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1 Introduction

Let E be a real Banach space with norm ‖ · ‖, C be a nonempty closed convex
subset of E. Let E∗ be the dual space of E and 〈·, ·〉 denote the pairing between
E and E∗. For q > 1, the generalized duality mapping Jq : E → 2E∗

is defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}

for all x ∈ E. In particular, if q = 2, the mapping J2 is called the normalized duality
mapping and, usually, write J2 = J . Further, we have the following properties
of the generalized duality mapping Jq: (i) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E
with x 6= 0; (ii) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞); and (iii)
Jq(−x) = −Jq(x) for all x ∈ E. It is known that if X is smooth, then J is single-
valued, which is denoted by j . Recall that the duality mapping j is said to be
weakly sequentially continuous if for each xn → x weakly, we have j(xn) → j(x)
weakly-*. We know that if X admits a weakly sequentially continuous duality
mapping, then X is smooth. For the details, see [4, 5, 3].

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to uniformly convex
if, for any ǫ ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ U , ‖x − y‖ ≥ ǫ
implies ‖x+y

2 ‖ ≤ 1 − δ. It is known that a uniformly convex Banach space is
reflexive and strictly convex. A Banach space E is said to be smooth if the limit

limt→0
‖x+ty‖−‖x‖

t
exists for all x, y ∈ U . It is also said to be uniformly smooth if

the limit is attained uniformly for x, y ∈ U . The modulus of smoothness of E is
defined by

ρ(τ) = sup{
1

2
(‖x + y‖ + ‖x − y‖) − 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ},

where ρ : [0,∞) → [0,∞) is a function. It is known that E is uniformly smooth

if and only if limτ→0
ρ(τ)

τ
= 0. Let q be a fixed real number with 1 < q ≤ 2. A

Banach space E is said to be q-uniformly smooth if there exists a constant c > 0
such that ρ(τ) ≤ cτq for all τ > 0: see, for instance, [6, 2].

We note that E is a uniformly smooth Banach space if and only if Jq is single-
valued and uniformly continuous on any bounded subset of E. Typical examples of
both uniformly convex and uniformly smooth Banach spaces are Lp, where p > 1.
More precisely, Lp is min{p, 2}-uniformly smooth for every p > 1. Note also that
no Banach space is q-uniformly smooth for q > 2; see [4, 6, 7] for more details.

Next, we recall the following concepts (see also [4, 6] for). Let S : C →
C a nonlinear mapping. We use F (S) to denote the set of fixed points of S,
that is, F (S) = {x ∈ C : Sx = x}. A mapping S is called nonexpansive if
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‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C. Recall that a mapping f : C → C is said
to be contraction if there exists a constant α ∈ [0, 1) and x, y ∈ C such that
‖f(x)− f(y)‖ ≤ α‖x− y‖. Let A be a monotone operator of C into Hilbert spaces
H . The variational inequality problem, denote by V I(C, A), is to find x∗ ∈ C such
that

〈Ax∗, x − x∗〉 ≥ 0,

for all x ∈ C. Recall that an operator A of C into E is said to be accretive if there
exists j(x − y) ∈ J(x − y) such that

〈Ax − Ay, j(x − y)〉 ≥ 0

for all x, y ∈ C. A mapping A : C → E is said to be β-strongly accretive if there
exists a constant β > 0 such that

〈Ax − Ay, j(x − y)〉 ≥ β‖x − y‖2 ∀x, y ∈ C.

An operator A of C into E is said to be β-inverse strongly accretive if, for any
β > 0,

〈Ax − Ay, j(x − y)〉 ≥ β‖Ax − Ay‖2

for all x, y ∈ C. Evidently, the definition of the inverse strongly accretive operator
is based on that of the inverse strongly monotone operator.

Recently, Aoyama et al. [2] first considered the following generalized vari-
ational inequality problem in a smooth Banach space. Let A be an accretive
operator of C into E. Find a point x ∈ C such that

〈Ax, j(y − x)〉 ≥ 0, (1.1)

for all y ∈ C. This problem is connected with the fixed point problem for nonlinear
mappings, the problem of finding a zero point of an accretive operator and so on.
For the problem of finding a zero point of an accretive operator by the proximal
point algorithm, see Kamimura and Takahashi [8, 9] . In order to find a solution of
the variational inequality (1.1), Aoyama et al. [2] proved the strong convergence
theorem in the framework of Banach spaces which is generalized Iiduka et al. [10]
from Hilbert spaces.

In 2006, Aoyama, Iiduka and Takahashi [2] proved the following weak conver-
gence theorem.

Theorem AIT.[2, Theorem 3.1] Let E be a uniformly convex and 2-uniformly
smooth Banach space and C a nonempty closed convex subset of E. Let QC be
a sunny nonexpansive retraction from E onto C, α > 0, and A be an α-inverse
strongly accretive operator of C into E with S(C, A) 6= ∅, where

S(C, A) = {x∗ ∈ C : 〈Ax∗, j(x − x∗)〉 ≥ 0, x ∈ C}.

If {λn} and {αn} are chosen such that λn ∈ [a, α
K2 ], for some a > 0 and αn ∈ [b, c],

for some b, c with 0 < b < c < 1, then the sequence {xn} defined by the following
manners: x1 − x ∈ C and

xn+1 = αnxn + (1 − αn)QC(xn − λnAxn),
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converges weakly to some element z of S(C, A), where K is the 2-uniformly smooth-
ness constant of E and QC is a sunny nonexpansive retraction.

Motivated by Aoyama et al. [2] and also Ceng et al. [11], Qin et al. [1] and Yao
et al. [3] first considered the following system of general variational inequalities in
Banach spaces:

Let A : C → E be an β-inverse strongly accretive mapping. Find (x∗, y∗) ∈
C × C such that

{

〈λAy∗ + x∗ − y∗, j(x − x∗)〉 ≥ 0 ∀x ∈ C,
〈µAx∗ + y∗ − x∗, j(x − y∗)〉 ≥ 0 ∀x ∈ C.

(1.2)

Let C be nonempty closed convex subset of a real Banach space E. For given
two operators A, B : C → E, we consider the problem of finding (x∗, y∗) ∈ C × C
such that

{

〈λAy∗ + x∗ − y∗, j(x − x∗)〉 ≥ 0 ∀x ∈ C,
〈µBx∗ + y∗ − x∗, j(x − y∗)〉 ≥ 0 ∀x ∈ C,

(1.3)

where λ and µ are two positive real numbers. This system is called the system
of general variational inequalities in a real Banach spaces. If we add up the
requirement that A = B, then the problem (1.3) is reduced to the system (1.2).

An interesting problem to extend the above results to find a solution of a
general system of variational inequalities. In 2008, Ceng et al. [11] introduced
a relaxed extragradient method for finding solutions of a general system of vari-
ational inequalities with inverse-strongly monotone mappings in a real Hilbert
space. Suppose x1 = u ∈ C and xn is generated by

{

yn = PC(xn − µBxn),
xn+1 = αnu + βnxn + γnSPC(yn − λAyn),

(1.4)

for all n ≥ 1 where λ ∈ (0, 2α), µ ∈ (0, 2β), S is a nonexpansive mapping and
A and B are α and β-inverse-strongly monotone, respectively. They proved the
strong convergence theorem under quite mild conditions. Recently, Yao et al. [3]
introduce the following iteration scheme for solving a general system of variational
inequality problem (1.3) and some fixed point problem involving the nonexpansive
mapping in Banach spaces. For arbitrarily given x0 = u ∈ C and {xn} is given by

{

yn = QC(xn − Bxn),
xn+1 = αnu + βnxn + γnQC(yn − Ayn),

(1.5)

for all n ≥ 0 where C ⊂ E, QC is a sunny nonexpansive retraction from E onto
C and A and B are inverse-strongly accretive mappings. They obtained a strong
convergence theorem in Banach spaces.

In this paper, motivated and inspired by the idea of Ceng et al. [11], Yao et
al. [3], Iiduka, Takahashi and Toyoda [10], and Iiduka and Takahashi [27] we in-
troduce an iterative scheme for finding solutions of a general system of variational
inequalities (1.3) involving two different inverse-strongly accretive operators and
solutions of fixed point problems involving the nonexpansive mapping in a Ba-
nach space by using a modified viscosity extragradient method. Consequently,
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we obtain new strong convergence theorems for fixed point problems which solves
the system of general variational inequalities (1.2) and (1.3). Moreover, using the
above theorem, we can apply to finding solutions of zeros of accretive operators
and the class of k-strictly pseudocontractive mappings. The results presented in
this paper extend and improve the corresponding results of Yao et al. [3], Ceng et
al. [11], Qin et al. [1] and many others.

2 Preliminaries

Let D be a subset of C and Q : C → D. Then Q is said to sunny if

Q(Qx + t(x − Qx)) = Qx,

whenever Qx+ t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A subset D of C is said to be a
sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction Q
of C onto D. A mapping Q : C → C is called a retraction if Q2 = Q. If a mapping
Q : C → C is a retraction, then Qz = z for all z is in the range of Q. For example,
see [2, 12] for more details. The following result describes a characterization of
sunny nonexpansive retractions on a smooth Banach space.

Proposition 2.1. ([13]) Let E be a smooth Banach space and let C be a nonempty
subset of E. Let Q : E → C be a retraction and let J be the normalized duality
mapping on E. Then the following are equivalent:
(i) Q is sunny and nonexpansive;
(ii) ‖Qx − Qy‖2 ≤ 〈x − y, J(Qx − Qy)〉, ∀x, y ∈ E;
(iii) 〈x − Qx, J(y − Qx)〉 ≤ 0, ∀x ∈ E, y ∈ C.

Proposition 2.2. ([14]) Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth Banach space E and let T be a nonexpansive mapping
of C into itself with F (T ) 6= ∅. Then the set F(T) is a sunny nonexpansive retract
of C.

We need the following lemmas for proving our main results.

Lemma 2.3. ([7]) Let E be a real 2-uniformly smooth Banach space with the best
smooth constant K. Then the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, Jx〉 + 2‖Ky‖2, ∀x, y ∈ E.

Lemma 2.4. ([15]) Let {xn} and {yn} be bounded sequences in a Banach space X
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1−βn)yn +βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.5. ([16]) Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − αn)an + δn, n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
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(1)
∑∞

n=1 αn = ∞

(2) lim supn→∞
δn

αn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.6. ([17]) Let (E, 〈., .〉) be an inner product space. Then for all x, y, z ∈
E and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx+βy+γz‖2 = α‖x‖2 +β‖y‖2 +γ‖z‖2−αβ‖x−y‖2−αγ‖x−z‖2−βγ‖y−z‖2.

Lemma 2.7. ([18]) Let C be a nonempty bounded closed convex subset of a uni-
formly convex Banach space E and let T be nonexpansive mapping of C into itself.
If {xn} is a sequence of C such that xn → x weakly and xn − Txn → 0 strongly,
then x is s fixed point of T.

Lemma 2.8. (Yao et al. [3, Lemma 3.1]; see also [2, Lemma 2.8]) Let C be a
nonempty closed convex subset of a real 2-uniformly smooth Banach space E. Let
the mapping A : C → E be β-inverse-strongly accretive. Then, we have

‖(I − λA)x − (I − λA)y‖2 ≤ ‖x − y‖2 + 2λ(λK2 − β)‖Ax − Ay‖2.

If β ≥ λK2, then I − λA is nonexpansive.

Proof . For any x, y ∈ C, from Lemma 2.3, we have

‖(I − λA)x − (I − λA)y‖2 = ‖(x − y) − λ(Ax − Ay)‖2

≤ ‖x − y‖2 − 2λ〈Ax − Ay, j(x − y)〉

+2λ2K2‖Ax − Ay‖2

≤ ‖x − y‖2 − 2λβ‖Ax − Ay‖2 + 2λ2K2‖Ax − Ay‖2

= ‖x − y‖2 + 2λ(λK2 − β)‖Ax − Ay‖2.

If β ≥ λK2, then I − λA is nonexpansive.

3 Main Results

In this section, we prove a strong convergence theorem. In order to prove our
main results, we need the following two lemmas which is proved along the proof
of Yao et al.’s lemmas as it appears in [3].

Lemma 3.1. Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. Let the mapping A, B : C → E be β-inverse-strongly accretive and γ-
inverse-strongly accretive, respectively. Let G : C → C be a mapping defined by

G(x) = QC(QC(x − µBx) − λAQC(x − µBx)) ∀x ∈ C.

If β ≥ λK2 and γ ≥ µK2, then G is nonexpansive.
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Proof . For any x, y ∈ C, from Lemma 2.8 and QC is nonexpansive, we have

‖G(x) − G(y)‖ = ‖QC [QC(I − µB)x − λAQC(I − µB)x]

−QC [QC(I − µB)y − λAQC(I − µB)y]‖

≤ ‖[QC(I − µB)x − λAQC(I − µB)x]

−[QC(I − µB)y − λAQC(I − µB)y]‖

= ‖(I − λA)QC(I − µB)x − (I − λA)QC(I − µB)y‖

≤ ‖QC(I − µB)x − QC(I − µB)y‖

≤ ‖(I − µB)x − (I − µB)y‖

≤ ‖x − y‖.

Therefore G is nonexpansive.

Lemma 3.2. Let C be a nonempty closed convex subset of a real smooth Banach
space E. Let QC be the sunny nonexpansive retraction from E onto C. Let A, B :
C → E be two possibly nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a
solution of problem (1.3) if and only if x∗ = QC(y∗ − λAy∗) where y∗ = QC(x∗ −
µBx∗).

Proof . From (1.3), we rewrite as

{

〈x∗ − (y∗ − λAy∗), j(x − x∗)〉 ≥ 0 ∀x ∈ C,
〈y∗ − (x∗ − µBx∗), j(x − y∗)〉 ≥ 0 ∀x ∈ C.

(3.1)

From Proposition 2.1 (iii), the system (3.1) equivalent to

{

x∗ = QC(y∗ − λAy∗),
y∗ = QC(x∗ − µBx∗).

(3.2)

Remark 3.3. From Lemma 3.2, we note that

x∗ = QC(QC(x∗ − µBx∗) − λAQC(x∗ − µBx∗)),

which implies that x∗ is a fixed point of the mapping G.
Throughout this paper, the set of fixed points of the mapping G is denoted by

F (G).

The next result states the main result of this work.

Theorem 3.4. Let E be a uniformly convex and 2-uniformly smooth Banach
space which admits a weakly sequentially continuous duality mapping and C be a
nonempty closed convex subset of E. Let S : C → C be a nonexpansive mapping
and QC be a sunny nonexpansive retraction from E onto C. Let A, B : C → E be
β-inverse-strongly accretive with β ≥ λK2 and γ-inverse-strongly accretive with
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γ ≥ µK2, respectively and K be the best smooth constant. Let f be a contraction
of C into itself with coefficient α ∈ [0, 1). Suppose F := F (G) ∩ F (S) 6= ∅ where
G defined by Lemma 3.1. For arbitrary given x0 = x ∈ C, the sequence {xn}
generated by

{

yn = QC(xn − µBxn),
xn+1 = αnf(xn) + βnxn + γnSQC(yn − λAyn).

(3.3)

where the sequences {αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1, n ≥ 1
and λ, µ are positive real numbers. The following conditions are satisfied:
(C1). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(C2). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
Then {xn} converges strongly to x̄ = QFf(x̄) and (x̄, ȳ) is a solution of the problem
(1.3), where ȳ = QC(x̄− µBx̄) and QF is the sunny nonexpansive retraction of C
onto F .

Proof . First, we prove that {xn} is bounded. Let x∗ ∈ F , from Lemma 3.2, we
see that

x∗ = QC(QC(x∗ − µBx∗) − λAQC(x∗ − µBx∗)).

Put y∗ = QC(x∗ − µBx∗) and vn = QC(yn − λAyn). Then x∗ = QC(y∗ − λAy∗).
By nonexpansiveness of I − λA, I − µB and QC , we have

‖vn − x∗‖ = ‖QC(yn − λAyn) − QC(y∗ − λAy∗)‖

≤ ‖(yn − λAyn) − (y∗ − λAy∗)‖

= ‖(I − λA)yn − (I − λA)y∗‖

≤ ‖yn − y∗‖

= ‖QC(xn − µBxn) − QC(x∗ − µBx∗)‖

≤ ‖(xn − µBxn) − (x∗ − µBx∗)‖

= ‖(I − µB)xn − (I − µB)x∗‖

≤ ‖xn − x∗‖. (3.4)

It follows that

‖xn+1 − x∗‖ = ‖αnf(xn) + βnxn + γnSvn − x∗‖

≤ αn‖f(xn) − x∗‖ + βn‖xn − x∗‖ + γn‖Svn − x∗‖

≤ ααn‖xn − x∗‖ + αn‖f(x∗) − x∗‖ + βn‖xn − x∗‖ + γn‖vn − x∗‖

≤ ααn‖xn − x∗‖ + αn‖f(x∗) − x∗‖ + βn‖xn − x∗‖ + γn‖xn − x∗‖

= (1 − αn + ααn)‖xn − x∗‖ + αn‖f(x∗) − x∗‖

= (1 − αn(1 − α))‖xn − x∗‖ + αn(1 − α)
‖f(x∗) − x∗‖

1 − α

≤ max{‖x1 − x∗‖,
‖f(x∗) − x∗‖

1 − α
}.
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This implies that {xn} is bounded, so are {f(xn)}, {yn}, {vn}, {Svn}, {Ayn} and
{Bxn}.

Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Notice that

‖vn+1 − vn‖ = ‖QC(yn+1 − λAyn+1) − QC(yn − λAyn)‖

≤ ‖(yn+1 − λAyn+1) − (yn − λAyn)‖

= ‖(I − λA)yn+1 − (I − λA)yn‖

≤ ‖yn+1 − yn‖

= ‖QC(xn+1 − µBxn+1) − QC(xn − µBxn)‖

≤ ‖(xn+1 − µBxn+1) − (xn − µBxn)‖

= ‖(I − µB)xn+1 − (I − µB)xn‖

≤ ‖xn+1 − xn‖.

Setting xn+1 = (1 − βn)zn + βnxn for all n ≥ 0, we see that zn = xn+1−βnxn

1−βn
,

then we have

‖zn+1 − zn‖ = ‖
xn+2 − βn+1xn+1

1 − βn+1
−

xn+1 − βnxn

1 − βn

‖

= ‖
αn+1f(xn+1) + γn+1Svn+1

1 − βn+1
−

αnf(xn) + γnSvn

1 − βn

‖

= ‖
αn+1f(xn+1) + γn+1Svn+1

1 − βn+1
−

αn+1f(xn)

1 − βn+1
+

αn+1f(xn)

1 − βn+1

−
γn+1Svn

1 − βn+1
+

γn+1Svn

1 − βn+1
−

αnf(xn) + γnSvn

1 − βn

‖

= ‖
αn+1

1 − βn+1
(f(xn+1) − f(xn)) +

γn+1

1 − βn+1
(Svn+1 − Svn)

+(
αn+1

1 − βn+1
−

αn

1 − βn

)f(xn) + (
γn+1

1 − βn+1
−

γn

1 − βn

)Svn‖

≤
ααn+1

1 − βn+1
‖xn+1 − xn‖ +

γn+1

1 − βn+1
‖vn+1 − vn‖

+|
αn+1

1 − βn+1
−

αn

1 − βn

|‖f(xn)‖

+|
1 − βn+1 − αn+1

1 − βn+1
−

1 − βn − αn

1 − βn

|‖Svn‖

=
ααn+1

1 − βn+1
‖xn+1 − xn‖ +

γn+1

1 − βn+1
‖vn+1 − vn‖

+|
αn+1

1 − βn+1
−

αn

1 − βn

|(‖f(xn)‖ + ‖Svn‖)

≤
ααn+1

1 − βn+1
‖xn+1 − xn‖ + |

αn+1

1 − βn+1
−

αn

1 − βn

|(‖f(xn)‖ + ‖Svn‖)

+‖vn+1 − vn‖
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≤
ααn+1

1 − βn+1
‖xn+1 − xn‖ + |

αn+1

1 − βn+1
−

αn

1 − βn

|(‖f(xn)‖ + ‖Svn‖)

+‖xn+1 − xn‖.

Therefore

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
ααn+1

1 − βn+1
‖xn+1 − xn‖

+|
αn+1

1 − βn+1
−

αn

1 − βn

|(‖f(xn)‖ + ‖Svn‖).

It follow from the condition (C1) and (C2), which implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Applying Lemma 2.4, we obtain limn→∞ ‖zn − xn‖ = 0 and also

‖xn+1 − xn‖ = (1 − βn)‖zn − xn‖ → 0

as n → ∞. Therefore, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.5)

Next, we show that limn→∞ ‖Svn − vn‖ = 0. Since x∗ ∈ F , from Lemma 2.6,
we obtain

‖xn+1 − x∗‖2 = ‖αnf(xn) + βnxn + γnSvn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + (1 − αn − γn)‖xn − x∗‖2 + γn‖vn − x∗‖2

= αn‖f(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2

−γn(‖xn − x∗‖2 − ‖vn − x∗‖2)

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2

−γn‖xn − vn‖(‖xn − x∗‖ + ‖vn − x∗‖).

Therefore, we have
γn‖xn − vn‖(‖xn − x∗‖ + ‖vn − x∗‖)

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ αn‖f(xn) − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖.

From the condition (C1) and (3.5), this implies that ‖xn − vn‖ → 0 as n → ∞.
Now, we have

‖xn − Svn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Svn‖

= ‖xn − xn+1‖ + ‖αnf(xn) + βnxn + γnSvn − Svn‖

= ‖xn − xn+1‖ + ‖αn(f(xn) − Svn) + βn(xn − Svn)‖

≤ ‖xn − xn+1‖ + αn‖f(xn) − Svn‖ + βn‖xn − Svn‖.
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Therefore, we get

‖xn − Svn‖ ≤
1

1 − βn

‖xn − xn+1‖ +
αn

1 − βn

‖f(xn) − Svn‖.

From the condition (C1), (C2) and (3.5), this implies that ‖xn − Svn‖ → 0 as
n → ∞. Also, observe that

‖Svn − vn‖ ≤ ‖Svn − xn‖ + ‖xn − vn‖,

and hence it follows that limn→∞ ‖Svn − vn‖ = 0.
Next, we show that lim supn→∞〈(f − I)x̄, J(xn − x̄)〉 ≤ 0, where x̄ = QFf(x̄).

Since {xn} is bounded, we can choose a sequence {xni
} of {xn} which xni

⇀ x∗

such that

lim sup
n→∞

〈(f − I)x̄, J(xn − x̄)〉 = lim
i→∞

〈(f − I)x̄, J(xni
− x̄)〉. (3.6)

Next, we prove that x∗ ∈ F := F (G) ∩ F (S).
(a) First, we show that x∗ ∈ F (S). To show this, we choose a subsequence {vni

}
of {vn}. Since {vni

} is bounded, we have that a subsequence {vnij
} of {vni

}

converges weakly to x∗. We may assume without loss of generality that vni
⇀ x∗.

Since ‖Svn−vn‖ → 0, we obtain Svni
⇀ x∗. Then we can obtain x∗ ∈ F . Assume

that x∗ /∈ F (S). Since vni
⇀ x∗ and Sx∗ 6= x∗, from Opial’s condition, we have

lim infi→∞‖vni
− x∗‖ < lim infi→∞‖vni

− Sx∗‖
≤ lim infi→∞(‖vni

− Svni
‖ + ‖Svni

− Sx∗‖)
≤ lim infi→∞‖vni

− x∗‖.

This is a contradiction. Thus, we obtain x∗ ∈ F (S).
(b) Next, we show that x∗ ∈ F (G). From Lemma 3.1, we know that G is nonex-
pansive, it follows that

‖vn − G(vn)‖ = ‖QC(QC(xn − µBxn) − λAQC(xn − µBxn)) − G(vn)‖

= ‖G(xn) − G(vn)‖

≤ ‖xn − vn‖ → 0, as n → ∞.

Thus limn→∞ ‖vn − G(vn)‖ = 0. Since G is nonexpansive, we get

‖xn − G(xn)‖ ≤ ‖xn − vn‖ + ‖vn − G(vn)‖ + ‖G(vn) − G(xn)‖

≤ 2‖xn − vn‖ + ‖vn − G(vn)‖,

and so

lim
n→∞

‖xn − G(xn)‖ = 0. (3.7)

According to Lemma 2.7 and (3.7), we have x∗ ∈ F (G). Therefore x∗ ∈ F .
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Now, from (3.6), Proposition 2.1 (iii) and the weakly sequential continuity of
the duality mapping J, we have

lim sup
n→∞

〈(f − I)x̄, J(xn − x̄)〉 = lim
i→∞

〈(f − I)x̄, J(xni
− x̄)〉

= 〈(f − I)x̄, J(x∗ − x̄)〉 ≤ 0. (3.8)

From (3.5), it follows that

lim sup
n→∞

〈(f − I)x̄, J(xn+1 − x̄)〉 ≤ 0. (3.9)

Finally, we show that {xn} converges strongly to x̄ = QFf(x̄). Observe that

‖xn+1 − x̄‖2 = 〈xn+1 − x̄, J(xn+1 − x̄)〉

= 〈αnf(xn) + βnxn + γnSvn − x̄, J(xn+1 − x̄)〉

= 〈αn(f(xn) − x̄) + βn(xn − x̄) + γn(Svn − x̄), J(xn+1 − x̄)〉

= αn〈f(xn) − f(x̄), J(xn+1 − x̄)〉 + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

+βn〈xn − x̄, J(xn+1 − x̄)〉 + γn〈Svn − x̄, J(xn+1 − x̄)〉

≤ ααn‖xn − x̄‖‖xn+1 − x̄‖ + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

+βn‖xn − x̄‖‖xn+1 − x̄‖ + γn‖vn − x̄‖‖xn+1 − x̄‖

≤ ααn‖xn − x̄‖‖xn+1 − x̄‖ + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

+βn‖xn − x̄‖‖xn+1 − x̄‖ + γn‖xn − x̄‖‖xn+1 − x̄‖

=
ααn + βn + γn

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2)

+αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

=
ααn + 1 − αn

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2)

+αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

=
1 − αn(1 − α)

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2)

+αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

≤
1 − αn(1 − α)

2
‖xn − x̄‖2 +

1

2
‖xn+1 − x̄‖2

+αn〈f(x̄) − x̄, J(xn+1 − x̄)〉,

which implies that

‖xn+1 − x̄‖2 ≤ (1 − αn(1 − α))‖xn − x̄‖2

+2αn〈f(x̄) − x̄, J(xn+1 − x̄)〉. (3.10)

Now, from (C1), (3.9) and applying Lemma 2.5 to (3.10), we get ‖xn − x̄‖ → 0 as
n → ∞. This completes the proof. 2
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Corollary 3.5. Let E be a uniformly convex and 2-uniformly smooth Banach
space which admits a weakly sequentially continuous duality mapping and C be a
nonempty closed convex subset of E. Let S : C → C be a nonepansive mapping
and QC be a sunny nonexpansive retraction from E onto C. Let A, B : C → E be
β-inverse-strongly accretive with β ≥ λK2 and γ-inverse-strongly accretive with
γ ≥ µK2, respectively and K be the best smooth constant. Let the sequences
{αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1, n ≥ 1 and satisfy the
condition (C1) and (C2) in Theorem 3.4. Suppose F := F (G) ∩ F (S) 6= ∅ where
G defined by Lemma 3.1 and let λ, µ are positive real numbers. For arbitrary given
x0 = x ∈ C, the sequences {xn} generated by

{

yn = QC(xn − µBxn),
xn+1 = αnu + βnxn + γnSQC(yn − λAyn).

(3.11)

Then {xn} converges strongly to QFu, where QF is the sunny nonexpansive re-
traction of C onto F .

Proof . Taking f(xn) = u for all n ∈ N for any fixed u ∈ C in (3.3). So, by
Theorem 3.4, we can conclude the desired conclusion easily. This completes the
proof. 2

Corollary 3.6. [3, Theorem 3.1,] Let E be a uniformly convex and 2-uniformly
smooth Banach space which admits a weakly sequentially continuous duality map-
ping and C be a nonempty closed convex subset of E. Let QC be a sunny nonexpan-
sive retraction from E onto C. Let A, B : C → E be β-inverse-strongly accretive
with β ≥ K2 and γ-inverse-strongly accretive with γ ≥ K2, respectively and K
be the best smooth constant. Suppose the sequences {αn}, {βn} and {γn} in (0, 1)
satisfy αn + βn + γn = 1, n ≥ 1 and satisfy the condition (C1) and (C2) in The-
orem 3.4. Assume F (G) 6= ∅ where G defined by Lemma 3.1. For arbitrary given
x1 = u ∈ C, the sequences {xn} generated by (1.5). Then {xn} converges strongly
to QF (G)u, where QF (G) is the sunny nonexpansive retraction of C onto F(G).

Proof . Taking f(x) = u for all x ∈ C, S = I and λ = µ = 1 in (3.3). Then, from
Theorem 3.4, we can conclude the desired conclusion easily. 2

4 Applications

(I) Application to finding zeros of accretive operators.
In Banach space E, we always assume that E is a uniformly convex and 2-

uniformly smooth. Recall that an accretive operator T is m-accretive if R(I+rT ) =
E for each r > 0. We assume that T is m-accretive and has a zero (i.e., the inclusion
0 ∈ T (z) is solvable) [19, 20, 21]. The set of zeros of T is denoted by T−1(0), that

T−1(0) = {z ∈ D(T ) : 0 ∈ T (z)}.

The resolvent of T , i.e., JT
r = (I + rT )−1, for each r > 0. If T is m-accretive,

then JT
r : E → E is nonexpansive and F (JT

r ) = T−1(0), ∀r > 0. For example, see
Rockafellar [22] and [13, 23, 24, 25, 26] for more details.
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From the main result Theorem 3.4, we can conclude the following result im-
mediately.

Theorem 4.1. Let E be a uniformly convex and 2-uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let A, B : C → E be β-inverse-
strongly accretive with β ≥ λK2 and γ-inverse-strongly accretive with γ ≥ µK2,
respectively, K is the 2-uniformly smoothness constant of E and let T be an m-
accretive mapping. Let f be a contraction of C into itself with coefficient α ∈ [0, 1)
and suppose the sequences {αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1,
n ≥ 1. Suppose Ω := T−1(0) ∩ A−1(0) ∩ B−1(0) 6= ∅ and let λ, µ are positive real
numbers. The following conditions are satisfied:
(i). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
The sequences {xn} generated by x0 = x ∈ C and

{

yn = xn − µBxn,
xn+1 = αnf(xn) + βnxn + γnJT

r (yn − λAyn).
(4.1)

Then {xn} converges strongly to x̄ = QΩf(x̄), where QΩ is the sunny nonexpansive
retraction of E onto Ω.

(II) Application to strictly pseudocontractive mappings
Let E be a Banach space and let C be a subset of E. Recall that a mapping

T : C → C is said to be k-stricly pseudocontractive if there exist k ∈ [0, 1) and
j(x − y) ∈ J(x − y) such that

〈Tx − Ty, j(x − y)〉 ≤ ‖x − y‖2 −
1 − k

2
‖(I − T )x − (I − T )y‖2 (4.2)

for all x, y ∈ C. Then (4.2) can be written in the following form

〈(I − T )x − (I − T )y, j(x − y)〉 ≥
1 − k

2
‖(I − T )x − (I − T )y‖2. (4.3)

We know that, A is 1−k
2 − inverse strongly monotone and A−10 = F (T ) (see [27]).

Theorem 4.2. Let E be a uniformly convex and 2-uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let S : C → C be a nonepansive
mapping and a sunny nonexpansive retraction of E. Let T, U : C → C be k-stricly

pseudocontractive and l-stricly pseudocontractive with λ ≤ (1−k)
2K2 and µ ≤ (1−l)

2K2 ,
respectively. Let f be a contraction of C into itself with coefficient α ∈ [0, 1) and
suppose the sequences {αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1,
n ≥ 1. Suppose F := F (S) ∩ F (T ) ∩ F (U) 6= ∅ and let λ, µ are positive real
numbers. The following conditions are satisfied:
(i). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
The sequences {xn} generated by x0 = x ∈ C and

{

yn = (1 − µ)xn + µUxn,
xn+1 = αnf(xn) + βnxn + γnS((1 − λ)yn + λTyn).

(4.4)
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Then {xn} converges strongly to QF , where QF is the sunny nonexpansive retrac-
tion of E onto F .

Proof. Put A = I − T and B = I − U . Form (4.3), we get A, B are 1−k
2 and

1−l
2 − inverse strongly accretive operators, respectively. It follows that V I(C, A) =

V I(C, I − T ) = F (T ) 6= ∅, CI(C, B) = V I(C, I − U) = F (U) 6= ∅ and CI(C, I −
T )∩V I(C, I−U) = F (U) = F (G) ⇔ is the solution of problems (1.2) ⇔ problems
(1.3) (see also Ceng et al. [11, Theorem 4.1 pp. 388–389]) and also have (see
Aoyama et al.[2, Theorem 4.1 pp. 10.])

(1−λ)yn+λTyn = QC((1−λ)yn−λTyn) and (1−λ)xn+λUxn = QC((1−λ)xn−λUxn).

Therefore, by Theorem 3.4, {xn} converges strongly to some element x∗ of
F .

(III) Application to Hilbert spaces.

In real Hilbert spaces, by Lemma 3.2 and Remark 3.3 it follow from Lemma
4.1 of [1], we obtain the following Lemma:

Lemma 4.3. For given (x∗, y∗) ∈ C, where y∗ = PC(x∗ − µBx∗), (x∗, y∗) is a
solution of problem (1.3) if and only if x∗ is a fixed point of the mapping G′ : C →
C defined by

G′(x) = PC [PC(x − µBx) − λAPC(x − µBx)],

where PC is a metric projection H onto C.

It is well known that the smooth constant K =
√

2
2 in Hilbert spaces. From

Theorem 3.4, we can obtain the following result immediately.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A, B : C → H are an β-inverse-strongly monotone mapping with λ ∈ (0, 2β)
and γ-inverse-strongly monotone mapping with µ ∈ (0, 2γ), respectively, and let f
be a contraction of C into itself with coefficient α ∈ [0, 1). Suppose the sequences
{αn}, {βn} and {γn} in (0, 1) satisfy αn + βn + γn = 1, n ≥ 1. Assume that
F (G′) ∩ F (S) 6= ∅ where G′ defined by Lemma 4.3 and let λ, µ are positive real
numbers. The following conditions are satisfied:
(i). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
For arbitrary given x0 = x ∈ C, the sequences {xn} is generated by

{

yn = PC(xn − µBxn),
xn+1 = αnf(xn) + βnxn + γnSPC(yn − λAyn).

(4.5)

Then {xn} converges strongly to x̄ = PF (G′)∩F (S)f(x̄) and (x̄, ȳ) is a solution of
the problem (1.3), where ȳ = PC(x̄ − µBx̄).
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