Thai Journal of Mathematics Volume 9 (2011) Number 2 : 373–381

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

On Rad---Supplemented Modules

Yahya Talebi $^{1}\ \text{and}\ \text{Azadeh}\ \text{Mahmoudi}$

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran e-mail: talebi@umz.ac.ir, a.mahmoudi.60@gmail.com

Abstract: Let R be a ring and M a right R-module. M is called $Rad \oplus -s$ module if every submodule of M has a Rad-supplement that is a direct summand of M, and M is called *completely* $Rad \oplus -s$ -module if every direct summand of M is $Rad \oplus -s$ -module. In this paper various properties of such modules are developed. It is shown that any finite direct sum of $Rad \oplus -s$ -modules is $Rad \oplus -s$ -module. We also show that if M is $Rad \oplus -s$ -module with (D_3) , then M is completely $Rad \oplus -s$ s-module.

Keywords : Supplemented modules; *Rad*-⊕-s-module; Completely *Rad*-⊕-s-module. **2010 Mathematics Subject Classification :** 16D10; 16D80; 16D99.

1 Introduction

In this paper all rings are associative with identity and all modules are unital right modules. Let R be a ring and M be an R-module. $N \leq M$ will mean N is a submodule of M. E(M), Rad(M), Z(M) will indicate *injective hull*, Jacobson radical and singular submodule of M, respectively. We set $Z^*(M) = \{m \in M : mR \text{ is small } in E(mR)\}$, which is a submodule of M. A submodule E of M is called essential in M (notation $E \leq_e M$) if $E \cap A \neq 0$ for any non-zero submodule A of M. Dually, a submodule S of M is called small in M (notation $S \ll M$) if $M \neq S + T$ for any proper submodule T of M. Let $A \subseteq B \subseteq M$, submodule B is said to be a closure of A in M if A is a essential submodule of B and B a closed submodule in M. Let N and L be submodules of M, N is called a supplement of L

¹Corresponding author email:talebi@umz.ac.ir (Y. Talebi)

Copyright $\textcircled{}{}_{\odot}$ 2011 by the Mathematical Association of Thailand. All rights reserved.

in M if N + L = M and N is minimal with respect to this property, or equivalenty, M = N + L and $N \cap L \ll N$. M is called an *amply supplemented* module if for any two submodules A and B of M with A + B = M, B contains a supplement of A. M is called a *supplemented* module if every submodule M has a supplement in M. A non-zero module M is called *hollow* if every proper submodule of M is small in M and M is called *local* if the sum of all proper submodules of M is also a proper submodule of M. Every local module is hollow. M has property (p^*) (see [1]) if for any submodule N of M, there exists a direct summand K of M such that $K \leq N$ and $N/K \leq Rad(M/K)$. The notions which are not explained here will be found in [2].

Lemma 1.1 ([2]). Let M be a module and K supplement submodule of M. Then $K \cap Rad(M) = Rad(K)$.

Let M be a module. We consider the following conditions.

- (D₁) For every submodule N of M, M has a decoposition with $M = M_1 \oplus M_2$, $M_1 \leq N$ and $M_2 \cap N$ is small in M_2 .
- (D_3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M.

By [3, Lemma 4.6 and Proposition 4.38], every quasi-projective module has (D_3) .

$2 \quad Rad$ - \oplus -s-modules

Let M be a module. If $U, U' \leq M$ and M = U + U', then U' is called a Radsupplement of U in case $U \cap U' \leq Rad(U')$. Clearly, each supplement submodule is a *Rad*-supplement submodule. M is called a Rad- \oplus -supplemented module if every submodule of M has a *Rad*-supplement that is a direct summand of M, denoted by *Rad*- \oplus -s-module. For example, hollow modules and modules with (p^*) are *Rad*- \oplus -s-module.

Let M be a module. Then by [3, Proposition 4.8], M has (D_1) if and only if M is amply supplemented and every supplement submodule of M is a direct summand. Therefore every (D_1) -module is Rad- \oplus -s-module. But in general the converse is not true as the following example shows.

Example 2.1. Let R be a discrete valuation ring with field of fractions K. Let P be the unique maximal ideal of R such that P = Ra for some element $a \in P$. Let $M = (K/R) \oplus (R/P)$. By [3, Proposition A.7], M is Rad- \oplus -s-module.

Recall that a projective module M is *semiperfect* if every homomorphic image of M has a projective cover. Then we have the following lemma.

Lemma 2.2. Let M be a projective module. Consider the following conditions.

(i) M is a semiperfect module.

(ii) M is a Rad- \oplus -s-module.

Then $(i) \Rightarrow (ii)$ and if M is a finitely generated module then $(ii) \Rightarrow (i)$.

Proof. $(i) \Rightarrow (ii)$. Let N be a submodule of M. Then by assumption, there exists a projective cover $\pi : P \to M/N$. For the canonical epimorphism $\sigma : M \to M/N$, since M is projective, there exists a homomorphism $f : M \to P$ such that $\pi \circ f = \sigma$. Since π is small, f is epic by [2] and so f splits (P is projective). Then, by [2], there exists some homomorphism $g : P \to M$ such that $f \circ g = 1_P$, and hence $\pi = \pi \circ f \circ g = \sigma \circ g$. Note that $M = Kerf \oplus g(P)$ and $Kerf \leq N$; therefore, M = N + g(p). Let μ be the restriction of σ to g(p). Then $\pi = \mu \circ g$ and so μ is epic. Therefore since π is small, μ is small by [2]. That is, $Ker\mu = N \cap g(p) \ll g(p)$. Hence, g(p) is a supplement of N.

 $(ii) \Rightarrow (i)$. Let M be a finitely generated module and N be a submodule of M. Since M is Rad- \oplus -s-module, there exist submodules K and K' of M such that $M = N + K, N \cap K \leq Rad(K)$, and $K \oplus K' = M$. Clearly, K is projective. For the inclusion homomorphism $i: K \to M$ and the canonical epimorphism $\sigma: M \to M/N, \sigma \circ i: K \to M/N$ is an epimorphism, and by hypothesis $Rad(M) \ll M$, this implies that $Rad(K) \ll K$ and hence $Ker\sigma \circ i = N \cap K \ll K$.

Lemma 2.3. Let N, L be submodules of a module M such that N + L has a Rad-supplement H in M and $N \cap (H + L)$ has a Rad-supplement G in N. Then H + G is a Rad-supplement of L in M.

Proof. Let *H* be a *Rad*-supplement of *N* + *L* in *M* and *G* be a *Rad*-supplement of $N \cap (H + L)$ in *N*. Then M = (N + L) + H such that $(N + L) \cap H \leq Rad(H)$ and $N = [N \cap (H + L)] + G$ such that $(H + L) \cap G \leq Rad(G)$. Since $(H + G) \cap L \leq [(G + L) \cap H] + [(H + L) \cap G] \leq Rad(H) + Rad(G) \leq Rad(H+G), H + G$ is a *Rad*-supplement of *L* in *M*. □

Theorem 2.4. Let M_1 and M_2 be Rad- \oplus -s-modules. If $M = M_1 \oplus M_2$, then M is a Rad- \oplus -s-module.

Proof. Let L be any submodule of M. Then $M = M_1 + M_2 + L$ so that $M_1 + M_2 + L$ has a *Rad*-supplement 0 in M. Let H be a *Rad*-supplement of $M_2 \cap (M_1 + L)$ in M_2 such that H is a direct summand of M_2 . By Lemma 2.3, H is a *Rad*-supplement of $M_1 + L$ in M. Let K be a *Rad*-supplement of $M_1 \cap (L + H)$ in M_1 such that K is a direct summand of M_1 . Again by applying Lemma 2.3, we have that H + K is a *Rad*-supplement of L in M. Since H is a direct summand of M_2 and K is a direct summand of M_1 , it follows that $H + K = H \oplus K$ is a direct summand of M. Thus $M = M_1 \oplus M_2$ is *Rad*- \oplus -s-module.

Corollary 2.5. Any finite direct sum of Rad - \oplus -s-modules is a Rad - \oplus -s-module.

Corollary 2.6. Any finite direct sum of modules with (p^*) is Rad- \oplus -s-module.

Corollary 2.7. Any finite direct sum of hollow (or local) modules is Rad - \oplus -s-module.

Let M be a module. A Submodule X of M is called *fully invariant* if, for every $h \in End_R(M)$, $h(X) \subseteq X$. The module M is called *duo module*, if every submodule of M is fully invariant.

Lemma 2.8. Let M be a duo module. If $M = M_1 \oplus M_2$, then $A = (A \cap M_1) \oplus (A \cap M_2)$ for any submodule A of M.

Proof. See [4].

Now we investigate conditions which ensure that a factor module of a Rad- \oplus -s-module will be a Rad- \oplus -s-module.

Proposition 2.9. Assume that M is a Rad- \oplus -s-duo module and $N \leq M$. Then M/N is a Rad- \oplus -s-module.

Proof. For any submodule K of M containing N, since M is a Rad-⊕-s-module, there exist submodules L and L' of M such that $M = K + L = L \oplus L'$, and $K \cap L \leq Rad(L)$. Note that M/N = K/N + (L+N)/N, and $K \cap (L+N) = (K\cap L)+N$. Since $K\cap L \leq Rad(L)$, we have $K/N\cap(L+N)/N = [(K\cap L)+N]/N \leq Rad((L+N)/N)$. This implies that (L+N)/N is a Rad-supplemented of K/N in M/N. Now by Lemma 2.8, $N = (N\cap L)\oplus (N\cap L')$, implies that $(L+N)\cap (L'+N) \leq N + (L+N\cap L+N\cap L') \cap L'$. It follows that $(L+N)\cap (L'+N) \leq N$ and $M/N = ((L+N)/N) \oplus ((L'+N)/N)$. Then (L+N)/N is a direct summand of M/N. Consequently, M/N is a Rad-⊕-s-module. □

A module M is called *distributive* if its lattice of submodules is a distributive lattice, equivalently for submodules K, L, N of $M, N + (K \cap L) = (N + K) \cap (N + L)$ or $N \cap (K + L) = (N \cap K) + (N \cap L)$.

Theorem 2.10.

- (1) Let M be a Rad- \oplus -s-module and N a submodule of M. If for every direct summand K of M, (N + K)/N is a direct summand of M/N then M/N is a Rad- \oplus -s-module.
- (2) Let M be a distributive Rad- \oplus -s-module. Then M/N is a Rad- \oplus -s-module for every submodule N of M.

Proof. (1) For any submodule X of M containing N, since M is a Rad-⊕-s-module, there exists a direct summand D of M such that $M = X + D = D \oplus D'$ and $X \cap D \leq Rad(D)$ for some submodule D' of M. Now M/N = X/N + (D+N)/N. By hypothesis, (D + N)/N is a direct summand of M/N. Note that $(X/N) \cap ((D + N)/N) = [X \cap (D + N)]/N = [N + (D \cap X)]/N$. Since $X \cap D \leq Rad(D)$, we have $[(D \cap X) + N]/N \leq Rad((D + N)/N)$. This implies that (D + N)/N is a Rad-supplement submodule of X/N in M/N. Hence M/N is a Rad-⊕-s-module.

(2) Let *D* be a direct summand of *M*. Then $M = D \oplus D'$ for some submodule D' of *M*. Now M/N = [(D+N)/N] + [(D'+N)/N] and $N = N + (D \cap D') = (N+D) \cap (N+D')$ by distributivity of *M*. This implies that $M/N = [(D+N)/N] \oplus [(D'+N)/N]$. By (1), M/N is a *Rad*- \oplus -s-module.

3 Completely Rad- \oplus -s-modules

While the properties lifting, amply supplemented and supplemented are inherited by summands, it is unknown (and unlikely) that the same is true for the property Rad- \oplus -s-module. In this vein we call a module M completely Rad- \oplus -s-module if every direct summand of M is Rad- \oplus -s-module.

Given a positive integer n, the modules M_i $(1 \le i \le n)$ are called relatively projective if M_i is M_j -projective for all $(1 \le i \ne j \le n)$.

Theorem 3.1. Let M_i $(1 \le i \le n)$ be any finite collection of relatively projective modules. Then the module $M = M_1 \oplus \cdots \oplus M_n$ is Rad- \oplus -s-module if and only if M_i is Rad- \oplus -s-module for each $1 \le i \le n$.

Proof. The sufficiency is proved in Theorem 2.4. Conversely, we only prove M_1 to be Rad-⊕-s-module. Let $A \leq M_1$. Then there exists $B \leq M$ such that M = A+B, B is a direct summand of M and $A \cap B \leq Rad(B)$. Since $M = A + B = M_1 + B$, By [3, Lemma 4.47], there exists $B_1 \leq B$ such that $M = M_1 \oplus B_1$. Then $B = B_1 \oplus (M_1 \cap B)$. Note that $M_1 = A + (M_1 \cap B)$ and $M_1 \cap B$ is a direct summand of M_1 . Therefore $A \cap B = A \cap (M_1 \cap B)$ and $A \cap B \leq Rad(M)$, $A \cap B \leq M_1 \cap B$, then $A \cap B \leq (M_1 \cap B) \cap Rad(M) = Rad(M_1 \cap B)$ by Lemma 1.1. Hence M_1 is Rad-⊕-s-module. □

Proposition 3.2. Let M be a Rad- \oplus -s-module with (D_3) . Then M is completely Rad- \oplus -s-module.

Proof. Let N be a direct summand of M and A a submodule of N. We show that A has a Rad-supplement in N that is direct summand of N. Since M is Rad-⊕-s-module, there exists a direct summand B of M such that M = A + B and $A \cap B \leq Rad(B)$. Hence $N = A + (N \cap B)$. Furthermore $N \cap B$ is a direct summand of M because M has (D_3) . Then $A \cap (N \cap B) = A \cap B$ and $A \cap B \leq Rad(M)$, $A \cap B \leq N \cap B$, then have $A \cap B \leq (N \cap B) \cap Rad(M) = Rad(N \cap B)$. □

A module M is said to have the summand sum property (SSP) if the sum of any pair of direct summands of M is a direct summands of M, i.e., if N and Kare direct summands of M then N + K is also a direct summand of M.

Theorem 3.3. Let M be a Rad- \oplus -s-module with the SSP. Then M is completely Rad- \oplus -s-module.

Proof. Let N be a direct summand of M. Then $M = N \oplus N'$ for some $N' \leq M$. We want to show that M/N' is a Rad-⊕-s-module. Assume that L is a direct summand of M. Since M has the SSP, L + N' is a direct summand of M. Let $M = (L + N') \oplus K$ for some $K \leq M$. Then $M/N' = (L + N')/N' \oplus (K + N')/N'$. Therefore M/N' is a Rad-⊕-s-module by Theorem 2.10(1).

A module M is said to have the Summand Intersection Property (SIP) if the intersection of any pair of direct summands of M is a direct summand of M, i.e., if N and K are direct summands of M then $N \cap K$ is also a direct summand of M.

Lemma 3.4 ([4, Corollary 18]). Let M be a duo module. Then M has the SIP and the SSP.

As a result of Theorem 3.3 and Lemma 3.4, we can obtain the following Corollary;

Corollary 3.5. Let M be a Rad- \oplus -s-duo module. Then M is completely Rad- \oplus -s-module.

In [5], Smith calls a module M a (UC)-module if every submodule of M has a unique *closure* in M. M is called *extending* module if every closed submodule of M is a direct summand of M.

Theorem 3.6. Let M be a UC extending module. Then M is Rad- \oplus -s-module if and only if M is completely Rad- \oplus -s-module.

Proof. Sufficiency is clear. Conversely, assume that M is Rad- \oplus -s-module. By [6, Lemma 2.4], M has (D_3) . Hence M is completely Rad- \oplus -s-module from Proposition 3.2.

The module M has finite Goldie dimension if M does not contain an infinite direct sum of non-zero submodules. It is well-known that a module M has finite Goldie dimension if and only if there exists a positive integer n and uniform submodules U_i $(1 \le i \le n)$ of M such that $U_1 \oplus \cdots \oplus U_n$ is an essential submodule of M and in this case n is an invariant of the module M called the *Goldie dimension* of M (see, for example [7, p. 294 Ex. 2]).

Let M be a module. M is called *monoform* if each non-zero partial endomorphism of M is monomorphism. M is called *polyform* if each partial endomorphism has closed kernel. M is called locally finite dimensional if every finitely generated submodule has finite Goldie dimension, following [8], note that polyform extending modules have (D_3) [9, Lemma 1.11] and every monoform module is polyform.

Corollary 3.7. Let M be a polyform (monoform) extending module. Then M is Rad- \oplus -s-module if and only if M is completely Rad- \oplus -s-module.

Proof. By [8, Proposition 2.2], M is a (UC)-module. Then by Theorem 3.6, we have the result.

Theorem 3.8. Suppose that M is a locally finite dimensional polyform module. If M is quasi-injective, then for any index set I, $M^{(I)}$ is Rad- \oplus -s-module if and only if $M^{(I)}$ is completely Rad- \oplus -s-module.

Proof. Suppose that $M^{(I)}$ is Rad- \oplus -s-module. Since M is polyform, $M^{(I)}$ is polyform from [10, Proposition 3.3] and $M^{(I)}$ is quasi-injective from [8, Corollary 3.4]. Hence $M^{(I)}$ is extending since every quasi-injective module is extending (see [3]). By Corollary 3.7, $M^{(I)}$ is completely Rad- \oplus -s-module.

Lemma 3.9. Let M be a supplemented module and N be a submodule of M such that $N \cap Rad(M) = 0$. Then N is semisimple.

Proof. By [2], M/Rad(M) is semisimple. Hence N is semisimple.

Proposition 3.10. Let M be a Rad- \oplus -s-module. Then $M = M_1 \oplus M_2$, where M_1 is a semisimple module and M_2 is a module whit $Rad(M_2)$ essential in M_2 .

Proof. For Rad(M), there exists $M_1 \leq M$ such that $M_1 \cap Rad(M) = 0$ and $M_1 \oplus Rad(M) \leq_e M$. Since M is a Rad- \oplus -s-module, there exists a direct summand M_2 of M such that $M_1 + M_2 = M$ and $M_1 \cap M_2 \leq Rad(M_2)$. Since $M_1 \cap M_2 = M_1 \cap (M_1 \cap M_2) \leq M_1 \cap Rad(M_2) \leq M_1 \cap Rad(M) = 0$, $M = M_1 \oplus M_2$. By Lemma 3.9, M_1 is semisimple. Thus $Rad(M) = Rad(M_1) \oplus Rad(M_2) = Rad(M_2)$. Since $M_1 \oplus Rad(M) \leq_e M = M_1 \oplus M_2$, i.e., $M_1 \oplus Rad(M_2) \leq_e M = M_1 \oplus M_2$, $Rad(M_2) \leq_e M_2$ by [7, Proposition 5.20]. This completes the proof.

Proposition 3.11. Let M be a Rad- \oplus -s-module. Then $M = M_1 \oplus M_2$, where M_1 is a module with $Z^*(M_1) \leq Rad(M_1)$ and M_2 is a module with $Z^*(M_2) = M_2$.

Proof. Since M is $Rad \oplus s$ -module, there exists a direct summand M_1 of M such that $M = Z^*(M) + M_1$, $Z^*(M_1) = Z^*(M) \cap M_1 \leq Rad(M_1)$ and $M = M_1 \oplus M_2$ for some submodule M_2 of M. Since $Z^*(M) = Z^*(M_1) \oplus Z^*(M_2)$, then $Z^*(M_2) = M_2$.

Theorem 3.12. For a module M with (D_3) the following statements are equivalent.

- (i) M is completely Rad- \oplus -s-module.
- (ii) M is Rad- \oplus -s-module.
- (iii) $M = M_1 \oplus M_2$, where M_1 is a semisimple module and M_2 is a Rad- \oplus -smodule with $Rad(M_2)$ essential in M_2 .
- (iv) $M = M_1 \oplus M_2$, where M_1 is a Rad- \oplus -s-module with $Z^*(M_1) \leq Rad(M_1)$ and M_2 is a Rad- \oplus -s-module with $Z^*(M_2) = M_2$.

Proof. $(i) \Rightarrow (ii)$. Clear from definition.

 $(ii) \Rightarrow (i)$. It follows from Proposition 3.2.

 $(i) \Rightarrow (iii)$. By Proposition 3.10, $M = M_1 \oplus M_2$, where M_1 is semisimple and $Rad(M_2)$ is essential in M_2 . By (i), M_2 is Rad- \oplus -s-module.

 $(i) \Rightarrow (iv)$. By Proposition 3.11, we have $M = M_1 \oplus M_2$, where $Z^*(M_1) \leq Rad(M_1)$ and $Z^*(M_2) = M_2$ and hence M_1 and M_2 are $Rad \oplus -s$ -module by (i). $(iii) \Rightarrow (ii), (iv) \Rightarrow (ii)$. It follows by Theorem 2.4.

Theorem 3.13. The following statements are equivalent for a projective module M.

- (i) M is a direct sum of Rad- \oplus -s-modules and Rad(M) has finite Goldie dimension.
- (ii) $M = M_1 \oplus M_2$ for some semisimple module M_1 and module M_2 such that M_2 has finite Goldie dimension and M_2 is a (finite) direct sum of local modules.

Proof. $(ii) \Rightarrow (i)$. Clear. $(i) \Rightarrow (ii)$. Assume $M = \bigoplus_{i \in I} M_i$, M_i is Rad- \oplus -s-module and Rad(M) has finite Goldie dimension. Since $Rad(M) = \bigoplus_{i \in I} Rad(M_i)$, then there is a finite subset J of I such that $Rad(M_i) = 0$ for all $i \in I - J$. Therefore M_i is semisimple for all $i \in I - J$. Hence there is a semisimple submodule M_1 of Msuch that $M = M_1 \oplus (\bigoplus_{i \in J} M_i)$. By Proposition 3.10, without loss of generality, we may assume $Rad(M_i)$ is essential in $M_i(j \in J)$. Then $M_i(j \in J)$ has finite Goldie dimension by [11, Proposition 3.20]. Next we prove each M_j is local or a finite direct sum of local modules, for $j \in J$. Set $H = M_j$ for any $j \in J$. First, note that $Rad(H) \neq H$ because H is projective [7, Proposition 17.14]. Assume H has Goldie dimension 1, and take some $x \in H - Rad(H)$. Since H is Rad- \oplus -s-module, there exists a submodule K of H such that H = xR + K, $xR \cap K \leq Rad(K)$ and $H = K \oplus K_1$ for some submodule K_1 of M. Then K = 0 or $K_1 = 0$. If $K_1 = 0$, then xR becomes a submodule of Rad(H). This is a contradiction. Hence K = 0, thus H = xR. It follows that H is local. Let n > 1 be a positive integer and assume each M_j having Goldie dimension $k(1 \le k < n)$ is local or a finite direct sum of local submodules. Let $j \in J$ and $H = M_j$ and assume H has Goldie dimension n. Suppose H is not local. Let $x \in H - Rad(H)$ such that $H \neq xR$. Then since H is Rad- \oplus -s-module there exists submodules K, K_1 of H such that $H = xR + K = K \oplus K_1$ and $xR \cap K \leq Rad(K)$. It is clear that $K_1 \neq 0$. Also $K \neq 0$. Since projective modules satisfy (D_3) and then by Proposition 3.2, any direct summand of M is Rad- \oplus -s-module. Thus K and K_1 are Rad- \oplus -s-modules by induction, K and K_1 are local or finite direct sums of local submodules. This completes the proof of $(i) \Rightarrow (ii)$.

Lemma 3.14. Let M be an indecomposable module. Then M is a hollow module if and only if M is a completely Rad- \oplus -s-module.

Proof. Clear from definitions.

Proposition 3.15. Let $M = U \oplus V$ such that U and V have local endomorphism rings. Then M is completely Rad- \oplus -s-module if and only if U and V are hollow modules.

Proof. The necessity is clear from Lemma 3.14. Conversely, let K be a direct summand of M. If K = M then by Corollary 2.7, K is Rad- \oplus -s-module. Assume $K \neq M$. Then either $K \cong U$ or $K \cong V$ by Krull-Schmidt-Azumaya Theorem [7, Corollary 12.7]. In either case K is Rad- \oplus -s-module. Thus M is completely Rad- \oplus -s-module.

Theorem 3.16. Let M be a non-zero module with finite Goldie dimension. Then the following statements are equivalent.

- (i) Every direct summand of M is a finite direct sum of hollow modules.
- (ii) M is a completely Rad- \oplus -s-module.

Proof. $(i) \Rightarrow (ii)$. Clear by Corollary 2.7. $(ii) \Rightarrow (i)$. Let N be a direct summand of M. Since N has finite Goldie dimension, N has a decomposition $N = L_1 \oplus \cdots \oplus L_n$, where each L_i is indecomposable for $1 \le i \le n$ for some finite integer $1 \le n$. Hence each L_i $(1 \le i \le n)$ is hollow from Lemma 3.14.

References

- I. Al-Khazzi, P.F. Smith, Modules with chain conditions on superfluous Submodules, Comm. Algebra 19 (1991) 2331–2351.
- [2] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach: Reading, 1991.
- [3] S.M. Mohamed, B.J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [4] A. Leghwel, T. Kosan, N. Agayev, A. Harmanci, Duo modules and duo rings, Far East J.Math. 20 (3) (2006) 341–346.
- [5] P.F. Smith, Modules for which every submodule has a unique closure, in Ring Theory (Editors, S. K. Jain and S. T. Rizvi), World Sci. (Singapore, 1993), 302–313.
- [6] A. Harmanci, D. Keskin, P.F. Smith, On ⊕-supplemented modules, Acta Math. Hungar. 83 (1999) 161–169.
- [7] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- [8] J.M. Zelmanowitz, A class of modules with semisimple behavior, in Abelian Groups and Modules (editors A. Facchini and C. Menini), Kluver Acad. Publ. (Dor-drecht, 1995), 491–500.
- [9] J. Clark, R. Wisbauer, Extending modules, J. Pure Appl. Algebra 104 (1995) 19–32.
- [10] J.M. Zelmanowitz, Representation of rings with faithful polyform modules, Comm. Algebra 14 (1986) 1141–1169.
- [11] K.R. Goodearl, Ring Theory, Nonsingular rings and modules, Dekker, New York, 1976.

(Received 23 February 2009) (Accepted 2 February 2011)

THAI J. MATH. Online @ http://www.math.science.cmu.ac.th/thaijournal