $N^{\prime} \leq M$. We want to show that M / N^{\prime} is a $R a d-\oplus$-s-module. Assume that L is a direct summand of M. Since M has the SSP, $L+N^{\prime}$ is a direct summand of M. Let $M=\left(L+N^{\prime}\right) \oplus K$ for some $K \leq M$. Then $M / N^{\prime}=\left(L+N^{\prime}\right) / N^{\prime} \oplus\left(K+N^{\prime}\right) / N^{\prime}$. Therefore M / N^{\prime} is a $R a d-\oplus$-s-module by Theorem 2.10(1).

A module M is said to have the Summand Intersection Property (SIP) if the intersection of any pair of direct summands of M is a direct summand of M, i.e., if N and K are direct summands of M then $N \cap K$ is also a direct summand of M.

Lemma 3.4 ([4, Corollary 18]). Let M be a duo module. Then M has the SIP and the SSP.

As a result of Theorem 3.3 and Lemma 3.4, we can obtain the following Corollary;

Corollary 3.5. Let M be a Rad- \oplus-s-duo module. Then M is completely $\operatorname{Rad}-\oplus-$ s-module.

In [5], Smith calls a module M a $(U C)$-module if every submodule of M has a unique closure in $M . M$ is called extending module if every closed submodule of M is a direct summand of M.

Theorem 3.6. Let M be a UC extending module. Then M is $\operatorname{Rad}-\oplus-s$-module if and only if M is completely Rad- \oplus-s-module.

Proof. Sufficiency is clear. Conversly, assume that M is $R a d-\oplus$-s-module. By [6, Lemma 2.4], M has $\left(D_{3}\right)$. Hence M is completely Rad- \oplus-s-module from Proposition 3.2.

The module M has finite Goldie dimension if M does not contain an infinite direct sum of non-zero submodules. It is well-known that a module M has finite Goldie dimension if and only if there exists a positive integer n and uniform submodules $U_{i}(1 \leq i \leq n)$ of M such that $U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of M and in this case n is an invariant of the module M called the Goldie dimension of M (see, for example [7, p. 294 Ex. 2]).

Let M be a module. M is called monoform if each non-zero partial endomorphism of M is monomorphism. M is called polyform if each partial endomorphism has closed kernel. M is called locally finite dimensional if every finitely generated submodule has finite Goldie dimension, following [8], note that polyform extending modules have $\left(D_{3}\right)$ [9, Lemma 1.11] and every monoform module is polyform.

Corollary 3.7. Let M be a polyform (monoform) extending module. Then M is Rad- \oplus-s-module if and only if M is completely Rad- \oplus-s-module.

Proof. By [8, Proposition 2.2], M is a $(U C)$-module. Then by Theorem 3.6, we have the result.

Theorem 3.8. Suppose that M is a locally finite dimensional polyform module. If M is quasi-injective, then for any index set $I, M^{(I)}$ is $\operatorname{Rad}-\oplus$-s-module if and only if $M^{(I)}$ is completely Rad- \oplus-s-module.

Proof. Suppose that $M^{(I)}$ is $R a d-\oplus$-s-module. Since M is polyform, $M^{(I)}$ is polyform from [10, Proposition 3.3] and $M^{(I)}$ is quasi-injective from [8, Corollary 3.4]. Hence $M^{(I)}$ is extending since every quasi-injective module is extending (see [3]). By Corollary 3.7, $M^{(I)}$ is completely $R a d-\oplus$-s-module.

Lemma 3.9. Let M be a supplemented module and N be a submodule of M such that $N \cap \operatorname{Rad}(M)=0$. Then N is semisimple.

Proof. By [2], $M / \operatorname{Rad}(M)$ is semisimple. Hence N is semisimple.
Proposition 3.10. Let M be a Rad- \oplus-s-module. Then $M=M_{1} \oplus M_{2}$, where M_{1} is a semisimple module and M_{2} is a module whit $\operatorname{Rad}\left(M_{2}\right)$ essential in M_{2}.

Proof. For $\operatorname{Rad}(M)$, there exists $M_{1} \leq M$ such that $M_{1} \cap \operatorname{Rad}(M)=0$ and $M_{1} \oplus \operatorname{Rad}(M) \leq_{e} M$. Since M is a $R a d-\oplus$-s-module, there exists a direct summand M_{2} of M such that $M_{1}+M_{2}=M$ and $M_{1} \cap M_{2} \leq \operatorname{Rad}\left(M_{2}\right)$. Since $M_{1} \cap M_{2}=$ $M_{1} \cap\left(M_{1} \cap M_{2}\right) \leq M_{1} \cap \operatorname{Rad}\left(M_{2}\right) \leq M_{1} \cap \operatorname{Rad}(M)=0, M=M_{1} \oplus M_{2}$. By Lemma 3.9, M_{1} is semisimple. Thus $\operatorname{Rad}(M)=\operatorname{Rad}\left(M_{1}\right) \oplus \operatorname{Rad}\left(M_{2}\right)=\operatorname{Rad}\left(M_{2}\right)$. Since $M_{1} \oplus \operatorname{Rad}(M) \leq_{e} M=M_{1} \oplus M_{2}$, i.e., $M_{1} \oplus \operatorname{Rad}\left(M_{2}\right) \leq_{e} M=M_{1} \oplus M_{2}$, $\operatorname{Rad}\left(M_{2}\right) \leq_{e} M_{2}$ by [7, Proposition 5.20]. This completes the proof.

Proposition 3.11. Let M be a Rad- $\oplus-s$-module. Then $M=M_{1} \oplus M_{2}$, where M_{1} is a module with $Z^{*}\left(M_{1}\right) \leq \operatorname{Rad}\left(M_{1}\right)$ and M_{2} is a module with $Z^{*}\left(M_{2}\right)=M_{2}$.

Proof. Since M is $R a d-\oplus$-s-module, there exists a direct summand M_{1} of M such that $M=Z^{*}(M)+M_{1}, Z^{*}\left(M_{1}\right)=Z^{*}(M) \cap M_{1} \leq \operatorname{Rad}\left(M_{1}\right)$ and $M=M_{1} \oplus M_{2}$ for some submodule M_{2} of M. Since $Z^{*}(M)=Z^{*}\left(M_{1}\right) \oplus Z^{*}\left(M_{2}\right)$, then $Z^{*}\left(M_{2}\right)=$ M_{2}.

Theorem 3.12. For a module M with $\left(D_{3}\right)$ the following statements are equivalent.
(i) M is completely $\mathrm{Rad}-\oplus-s$-module.
(ii) M is Rad- \oplus-s-module.
(iii) $M=M_{1} \oplus M_{2}$, where M_{1} is a semisimple module and M_{2} is a $\operatorname{Rad}-\oplus-s$ module with $\operatorname{Rad}\left(M_{2}\right)$ essential in M_{2}.
(iv) $M=M_{1} \oplus M_{2}$, where M_{1} is a Rad- \oplus-s-module with $Z^{*}\left(M_{1}\right) \leq \operatorname{Rad}\left(M_{1}\right)$ and M_{2} is a $\operatorname{Rad}-\oplus$-s-module with $Z^{*}\left(M_{2}\right)=M_{2}$.
Proof. $(i) \Rightarrow(i i)$. Clear from definition.
$(i i) \Rightarrow(i)$. It follows from Proposition 3.2.
$(i) \Rightarrow(i i i)$. By Proposition 3.10, $M=M_{1} \oplus M_{2}$, where M_{1} is semisimple and $\operatorname{Rad}\left(M_{2}\right)$ is essential in M_{2}. By $(i), M_{2}$ is $\operatorname{Rad}-\oplus$-s-module.
$(i) \Rightarrow(i v)$. By Proposition 3.11, we have $M=M_{1} \oplus M_{2}$, where $Z^{*}\left(M_{1}\right) \leq$ $\operatorname{Rad}\left(M_{1}\right)$ and $Z^{*}\left(M_{2}\right)=M_{2}$ and hence M_{1} and M_{2} are $R a d-\oplus$-s-module by (i).
$(i i i) \Rightarrow(i i),(i v) \Rightarrow(i i)$. It follows by Theorem 2.4.
Theorem 3.13. The following statements are equivalent for a projective module M.
(i) M is a direct sum of Rad- $\oplus-s$-modules and $\operatorname{Rad}(M)$ has finite Goldie dimension.
(ii) $M=M_{1} \oplus M_{2}$ for some semisimple module M_{1} and module M_{2} such that M_{2} has finite Goldie dimension and M_{2} is a (finite) direct sum of local modules.

Proof. $(i i) \Rightarrow(i)$. Clear. $(i) \Rightarrow(i i)$. Assume $M=\oplus_{i \in I} M_{i}, M_{i}$ is $R a d-\oplus$-s-module and $\operatorname{Rad}(M)$ has finite Goldie dimension. Since $\operatorname{Rad}(M)=\oplus_{i \in I} \operatorname{Rad}\left(M_{i}\right)$, then there is a finite subset J of I such that $\operatorname{Rad}\left(M_{i}\right)=0$ for all $i \in I-J$. Therefore M_{i} is semisimple for all $i \in I-J$. Hence there is a semisimple submodule M_{1} of M such that $M=M_{1} \oplus\left(\oplus_{j \in J} M_{j}\right)$. By Proposition 3.10, without loss of generality, we may assume $\operatorname{Rad}\left(M_{j}\right)$ is essential in $M_{j}(j \in J)$. Then $M_{j}(j \in J)$ has finite Goldie dimension by [11, Proposition 3.20]. Next we prove each M_{j} is local or a finite direct sum of local modules, for $j \in J$. Set $H=M_{j}$ for any $j \in J$. First, note that $\operatorname{Rad}(H) \neq H$ because H is projective [7, Proposition 17.14]. Assume H has Goldie dimension 1, and take some $x \in H-\operatorname{Rad}(H)$. Since H is $R a d-\oplus$-s-module, there exists a submodule K of H such that $H=x R+K, x R \cap K \leq \operatorname{Rad}(K)$ and $H=K \oplus K_{1}$ for some submodule K_{1} of M. Then $K=0$ or $K_{1}=0$. If $K_{1}=0$, then $x R$ becomes a submodule of $\operatorname{Rad}(H)$. This is a contradiction. Hence $K=0$, thus $H=x R$. It follows that H is local. Let $n>1$ be a positive integer and assume each M_{j} having Goldie dimension $k(1 \leq k<n)$ is local or a finite direct sum of local submodules. Let $j \in J$ and $H=M_{j}$ and assume H has Goldie dimension n. Suppose H is not local. Let $x \in H-\operatorname{Rad}(H)$ such that $H \neq x R$. Then since H is $R a d-\oplus$-s-module there exists submodules K, K_{1} of H such that $H=x R+K=K \oplus K_{1}$ and $x R \cap K \leq \operatorname{Rad}(K)$. It is clear that $K_{1} \neq 0$. Also $K \neq 0$. Since projective modules satisfy $\left(D_{3}\right)$ and then by Proposition 3.2, any direct summand of M is $R a d-\oplus$-s-module. Thus K and K_{1} are $R a d-\oplus$-s-modules by induction, K and K_{1} are local or finite direct sums of local submodules. This completes the proof of $(i) \Rightarrow(i i)$.

Lemma 3.14. Let M be an indecomposable module. Then M is a hollow module if and only if M is a completely $\operatorname{Rad}-\oplus-s$-module.

Proof. Clear from definitions.

Proposition 3.15. Let $M=U \oplus V$ such that U and V have local endomorphism rings. Then M is completely $\operatorname{Rad}-\oplus-s$-module if and only if U and V are hollow modules.

Proof. The necessity is clear from Lemma 3.14. Conversly, let K be a direct summand of M. If $K=M$ then by Corollary $2.7, K$ is $R a d-\oplus$-s-module. Assume $K \neq M$. Then either $K \cong U$ or $K \cong V$ by Krull-Schmidt-Azumaya Theorem [7, Corollary 12.7]. In either case K is $R a d-\oplus$-s-module. Thus M is completely Rad- \oplus-s-module.

Theorem 3.16. Let M be a non-zero module with finite Goldie dimension. Then the following statements are equivalent.
(i) Every direct summand of M is a finite direct sum of hollow modules.
(ii) M is a completely $\mathrm{Rad}-\oplus-s$-module.

Proof. $(i) \Rightarrow(i i)$. Clear by Corollary 2.7. $(i i) \Rightarrow(i)$. Let N be a direct summand of M. Since N has finite Goldie dimension, N has a decomposition $N=L_{1} \oplus \cdots \oplus$ L_{n}, where each L_{i} is indecomposable for $1 \leq i \leq n$ for some finite integer $1 \leq n$. Hence each $L_{i}(1 \leq i \leq n)$ is hollow from Lemma 3.14.

References

[1] I. Al-Khazzi, P.F. Smith, Modules with chain conditions on superfluous Submodules, Comm. Algebra 19 (1991) 2331-2351.
[2] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach: Reading, 1991.
[3] S.M. Mohamed, B.J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
[4] A. Leghwel, T. Kosan, N. Agayev, A. Harmanci, Duo modules and duo rings, Far East J.Math. 20 (3) (2006) 341-346.
[5] P.F. Smith, Modules for which every submodule has a unique closure, in Ring Theory (Editors, S. K. Jain and S. T. Rizvi), World Sci. (Singapore, 1993), 302-313.
[6] A. Harmanci, D. Keskin, P.F. Smith, On \oplus-supplemented modules, Acta Math. Hungar. 83 (1999) 161-169.
[7] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, SpringerVerlag, New York, 1992.
[8] J.M. Zelmanowitz, A class of modules with semisimple behavior, in Abelian Groups and Modules (editors A. Facchini and C. Menini), Kluver Acad. Publ. (Dor-drecht, 1995), 491-500.
[9] J. Clark, R. Wisbauer, Extending modules, J. Pure Appl. Algebra 104 (1995) 19-32.
[10] J.M. Zelmanowitz, Representation of rings with faithful polyform modules, Comm. Algebra 14 (1986) 1141-1169.
[11] K.R. Goodearl, Ring Theory, Nonsingular rings and modules, Dekker, New York, 1976.
(Received 23 February 2009)
(Accepted 2 February 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: talebi@umz.ac.ir (Y. Talebi)
 Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.

