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Abstract : Let R be a ring and M a right R-module. M is called Rad-⊕-s-
module if every submodule of M has a Rad-supplement that is a direct summand
of M , and M is called completely Rad-⊕-s-module if every direct summand of M is
Rad-⊕-s-module. In this paper various properties of such modules are developed.
It is shown that any finite direct sum of Rad-⊕-s-modules is Rad-⊕-s-module. We
also show that if M is Rad-⊕-s-module with (D3), then M is completely Rad-⊕-
s-module.
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1 Introduction

In this paper all rings are associative with identity and all modules are unital
right modules. Let R be a ring and M be an R-module. N ≤ M will mean N is
a submodule of M . E(M), Rad(M), Z(M) will indicate injective hull, Jacobson
radical and singular submodule of M , respectively. We set Z∗(M) = {m ∈ M : mR
is small in E(mR)}, which is a submodule of M . A submodule E of M is called
essential in M (notation E ≤e M) if E ∩ A 6= 0 for any non-zero submodule A
of M . Dually, a submodule S of M is called small in M (notation S ≪ M) if
M 6= S + T for any proper submodule T of M . Let A ⊆ B ⊆ M , submodule B is
said to be a closure of A in M if A is a essential submodule of B and B a closed
submodule in M . Let N and L be submodules of M , N is called a supplement of L
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in M if N +L = M and N is minimal with respect to this property, or equivalenty,
M = N + L and N ∩ L ≪ N . M is called an amply supplemented module if for
any two submodules A and B of M with A + B = M , B contains a supplement
of A. M is called a supplemented module if every submodule M has a supplement
in M . A non-zero module M is called hollow if every proper submodule of M is
small in M and M is called local if the sum of all proper submodules of M is also a
proper submodule of M . Every local module is hollow. M has property (p∗) (see
[1]) if for any submodule N of M , there exists a direct summand K of M such
that K ≤ N and N/K ≤ Rad(M/K). The notions which are not explained here
will be found in [2].

Lemma 1.1 ([2]). Let M be a module and K supplement submodule of M . Then
K ∩ Rad(M) = Rad(K).

Let M be a module. We consider the following conditions.

(D1) For every submodule N of M , M has a decoposition with M = M1 ⊕ M2,
M1 ≤ N and M2 ∩ N is small in M2.

(D3) If M1 and M2 are direct summands of M with M = M1+M2, then M1∩M2

is also a direct summand of M .

By [3, Lemma 4.6 and Proposition 4.38], every quasi-projective module has
(D3).

2 Rad-⊕-s-modules

Let M be a module. If U, U ′ ≤ M and M = U + U ′, then U ′ is called a Rad-
supplement of U in case U ∩ U ′ ≤ Rad(U ′). Clearly, each supplement submodule
is a Rad-supplement submodule. M is called a Rad-⊕-supplemented module if
every submodule of M has a Rad-supplement that is a direct summand of M ,
denoted by Rad-⊕-s-module. For example, hollow modules and modules with (p∗)
are Rad-⊕-s-module.

Let M be a module. Then by [3, Proposition 4.8], M has (D1) if and only
if M is amply supplemented and every supplement submodule of M is a direct
summand. Therefore every (D1)-module is Rad-⊕-s-module. But in general the
converse is not true as the following example shows.

Example 2.1. Let R be a discrete valuation ring with field of fractions K. Let P
be the unique maximal ideal of R such that P = Ra for some element a ∈ P . Let
M = (K/R) ⊕ (R/P ). By [3, Proposition A.7], M is Rad-⊕-s-module.

Recall that a projective module M is semiperfect if every homomorphic image
of M has a projective cover. Then we have the following lemma.

Lemma 2.2. Let M be a projective module. Consider the following conditions.

(i) M is a semiperfect module.
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(ii) M is a Rad-⊕-s-module.

Then (i) ⇒ (ii) and if M is a finitely generated module then (ii) ⇒ (i).

Proof. (i) ⇒ (ii). Let N be a submodule of M . Then by assumption, there exists
a projective cover π : P → M/N . For the canonical epimorphism σ : M → M/N ,
since M is projective, there exists a homomorphism f : M → P such that π◦f = σ.
Since π is small, f is epic by [2] and so f splits (P is projective). Then, by [2],
there exists some homomorphism g : P → M such that f ◦ g = 1P , and hence
π = π ◦ f ◦ g = σ ◦ g. Note that M = Kerf ⊕ g(P ) and Kerf ≤ N ; therefore,
M = N+g(p). Let µ be the restriction of σ to g(p). Then π = µ◦g and so µ is epic.
Therefore since π is small, µ is small by [2]. That is, Kerµ = N ∩ g(p) ≪ g(p).
Hence, g(p) is a supplement of N .

(ii) ⇒ (i). Let M be a finitely generated module and N be a submodule of
M . Since M is Rad-⊕-s-module, there exist submodules K and K ′ of M such that
M = N + K, N ∩ K ≤ Rad(K), and K ⊕ K ′ = M . Clearly, K is projective. For
the inclusion homomorphism i : K → M and the canonical epimorphism σ : M →
M/N , σ ◦ i : K → M/N is an epimorphism, and by hypothesis Rad(M) ≪ M ,
this implies that Rad(K) ≪ K and hence Kerσ ◦ i = N ∩ K ≪ K.

Lemma 2.3. Let N , L be submodules of a module M such that N + L has a
Rad-supplement H in M and N ∩ (H + L) has a Rad-supplement G in N . Then
H + G is a Rad-supplement of L in M .

Proof. Let H be a Rad-supplement of N + L in M and G be a Rad-supplement of
N ∩ (H +L) in N . Then M = (N +L)+H such that (N +L)∩H ≤ Rad(H) and
N = [N ∩ (H + L)] + G such that (H + L) ∩ G ≤ Rad(G). Since (H + G) ∩ L ≤
[(G + L) ∩ H ] + [(H + L) ∩ G] ≤ Rad(H) + Rad(G) ≤ Rad(H+G), H + G is a
Rad-supplement of L in M .

Theorem 2.4. Let M1 and M2 be Rad-⊕-s-modules. If M = M1 ⊕ M2, then M
is a Rad-⊕-s-module.

Proof. Let L be any submodule of M . Then M = M1+M2+L so that M1+M2+L
has a Rad-supplement 0 in M . Let H be a Rad-supplement of M2∩(M1+L) in M2

such that H is a direct summand of M2. By Lemma 2.3, H is a Rad-supplement
of M1 + L in M . Let K be a Rad-supplement of M1 ∩ (L + H) in M1 such that K
is a direct summand of M1. Again by applying Lemma 2.3, we have that H + K
is a Rad-supplement of L in M . Since H is a direct summand of M2 and K is a
direct summand of M1, it follows that H + K = H ⊕ K is a direct summand of
M . Thus M = M1 ⊕ M2 is Rad-⊕-s-module.

Corollary 2.5. Any finite direct sum of Rad-⊕-s-modules is a Rad-⊕-s-module.

Corollary 2.6. Any finite direct sum of modules with (p∗) is Rad-⊕-s-module.

Corollary 2.7. Any finite direct sum of hollow (or local) modules is Rad-⊕-s-
module.
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Let M be a module. A Submodule X of M is called fully invariant if, for
every h ∈ EndR(M), h(X) ⊆ X . The module M is called duo module, if every
submodule of M is fully invariant.

Lemma 2.8. Let M be a duo module. If M = M1 ⊕ M2, then A = (A ∩ M1) ⊕
(A ∩ M2) for any submodule A of M .

Proof. See [4].

Now we investigate conditions which ensure that a factor module of a Rad-⊕-
s-module will be a Rad-⊕-s-module.

Proposition 2.9. Assume that M is a Rad-⊕-s-duo module and N ≤ M . Then
M/N is a Rad-⊕-s-module.

Proof. For any submodule K of M containing N , since M is a Rad-⊕-s-module,
there exist submodules L and L′ of M such that M = K + L = L ⊕ L′, and
K ∩ L ≤ Rad(L). Note that M/N = K/N + (L + N)/N , and K ∩ (L + N) =
(K∩L)+N . Since K∩L ≤ Rad(L), we have K/N∩(L+N)/N = [(K∩L)+N ]/N ≤
Rad((L+N)/N). This implies that (L+N)/N is a Rad-supplemented of K/N in
M/N . Now by Lemma 2.8, N = (N∩L)⊕(N∩L′) , implies that (L+N)∩(L′+N) ≤
N + (L + N ∩ L + N ∩ L′) ∩ L′. It follows that (L + N) ∩ (L′ + N) ≤ N and
M/N = ((L + N)/N) ⊕ ((L′ + N)/N). Then (L + N)/N is a direct summand of
M/N . Consequently, M/N is a Rad-⊕-s-module.

A module M is called distributive if its lattice of submodules is a distributive
lattice, equivalently for submodules K,L,N of M , N +(K∩L) = (N +K)∩(N +L)
or N ∩ (K + L) = (N ∩ K) + (N ∩ L).

Theorem 2.10.

(1) Let M be a Rad-⊕-s-module and N a submodule of M . If for every direct
summand K of M , (N + K)/N is a direct summand of M/N then M/N is
a Rad-⊕-s-module.

(2) Let M be a distributive Rad-⊕-s-module. Then M/N is a Rad-⊕-s-module
for every submodule N of M .

Proof. (1) For any submodule X of M containing N , since M is a Rad-⊕-s-module,
there exists a direct summand D of M such that M = X + D = D ⊕ D′ and
X ∩D ≤ Rad(D) for some submodule D′ of M . Now M/N = X/N +(D +N)/N .
By hypothesis, (D + N)/N is a direct summand of M/N . Note that (X/N) ∩
((D + N)/N) = [X ∩ (D + N)]/N = [N + (D ∩ X)]/N . Since X ∩ D ≤ Rad(D),
we have [(D ∩X)+ N ]/N ≤ Rad((D + N)/N). This implies that (D + N)/N is a
Rad-supplement submodule of X/N in M/N . Hence M/N is a Rad-⊕-s-module.

(2) Let D be a direct summand of M . Then M = D⊕D′ for some submodule
D′ of M . Now M/N = [(D + N)/N ] + [(D′ + N)/N ] and N = N + (D ∩ D′) =
(N + D) ∩ (N + D′) by distributivity of M . This implies that M/N = [(D +
N)/N ] ⊕ [(D′ + N)/N ]. By (1), M/N is a Rad-⊕-s-module.
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3 Completely Rad-⊕-s-modules

While the properties lifting, amply supplemented and supplemented are in-
herited by summands, it is unknown (and unlikely) that the same is true for the
property Rad-⊕-s-module. In this vein we call a module M completely Rad-⊕-s-
module if every direct summand of M is Rad-⊕-s-module.

Given a positive integer n, the modules Mi (1 ≤ i ≤ n) are called relatively
projective if Mi is Mj-projective for all (1 ≤ i 6= j ≤ n).

Theorem 3.1. Let Mi (1 ≤ i ≤ n) be any finite collection of relatively projective
modules. Then the module M = M1 ⊕ · · · ⊕ Mn is Rad-⊕-s-module if and only if
Mi is Rad-⊕-s-module for each 1 ≤ i ≤ n.

Proof. The sufficiency is proved in Theorem 2.4. Conversely, we only prove M1 to
be Rad-⊕-s-module. Let A ≤ M1. Then there exists B ≤ M such that M = A+B,
B is a direct summand of M and A ∩B ≤ Rad(B). Since M = A + B = M1 + B,
By [3, Lemma 4.47], there exists B1 ≤ B such that M = M1 ⊕ B1. Then B =
B1 ⊕ (M1 ∩ B). Note that M1 = A + (M1 ∩ B) and M1 ∩ B is a direct summand
of M1. Therefore A∩B = A ∩ (M1 ∩B) and A∩B ≤ Rad(M), A ∩B ≤ M1 ∩B,
then A ∩ B ≤ (M1 ∩ B) ∩ Rad(M) = Rad(M1 ∩ B) by Lemma 1.1. Hence M1 is
Rad-⊕-s-module.

Proposition 3.2. Let M be a Rad-⊕-s-module with (D3). Then M is completely
Rad-⊕-s-module.

Proof. Let N be a direct summand of M and A a submodule of N . We show
that A has a Rad-supplement in N that is direct summand of N . Since M is Rad-
⊕-s-module, there exists a direct summand B of M such that M = A + B and
A∩B ≤ Rad(B). Hence N = A+(N∩B). Furthermore N∩B is a direct summand
of M because M has (D3). Then A ∩ (N ∩ B) = A ∩ B and A ∩ B ≤ Rad(M),
A ∩ B ≤ N ∩ B, then have A ∩ B ≤ (N ∩ B) ∩ Rad(M) = Rad(N ∩ B).

A module M is said to have the summand sum property (SSP) if the sum of
any pair of direct summands of M is a direct summands of M , i.e., if N and K
are direct summands of M then N + K is also a direct summand of M .

Theorem 3.3. Let M be a Rad-⊕-s-module with the SSP. Then M is completely
Rad-⊕-s-module.

Proof. Let N be a direct summand of M . Then M = N ⊕ N ′ for some N ′ ≤ M .
We want to show that M/N ′ is a Rad-⊕-s-module. Assume that L is a direct
summand of M . Since M has the SSP, L + N ′ is a direct summand of M . Let
M = (L +N ′)⊕K for some K ≤ M . Then M/N ′ = (L +N ′)/N ′ ⊕ (K +N ′)/N ′.
Therefore M/N ′ is a Rad-⊕-s-module by Theorem 2.10(1).

A module M is said to have the Summand Intersection Property (SIP) if the
intersection of any pair of direct summands of M is a direct summand of M , i.e.,
if N and K are direct summands of M then N ∩ K is also a direct summand of
M .
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Lemma 3.4 ([4, Corollary 18]). Let M be a duo module. Then M has the SIP
and the SSP.

As a result of Theorem 3.3 and Lemma 3.4, we can obtain the following Corol-
lary;

Corollary 3.5. Let M be a Rad-⊕-s-duo module. Then M is completely Rad-⊕-
s-module.

In [5], Smith calls a module M a (UC)-module if every submodule of M has
a unique closure in M . M is called extending module if every closed submodule of
M is a direct summand of M .

Theorem 3.6. Let M be a UC extending module. Then M is Rad-⊕-s-module if
and only if M is completely Rad-⊕-s-module.

Proof. Sufficiency is clear. Conversly, assume that M is Rad-⊕-s-module. By [6,
Lemma 2.4], M has (D3). Hence M is completely Rad-⊕-s-module from Proposi-
tion 3.2.

The module M has finite Goldie dimension if M does not contain an infinite
direct sum of non-zero submodules. It is well-known that a module M has finite
Goldie dimension if and only if there exists a positive integer n and uniform sub-
modules Ui (1 ≤ i ≤ n) of M such that U1 ⊕ · · · ⊕Un is an essential submodule of
M and in this case n is an invariant of the module M called the Goldie dimension
of M (see, for example [7, p. 294 Ex. 2]).

Let M be a module. M is called monoform if each non-zero partial endomor-
phism of M is monomorphism. M is called polyform if each partial endomorphism
has closed kernel. M is called locally finite dimensional if every finitely generated
submodule has finite Goldie dimension, following [8], note that polyform extending
modules have (D3) [9, Lemma 1.11] and every monoform module is polyform.

Corollary 3.7. Let M be a polyform (monoform) extending module. Then M is
Rad-⊕-s-module if and only if M is completely Rad-⊕-s-module.

Proof. By [8, Proposition 2.2], M is a (UC)-module. Then by Theorem 3.6, we
have the result.

Theorem 3.8. Suppose that M is a locally finite dimensional polyform module.
If M is quasi-injective, then for any index set I, M (I) is Rad-⊕-s-module if and
only if M (I) is completely Rad-⊕-s-module.

Proof. Suppose that M (I) is Rad-⊕-s-module. Since M is polyform, M (I) is poly-
form from [10, Proposition 3.3] and M (I) is quasi-injective from [8, Corollary 3.4].
Hence M (I) is extending since every quasi-injective module is extending (see [3]).
By Corollary 3.7, M (I) is completely Rad-⊕-s-module.

Lemma 3.9. Let M be a supplemented module and N be a submodule of M such
that N ∩ Rad(M) = 0. Then N is semisimple.
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Proof. By [2], M/Rad(M) is semisimple. Hence N is semisimple.

Proposition 3.10. Let M be a Rad-⊕-s-module. Then M = M1⊕M2, where M1

is a semisimple module and M2 is a module whit Rad(M2) essential in M2.

Proof. For Rad(M), there exists M1 ≤ M such that M1 ∩ Rad(M) = 0 and
M1⊕Rad(M) ≤e M . Since M is a Rad-⊕-s-module, there exists a direct summand
M2 of M such that M1 + M2 = M and M1 ∩ M2 ≤ Rad(M2). Since M1 ∩ M2 =
M1 ∩ (M1 ∩ M2) ≤ M1 ∩ Rad(M2) ≤ M1 ∩ Rad(M) = 0, M = M1 ⊕ M2. By
Lemma 3.9, M1 is semisimple. Thus Rad(M) = Rad(M1)⊕Rad(M2) = Rad(M2).
Since M1 ⊕ Rad(M) ≤e M = M1 ⊕ M2, i.e., M1 ⊕ Rad(M2) ≤e M = M1 ⊕ M2,
Rad(M2) ≤e M2 by [7, Proposition 5.20]. This completes the proof.

Proposition 3.11. Let M be a Rad-⊕-s-module. Then M = M1 ⊕ M2 , where
M1 is a module with Z∗(M1) ≤ Rad(M1) and M2 is a module with Z∗(M2) = M2.

Proof. Since M is Rad-⊕-s-module, there exists a direct summand M1 of M such
that M = Z∗(M) + M1, Z∗(M1) = Z∗(M) ∩ M1 ≤ Rad(M1) and M = M1 ⊕ M2

for some submodule M2 of M . Since Z∗(M) = Z∗(M1)⊕Z∗(M2), then Z∗(M2) =
M2.

Theorem 3.12. For a module M with (D3) the following statements are equiva-
lent.

(i) M is completely Rad-⊕-s-module.

(ii) M is Rad-⊕-s-module.

(iii) M = M1 ⊕ M2, where M1 is a semisimple module and M2 is a Rad-⊕-s-
module with Rad(M2) essential in M2.

(iv) M = M1 ⊕ M2, where M1 is a Rad-⊕-s-module with Z∗(M1) ≤ Rad(M1)
and M2 is a Rad-⊕-s-module with Z∗(M2) = M2.

Proof. (i) ⇒ (ii). Clear from definition.
(ii) ⇒ (i). It follows from Proposition 3.2.
(i) ⇒ (iii). By Proposition 3.10, M = M1 ⊕ M2, where M1 is semisimple and

Rad(M2) is essential in M2. By (i), M2 is Rad-⊕-s-module.
(i) ⇒ (iv). By Proposition 3.11, we have M = M1 ⊕ M2, where Z∗(M1) ≤

Rad(M1) and Z∗(M2) = M2 and hence M1 and M2 are Rad-⊕-s-module by (i).
(iii) ⇒ (ii), (iv) ⇒ (ii). It follows by Theorem 2.4.

Theorem 3.13. The following statements are equivalent for a projective module
M .

(i) M is a direct sum of Rad-⊕-s-modules and Rad(M) has finite Goldie di-
mension.

(ii) M = M1⊕M2 for some semisimple module M1 and module M2 such that M2

has finite Goldie dimension and M2 is a (finite) direct sum of local modules.
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Proof. (ii) ⇒ (i). Clear. (i) ⇒ (ii). Assume M = ⊕i∈IMi, Mi is Rad-⊕-s-module
and Rad(M) has finite Goldie dimension. Since Rad(M) = ⊕i∈IRad(Mi), then
there is a finite subset J of I such that Rad(Mi) = 0 for all i ∈ I − J . Therefore
Mi is semisimple for all i ∈ I−J . Hence there is a semisimple submodule M1 of M
such that M = M1 ⊕ (⊕j∈JMj). By Proposition 3.10, without loss of generality,
we may assume Rad(Mj) is essential in Mj(j ∈ J). Then Mj(j ∈ J) has finite
Goldie dimension by [11, Proposition 3.20]. Next we prove each Mj is local or a
finite direct sum of local modules, for j ∈ J . Set H = Mj for any j ∈ J . First, note
that Rad(H) 6= H because H is projective [7, Proposition 17.14]. Assume H has
Goldie dimension 1, and take some x ∈ H −Rad(H). Since H is Rad-⊕-s-module,
there exists a submodule K of H such that H = xR + K, xR ∩ K ≤ Rad(K)
and H = K ⊕ K1 for some submodule K1 of M . Then K = 0 or K1 = 0. If
K1 = 0, then xR becomes a submodule of Rad(H). This is a contradiction. Hence
K = 0, thus H = xR. It follows that H is local. Let n > 1 be a positive integer
and assume each Mj having Goldie dimension k(1 ≤ k < n) is local or a finite
direct sum of local submodules. Let j ∈ J and H = Mj and assume H has Goldie
dimension n. Suppose H is not local. Let x ∈ H − Rad(H) such that H 6= xR.
Then since H is Rad-⊕-s-module there exists submodules K ,K1 of H such that
H = xR + K = K ⊕ K1 and xR ∩ K ≤ Rad(K). It is clear that K1 6= 0. Also
K 6= 0. Since projective modules satisfy (D3) and then by Proposition 3.2, any
direct summand of M is Rad-⊕-s-module. Thus K and K1 are Rad-⊕-s-modules
by induction, K and K1 are local or finite direct sums of local submodules. This
completes the proof of (i) ⇒ (ii).

Lemma 3.14. Let M be an indecomposable module. Then M is a hollow module
if and only if M is a completely Rad-⊕-s-module.

Proof. Clear from definitions.

Proposition 3.15. Let M = U ⊕ V such that U and V have local endomorphism
rings. Then M is completely Rad-⊕-s-module if and only if U and V are hollow
modules.

Proof. The necessity is clear from Lemma 3.14. Conversly, let K be a direct
summand of M . If K = M then by Corollary 2.7, K is Rad-⊕-s-module. Assume
K 6= M . Then either K ∼= U or K ∼= V by Krull-Schmidt-Azumaya Theorem
[7, Corollary 12.7]. In either case K is Rad-⊕-s-module. Thus M is completely
Rad-⊕-s-module.

Theorem 3.16. Let M be a non-zero module with finite Goldie dimension. Then
the following statements are equivalent.

(i) Every direct summand of M is a finite direct sum of hollow modules.

(ii) M is a completely Rad-⊕-s-module.
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Proof. (i) ⇒ (ii). Clear by Corollary 2.7. (ii) ⇒ (i). Let N be a direct summand
of M . Since N has finite Goldie dimension, N has a decomposition N = L1⊕·· ·⊕
Ln, where each Li is indecomposable for 1 ≤ i ≤ n for some finite integer 1 ≤ n.
Hence each Li (1 ≤ i ≤ n) is hollow from Lemma 3.14.
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