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1 Introduction and Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with
inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed convex subset of
H . Let f : C ×C → R be a bifunction and B : C → H a monotone mapping. The
generalized equilibrium problem (for short, GEP ) for f and B is to find u ∈ C

such that
f(u, v) + 〈Bu, v − u〉 ≥ 0, ∀v ∈ C. (1.1)

The set of solutions for the problem (1.1) is denoted by GEP (f, B), i.e.,

GEP (f, B) = {u ∈ C : f(u, v) + 〈Bu, v − u〉 ≥ 0, ∀v ∈ C}.

If B = 0 in (1.1), then GEP reduces to the classical equilibrium problem and
GEP (f, 0) is denoted by EP (f), i.e.,

EP (f) = {u ∈ C : f(u, v) ≥ 0, ∀v ∈ C}.

If f = 0 in (1.1), then GEP reduces to the classical variational inequality and
GEP (0, B) is denoted by V I(C, B), i.e.,

V I(C, B) = {u ∈ C : 〈Bu, v − u〉 ≥ 0, ∀v ∈ C}.

It is easy to see that the following is true:

u ∈ V I(C, B) ⇔ u = PC(u − λBu), λ > 0. (1.2)

The problem (1.1) is very general in the sense that it includes, as special cases, op-
timization problems, variational inequalities, Min-max problems, the Nash equilib-
rium problems in noncooperative games and others; see, for example, Blum-Oettli
[1] and Moudafi [2].

For solving the generalized equilibrium problem, let us assume that f satisfies
the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt→0 f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, the function y 7→ f(x, y) is convex and lower semicontinuous.

A mapping A of C into H is called monotone if

〈Au − Av, u − v〉 ≥ 0

for all u, v ∈ C. A is called γ-inverse strongly monotone if there exists a positive
real number γ such that

〈Au − Av, u − v〉 ≥ γ‖Au − Av‖2



Strong Convergence Theorems for Generalized Equilibrium Problems ... 269

for all u, v ∈ C. It is obvious that any γ-inverse strongly monotone mapping A is
monotone and Lipschitz continuous.

It is well known that for every point x ∈ H , there exists a unique nearest point
in C, denoted by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖

for all y ∈ C. PC is called the metric projection of H onto C. PC is a nonexpansive
mapping of H onto C and satisfies the following properties:

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H,

‖x − PCx‖2 ≤ ‖x − y‖2 − ‖y − PCx‖2, ∀x ∈ H, y ∈ C, (1.3)

‖x − PCy‖2 ≤ ‖x − y‖2 − ‖y − PCy‖2, ∀x ∈ C, y ∈ H. (1.4)

Moreover, given x ∈ H , z ∈ C, z = PCx if and only if

〈x − z, y − z〉 ≤ 0, ∀y ∈ C. (1.5)

Let T : C → C be a mapping. In this paper, we denote the fixed point set of
T by F (T ). Recall that T is said to be uniformly L-Lipschitzian if there exists a
constant L > 0 such that

‖T nx − T ny‖ ≤ L‖x − y‖, ∀x, y ∈ C, ∀n ≥ 1. (1.6)

T is said to be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C. (1.7)

T is said to be asymptotically nonexpansive if there exists a sequence {kn} in
[1,∞) with limn→∞ kn = 1 such that

‖T nx − T ny‖ ≤ kn‖x − y‖, ∀x, y ∈ C, ∀n ≥ 1. (1.8)

T is said to be asymptotically nonexpansive in the intermediate sense if it is
continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ≤ 0. (1.9)

Observe that if we define

τn = max

{

0, sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖)
}

,

then τn → 0 as n → ∞. It follows that (1.9) is reduced to

‖T nx − T ny‖ ≤ ‖x − y‖ + τn, ∀x, y ∈ C, ∀n ≥ 1.
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The class of mappings which are asymptotically nonexpansive in the intermediate
sense was introduced by Bruck, Kuczumow and Reich [3]. It is worth mentioning
that the class of mappings which are asymptotically nonexpansive in the interme-
diate sense contains properly the class of asymptotically nonexpansive mappings.

Recall that T is said to be a κ-strict pseudocontraction if there exists a constant
κ ∈ [0, 1) such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + κ‖(I − T )x − (I − T )y‖2, ∀x, y ∈ C. (1.10)

T is said to be an asymptotically κ-strict pseudocontraction with sequence {µn}
if there exist a constant κ ∈ [0, 1) and a sequence {µn} ⊂ [0,∞) with µn → 0 as
n → ∞ such that

‖T nx− T ny‖2 ≤ (1 + µn)‖x− y‖2 + κ‖(I − T n)x− (I − T n)y‖2, ∀x, y ∈ C, n ≥ 1.

(1.11)
It is important to note that every asymptotically κ-strict pseudocontractive map-
ping with sequence {µn} is a uniformly L-Lipschitzian mapping with

L = sup

{

κ +
√

1 + (1 − κ)µn

1 + κ
: n ∈ N

}

.

Recently, Sahu, Xu and Yao [4] introduced a class of new mappings: asymp-
totically κ-strict pseudocontractive mappings in the intermediate sense. Recall
that T is said to be an asymptotically κ-strict pseudocontraction in the interme-
diate sense with sequence {µn} if there exist a constant κ ∈ [0, 1) and a sequence
{µn} ⊂ [0,∞) with µn → 0 as n → ∞ such that

lim sup
n→∞

sup
x,y∈C

(‖T nx−T ny‖2 − (1 + µn)‖x− y‖2− κ‖(I −T n)x− (I −T n)y‖2) ≤ 0.

(1.12)
Throughout this paper we assume that

cn = max{0, sup
x,y∈C

(‖T nx−T ny‖2−(1+µn)‖x−y‖2−κ‖(I−T n)x−(I−T n)y‖2)}.

It follows that cn → 0 as n → ∞ and (1.12) is reduced to the relation

‖T nx−T ny‖2 ≤ (1+µn)‖x−y‖2+κ‖(I−T n)x−(I−T n)y‖2+cn, ∀x, y ∈ C. (1.13)

They studied the demiclosedness principle and obtained weak and strong conver-
gence theorems of modified Mann iterative processes for the class of mappings
which is not necessarily Lipschitzian; see [4] for more details.

Recently, many authors studied the problem of finding a common element
of the set of fixed points of nonexpansive mappings or strict pseudocontractive
mappings, the set of solutions of an equilibrium problem and the set of solutions
of the variational inequality problem in the frame work of Hilbert spaces and
Banach spaces respectively; see, for instance, [5–8] and the references therein.
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For solving the variational inequality problem in the finite-dimensional Euclid-
ean space Rn, Korpelevich [9] (1976) introduced the following so-called extragra-
dient method:











x0 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), ∀n ≥ 0,

(1.14)

In 2006, Nadezhkina and Takahashi [10] and Zeng and Yao [11] proposed some
iterative schemes for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of a variational inequality problem
by so-called extragradient method. Further, Ceng et al. [12] introduced and
studied a relaxed extragradient method for finding solutions of a general system of
variational inequalities with inverse-strongly monotone mappings in a real Hilbert
space.

Motivated and inspired by the above works, in this paper, we introduce two it-
erative processes based on extragradient method and hybrid projection method for
finding a common element of the set of a generalized equilibrium problem, the set
of solutions of the variational inequality problem for a γ-inverse strongly monotone
mapping and the set of fixed points of an asymptotically κ-strict pseudocontrac-
tive mappings in the intermediate sense in a real Hilbert space. We establish some
strong convergence theorems for our iterative schemes.

In order to prove our main results, we also need the following lemmas.

Lemma 1.1 ([13]). Let (E, 〈·, ·〉) be an inner product space. Then, for all x, y, z ∈
E and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx+βy+γz‖2 = α‖x‖2 +β‖y‖2 +γ‖z‖2−αβ‖x−y‖2−αγ‖x−z‖2−βγ‖y−z‖2.

Lemma 1.2 ([4]). Let C be a nonempty subset of a Hilbert space H and T : C → C

a uniformly continuous asymptotically κ-strict pseudocontractive mapping in the
intermediate sense with sequence {µn}. Let {xn} be a sequence in C such that
‖xn − xn+1‖ → 0 and ‖xn − T nxn‖ → 0 as n → ∞. Then ‖xn − Txn‖ → 0 as
n → ∞.

Lemma 1.3 ([4, Proposition 3.1]). Let C be a nonempty closed convex subset of a
Hilbert space H and T : C → C a continuous asymptotically κ-strict pseudo-
contractive mapping in the intermediate sense. Then I − T is demiclosed at
zero in the sense that if {xn} is a sequence in C such that xn ⇀ x ∈ C and
lim supm→∞

lim supn→∞
‖xn − T mxn‖ = 0, then (I − T )x = 0.

Lemma 1.4 ([14]). Let C be a closed convex subset of a real Hilbert space H, let
f be a bifunction from C×C to R satisfying (A1)−(A4), and let B be a monotone
mapping from C into H. Then, for r > 0 and x ∈ H, there exists z ∈ C such that

f(z, y) + 〈Bx, y − z〉 +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.
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Lemma 1.5 ([14]). Let C be a closed convex subset of a real Hilbert space H. Let
f be a bifunction from C×C to R satisfying (A1)− (A4) and let B be a monotone
mapping from C into H. For r > 0 and x ∈ H, define a mapping Tr : H → C as
follows:

Tr(x) = {z ∈ C : f(z, y) + 〈Bx, y − z〉 +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all x ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;

(3) F (Tr) = GEP (f, B);

(4) GEP (f, B) is closed and convex;

(5) Tr is quasi-φ-nonexpansive;

(6) ‖Trx − q‖2 + ‖Trx − x‖2 ≤ ‖x − q‖2, ∀q ∈ F (Tr).

Lemma 1.6 ([4]). Let C be a nonempty closed convex subset of a Hilbert space H

and T : C → C a continuous asymptotically κ-strict pseudocontractive mapping in
the intermediate sense. Then F (T ) is closed and convex.

We denote by NC(v) the normal cone for C ⊂ H at a point v ∈ C, that is
NC(v) = {x ∈ H : 〈v − y, x〉 ≥ 0, ∀y ∈ C}. We shall use the following lemma.

Lemma 1.7 ([15]). Let C be a nonempty closed convex subset of a Banach space
E and let A be a monotone and hemicontinuous operator of C into E∗ with C =
D(A). Let S ⊂ E × E∗ be an operator defined as follows:

Sv =

{

Av + NC(v), v ∈ C,

∅, v 6∈ C.

Then S is maximal monotone and S−1(0) = V I(C, A).

2 Main Results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H

and T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense with sequence {µn}. Let f be a bifunction from
C × C to R satisfying (A1)–(A4) and B a continuous monotone mapping of C

into H. Let A be a γ-inverse strongly monotone mapping of C into H such that
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F = F (T )
⋂

GEP (f, B)
⋂

V I(C, A) 6= ∅ and F is bounded. Let {xn}∞n=1 be a
sequence in C generated by the following iterative process:







































x1 ∈ C = C1,

zn = PC(xn − λnAxn),

un ∈ C, f(un, y) + 〈Bzn, y − un〉 + 1

rn

〈y − un, un − zn〉 ≥ 0, ∀y ∈ C,

yn = αnun + βnT nun + γnPC(zn − λnAzn),

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + βnθn},
xn+1 = PCn+1

x1, ∀n ≥ 1,

(2.1)

where θn = cn + µn · ∆n, ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞. Assume that
{rn} ⊂ [a,∞) for some a > 0, {αn}, {βn}, {γn} are sequences in [0, 1] with
αn + βn + γn = 1 such that αn ≥ η > κ, βn ≥ ζ > 0 and {λn} is a sequence
in (0, 2γ) such that 0 < s ≤ λn < 2γ. Then the sequence {xn} given by (2.1)
converges strongly to x∗ ∈ F , where x∗ = PF x1.

Proof. Since µn → 0 and cn → 0 , we get θn → 0 as n → ∞. For any x, y ∈ C

and λn ∈ (0, 2γ), we note that

‖(I − λnA)x − (I − λnA)y‖2

=‖x − y − λn(Ax − Ay)‖2

=‖x − y‖2 − 2λn〈x − y, Ax − Ay〉 + λ2
n‖Ax − Ay‖2

≤‖x − y‖2 + λn(λn − 2γ)‖Ax − Ay‖2

≤‖x − y‖2,

which implies that I − λnA is nonexpansive. For any p ∈ F , from the definition
of Tr we have un = Trn

zn. It follows that

‖un − p‖ = ‖Trn
zn − p‖ ≤ ‖zn − p‖ = ‖PC(xn − λnAxn) − p‖

≤ ‖(I − λnA)xn − (I − λnA)p‖
≤ ‖xn − p‖.

(2.2)

Next, we divide the proof of Theorem 2.1 into eight steps.
Step 1. Cn is closed and convex for each n ≥ 1.

By the assumption, we see that C1 = C is closed and convex. Suppose that
Cn is closed and convex for some integer n > 1. Next, we show that Cn+1 is closed
and convex. For any z ∈ Cn such that

‖yn − z‖2 ≤ ‖xn − z‖2 + βnθn.

This inequality is equivalent to the inequality:

2〈xn − yn, z〉 ≤ ‖xn‖2 − ‖yn‖2 + βnθn.
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It is easy to see that Cn+1 is closed and convex. Then, for all n ∈ N , Cn is closed
and convex.
Step 2. F ⊂ Cn for each n ≥ 1.

This can be proved by induction on n ∈ N . Indeed, for n = 1, we have
F ⊂ C = C1. Suppose that F ⊂ Cn for some n ≥ 0. Let p ∈ F . From
p = PC(I − λnA)p, Lemma 1.1 and (2.2), we have

‖yn − p‖2

=‖αn(un − p) + βn(T nun − p) + γn(PC(I − λnA)zn − p)‖2

=αn‖un − p‖2 + βn‖T nun − p‖2 + γn‖PC(I − λnA)zn − p‖2

− αnβn‖un − T nun‖2 − αnγn‖un − PC(I − λnA)zn‖2

− βnγn‖T nun − PC(I − λnA)zn‖2

=αn‖un − p‖2 + βn‖T nun − p‖2 + γn‖PC(I − λnA)zn − PC(I − λnA)p‖2

− αnβn‖un − T nun‖2 − αnγn‖un − PC(I − λnA)zn‖2

− βnγn‖T nun − PC(I − λnA)zn‖2

≤αn‖un − p‖2 + βn((1 + µn)‖un − p‖2 + κ‖un − T nun‖2 + cn)

+ γn‖zn − p‖2 − αnβn‖un − T nun‖2 − αnγn‖un − PC(I − λnA)zn‖2

≤(αn + βn + βnµn)‖un − p‖2 + βncn + γn‖xn − p‖2

− βn(αn − κ)‖un − T nun‖2 − αnγn‖un − PC(I − λnA)zn‖2

≤‖xn − p‖2 + βnµn‖xn − p‖2 + βncn − βn(αn − κ)‖un − T nun‖2

− αnγn‖un − PC(I − λnA)zn‖2

≤‖xn − p‖2 + βnµn‖xn − p‖2 + βncn

≤‖xn − p‖2 + βnθn,

(2.3)

where θn = cn + µn · ∆n and ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞ for each n ≥ 1.
This shows that p ∈ Cn+1 and F ⊂ Cn+1. Hence F ⊂ Cn for each n ≥ 1. This
means that the iterative algorithm (2.1) is well defined.
Step 3. limn→∞ ‖xn − x1‖ exists and {xn} is bounded.

Noticing that xn = PCn
x1 and (1.3), we have

‖xn − x1‖2 ≤ ‖x1 − p‖2 − ‖xn − p‖2 ≤ ‖x1 − p‖2,

which implies that ‖xn − x1‖ ≤ ‖x1 − p‖ for all p ∈ F and n ≥ 1. This shows that
the sequence {‖xn − x1‖} is bounded. From xn = PCn

x1 and xn+1 = PCn+1
x1 ∈

Cn+1 ⊂ Cn, we obtain that

‖xn − x1‖ ≤ ‖xn+1 − x1‖, ∀n ≥ 1.

It follows that {‖xn − x1‖} is nondecreasing. Therefore, limn→∞ ‖xn − x1‖ exists
and {xn} is bounded.
Step 4. xn+1 − xn → 0 and xn → x∗ ∈ C.
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For any positive integer m ≥ n, we know xm = PCm
x1 ∈ Cm ⊂ Cn. It follows

from (1.4) that

‖xm−xn‖2 = ‖xm−PCn
x1‖2 ≤ ‖xm−x1‖2−‖x1−PCn

x1‖2 = ‖xm−x1‖2−‖xn−x1‖2.

In view of step 3 we deduce that ‖xm − xn‖ → 0 as m, n → ∞. Hence {xn} is a
Cauchy sequence of C and

lim
n→∞

‖xn+1 − xn‖ = 0. (2.4)

Since H is a real Hilbert space and C is a closed subset of H , there exists a point
x∗ ∈ C such that xn → x∗ as n → ∞.
Step 5. x∗ ∈ F (T ).

Noticing that xn+1 ∈ Cn+1, we obtain

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + βnθn.

From (2.4) and θn → 0 we have

lim
n→∞

‖yn − xn+1‖ = 0.

Furthermore, it follows from ‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ that

lim
n→∞

‖xn − yn‖ = 0. (2.5)

For any p ∈ F , we have

‖un − p‖2 = ‖Trn
zn − Trn

p‖2 ≤ 〈Trn
zn − Trn

p, zn − p〉
= 〈un − p, zn − p〉

=
1

2
(‖un − p‖2 + ‖zn − p‖2 − ‖un − zn‖2)

and hence

‖un − p‖2 ≤ ‖zn − p‖2 − ‖un − zn‖2 ≤ ‖xn − p‖2 − ‖un − zn‖2.

In view of (2.3), we obtain

‖yn − p‖2

≤(αn + βn + βnµn)‖un − p‖2 + βncn + γn‖xn − p‖2

≤(αn + βn)‖un − p‖2 + βnθn + γn‖xn − p‖2

≤(αn + βn)(‖xn − p‖2 − ‖un − zn‖2) + βnθn + γn‖xn − p‖2

=‖xn − p‖2 − (αn + βn)‖un − zn‖2 + βnθn.

(2.6)

It follows from the assumption conditions αn ≥ η > κ and βn ≥ ζ > 0 that

(η + ζ)‖un − zn‖2 ≤ (αn + βn)‖un − zn‖2

≤ ‖xn − p‖2 − ‖yn − p‖2 + βnθn

= (‖xn − p‖ − ‖yn − p‖)(‖xn − p‖ + ‖yn − p‖) + βnθn

≤ ‖xn − yn‖(‖xn − p‖ + ‖yn − p‖) + βnθn.
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From (2.5) we arrive at
lim

n→∞

‖un − zn‖ = 0. (2.7)

Using (2.3), we have

‖yn − p‖2 ≤ ‖xn − p‖2 + βnµn‖xn − p‖2 + βncn − βn(αn − κ)‖un − T nun‖2.

It follows that

ζ(η − κ)‖un − T nun‖2 ≤ βn(αn − κ)‖un − T nun‖2

≤ ‖xn − p‖2 − ‖yn − p‖2 + βnθn

≤ ‖xn − yn‖(‖xn − p‖ + ‖yn − p‖) + βnθn.

and hence
lim

n→∞
‖un − T nun‖ = 0. (2.8)

Using (2.3) again, we obtain

‖yn − p‖2

≤‖xn − p‖2 + βnθn − βn(αn − κ)‖un − T nun‖2 − αnγn‖un − PC(I − λnA)zn‖2

≤‖xn − p‖2 + βnθn − αnγn‖un − PC(I − λnA)zn‖2

It follows that

ηγn‖un − PC(I − λnA)zn‖2 ≤ αnγn‖un − PC(I − λnA)zn‖2

≤ ‖xn − p‖2 − ‖yn − p‖2 + βnθn

≤ ‖xn − yn‖(‖xn − p‖ + ‖yn − p‖) + βnθn

which implies that

lim
n→∞

γn‖un − PC(I − λnA)zn‖2 = 0.

So,
lim

n→∞

√
γn‖un − PC(I − λnA)zn‖ = 0. (2.9)

Since yn = αnun + βnT nun + γnPC(zn − λnAzn), we have

‖yn − un‖ = ‖βn(T nun − un) + γn(PC(zn − λnAzn) − un)‖
≤ βn‖T nun − un‖ +

√
γn

√
γn‖PC(zn − λnAzn) − un)‖.

It follows from (2.8) and (2.9) that

lim
n→∞

‖yn − un‖ = 0. (2.10)

Noticing that ‖xn − zn‖ ≤ ‖xn − yn‖ + ‖yn − un‖ + ‖un − zn‖, we obtain

lim
n→∞

‖xn − zn‖ = 0, (2.11)
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and hence zn → x∗ as n → ∞. Combining (2.7) and (2.11) we get

lim
n→∞

‖xn − un‖ = 0, (2.12)

which implies un → x∗ as n → ∞. Since

‖un+1 − un‖ ≤ ‖un+1 − xn+1‖ + ‖xn+1 − xn‖ + ‖xn − un‖,

it follows from (2.4) and (2.12) that

lim
n→∞

‖un+1 − un‖ = 0. (2.13)

Note that T is uniformly continuous, from (2.8), (2.13) and Lemma 1.2 we obtain
that ‖un−Tun‖ → 0 as n → ∞. Moreover, we see that ‖un −T mun‖ → 0 for any
m ∈ N . By Lemma 1.3 we obtain x∗ ∈ F (T ).
Step 6. x∗ ∈ V I(C, A).

Since A is Lipschitz continuous, from xn − zn → 0 we have

lim
n→∞

‖Axn − Azn‖ = 0. (2.14)

Let

Sv =

{

Av + NC(v), v ∈ C,

∅, v 6∈ C.

By Lemma 1.7, S is maximal monotone and S−1(0) = V I(C, A). Let (v, w) ∈
G(S). Since w ∈ Sv = Av + NC(v), we have w − Av ∈ NC(v). It follows from
zn ∈ C that

〈v − zn, w − Av〉 ≥ 0. (2.15)

On the other hand, from zn = PC(xn − λnAxn) we obtain that

〈v − zn, zn − (xn − λnAxn)〉 ≥ 0,

and hence

〈v − zn,
xn − zn

λn

− Axn〉 ≤ 0. (2.16)

Then, from (2.15) and (2.16), we have

〈v − zn, w〉 ≥ 〈v − zn, Av〉

≥ 〈v − zn, Av〉 + 〈v − zn,
xn − zn

λn

− Axn〉

= 〈v − zn, Av − Axn +
xn − zn

λn

〉

= 〈v − zn, Av − Azn〉 + 〈v − zn, Azn − Axn〉 + 〈v − zn,
xn − zn

λn

〉

≥ −‖v − zn‖ · ‖Azn − Axn‖ − ‖v − zn‖ ·
‖xn − zn‖

s
.
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Hence we have 〈v − x∗, w〉 ≥ 0 as n → ∞. Since S is maximal monotone, we have
x∗ ∈ S−1(0) and hence x∗ ∈ V I(C, A).
Step 7. x∗ ∈ GEP (f, B) = F (Tr).

Since un = Trn
zn, we obtain that

f(un, y) + 〈Bzn, y − un〉 +
1

rn

〈y − un, un − zn〉 ≥ 0, ∀y ∈ C.

From (A2), we have

〈Bzn, y − un〉 + 〈y − un,
un − zn

rn

〉 ≥ −f(un, y) ≥ f(y, un), ∀y ∈ C. (2.17)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)x∗. Since y ∈ C and x∗ ∈ C,
we have yt ∈ C. From (2.17) we obtain that

〈Byt, yt − un〉

≥〈Byt, yt − un〉 − 〈Bzn, yt − un〉 − 〈yt − un,
un − zn

rn

〉 + f(yt, un)

=〈Byt − Bun, yt − un〉 + 〈Bun − Bzn, yt − un〉 − 〈yt − un,
un − zn

rn

〉 + f(yt, un).

By the continuity of B and the fact that zn, un → x∗ as n → ∞, we know that
Bun −Bzn → 0 as n → ∞. Since B is monotone, we obtain that 〈Byt −Bun, yt−
un〉 ≥ 0. Thus, it follows from (2.7), (A4) and the assumption rn ≥ a that

f(yt, x
∗) ≤ lim inf

n→∞

f(yt, un) ≤ lim
n→∞

〈Byt, yt − un〉 = 〈Byt, yt − x∗〉.

Now, from (A1) and (A4) we have

0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, x
∗)

≤ tf(yt, y) + (1 − t)〈Byt, yt − x∗〉
≤ tf(yt, y) + (1 − t)t〈Byt, y − x∗〉,

and hence f(yt, y) + (1 − t)〈Byt, y − x∗〉 ≥ 0. Letting t → 0, from (A3), we have
f(x∗, y) + 〈Bx∗, y − x∗〉 ≥ 0 for all y ∈ C. This implies that x∗ ∈ GEP (f, B).
Therefore, in view of steps 5, 6 we have x∗ ∈ F .
Step 8. x∗ = PF x1.

From xn = PCn
x1, we get

〈xn − z, x1 − xn〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn for all n ≥ 1, we arrive at

〈xn − p, x1 − xn〉 ≥ 0, ∀p ∈ F.

Letting n → ∞, we have

〈x∗ − p, x1 − x∗〉 ≥ 0, ∀p ∈ F

and hence x∗ = PF x1. This completes the proof.
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Corollary 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H

and T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense with sequence {µn}. Let A be a γ-inverse
strongly monotone mapping of C into H such that F = F (T )

⋂

V I(C, A) 6= ∅ and
F is bounded. Let {xn}∞n=1 be a sequence in C generated by the following iterative
process:































x1 ∈ C = C1,

zn = PC(xn − λnAxn),

yn = αnzn + βnT nzn + γnPC(zn − λnAzn),

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + βnθn},
xn+1 = PCn+1

x1, ∀n ≥ 1,

(2.18)

where θn = cn + µn · ∆n, ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞. Assume that {αn},
{βn}, {γn} are sequences in [0, 1] with αn + βn + γn = 1 such that αn ≥ η > κ,
βn ≥ ζ > 0 and {λn} is a sequence in (0, 2γ) such that 0 < s ≤ λn < 2γ. Then
the sequence {xn} given by (2.18) converges strongly to x∗ ∈ F , where x∗ = PF x1.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H

and T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense with sequence {µn}. Let f be a bifunction
from C × C to R satisfying (A1)–(A4) such that F = F (T )

⋂

EP (f) 6= ∅ and F

is bounded. Let {xn}∞n=1 be a sequence in C generated by the following iterative
process:































x1 ∈ C = C1,

un ∈ C, f(un, y) + 1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1 − αn)T nun,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + βnθn},
xn+1 = PCn+1

x1, ∀n ≥ 1,

(2.19)

where θn = cn + µn · ∆n, ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞. Assume that
{rn} ⊂ [a,∞) for some a > 0 and {αn} is sequence in [0, 1] such that 1 > ζ ≥
αn ≥ η > κ. Then the sequence {xn} given by (2.19) converges strongly to x∗ ∈ F ,
where x∗ = PF x1.

As the proof of Theorem 2.1, we can prove the following strong convergence
theorem for generalized equilibrium problem, the variational inequality problem
for a γ-inverse strongly monotone mapping and an asymptotically κ-strict pseudo-
contractive mappings in the intermediate sense by using of routine method.

Theorem 2.4. Let C be a nonempty closed convex subset of a real Hilbert space H

and T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense with sequence {µn}. Let f be a bifunction from
C × C to R satisfying (A1)–(A4) and B a continuous monotone mapping of C

into H. Let A be a γ-inverse strongly monotone mapping of C into H such that
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F = F (T )
⋂

GEP (f, B)
⋂

V I(C, A) 6= ∅ and F is bounded. Let {xn}∞n=1 be a
sequence in C generated by the following iterative process:















































x1 ∈ C,

zn = PC(xn − λnAxn),

un ∈ C, f(un, y) + 〈Bzn, y − un〉 + 1

rn
〈y − un, un − zn〉 ≥ 0, ∀y ∈ C,

yn = αnun + βnT nun + γnPC(zn − λnAzn),

Hn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + βnθn},
Wn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

x1, ∀n ≥ 1,

(2.20)
where θn = cn + µn · ∆n, ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞. Assume that
{rn} ⊂ [a,∞) for some a > 0, {αn}, {βn}, {γn} are sequences in [0, 1] with
αn + βn + γn = 1 such that αn ≥ η > κ, βn ≥ ζ > 0 and {λn} is a sequence
in (0, 2γ) such that 0 < s ≤ λn < 2γ. Then the sequence {xn} given by (2.20)
converges strongly to x∗ ∈ F , where x∗ = PF x1.

Proof. It is obvious that Hn ∩ Wn is closed and convex for each n ≥ 1. Now
we show that F ⊂ Hn ∩ Wn for all n ≥ 1. Note that Hn is actually Cn+1 in
Theorem 2.1, so we have F ⊂ Hn for all n ≥ 1. Next we show by induction that
F ⊂ Hn ∩Wn. From W1 = C, we have F ⊂ H1 ∩W1. Assume that F ⊂ Hk ∩Wk

for some k ≥ 1. Then there exist a xk+1 ∈ Hk ∩ Wk such that

xk+1 = PHk∩Wk
x1.

Since F ⊂ Hk ∩ Wk, from the definition of xk+1 and (1.5), for all p ∈ F we have

〈xk+1 − p, x1 − xk+1〉 ≥ 0,

and hence p ∈ Wk+1. So we have F ⊂ Wk+1. Therefore we get F ⊂ HK+1∩Wk+1.
Thus we prove that F ⊂ Hn ∩ Wn for all n ≥ 1. This means that the iterative
algorithm (2.20) is well defined.

From the definition of Wn, we know that

〈xn − z, x1 − xn〉 ≥ 0, ∀z ∈ Wn.

So by (1.5) we have xn = PWn
x1. If we instead Cn by Wn and Cn+1 by Hn in the

proof of Theorem 2.1 and notice that xn+1 = PHn∩Wn
x1 ∈ Wn, we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn − yn‖ = lim
n→∞

‖yn − zn‖

= lim
n→∞

‖zn − un‖ = lim
n→∞

‖un+1 − un‖ = lim
n→∞

‖un − T nun‖ = 0.

Thus the proof that {xn} converges strongly to PF x1 follows on the lines of
Theorem 2.1.
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Corollary 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H

and T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense with sequence {µn}. Let A be a γ-inverse
strongly monotone mapping of C into H such that F = F (T )

⋂

V I(C, A) 6= ∅ and
F is bounded. Let {xn}∞n=1 be a sequence in C generated by the following iterative
process:







































x1 ∈ C

zn = PC(xn − λnAxn),

yn = αnzn + βnT nzn + γnPC(zn − λnAzn),

Hn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + βnθn},
Wn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

x1, ∀n ≥ 1,

(2.21)

where θn = cn + µn · ∆n, ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞. Assume that {αn},
{βn}, {γn} are sequences in [0, 1] with αn + βn + γn = 1 such that αn ≥ η > κ,
βn ≥ ζ > 0 and {λn} is a sequence in (0, 2γ) such that 0 < s ≤ λn < 2γ. Then
the sequence {xn} given by (2.21) converges strongly to x∗ ∈ F , where x∗ = PF x1.

Corollary 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H

and T : C → C a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense with sequence {µn}. Let f be a bifunction
from C × C to R satisfying (A1)–(A4) such that F = F (T )

⋂

EP (f) 6= ∅ and F

is bounded. Let {xn}∞n=1 be a sequence in C generated by the following iterative
process:







































x1 ∈ C

un ∈ C, f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1 − αn)T nun,

Hn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + βnθn},
Wn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

x1, ∀n ≥ 1,

(2.22)

where θn = cn + µn · ∆n, ∆n = sup{‖xn − p‖2 : p ∈ F} < ∞. Assume that
{rn} ⊂ [a,∞) for some a > 0 and {αn} is sequence in [0, 1] such that 1 > ζ ≥
αn ≥ η > κ. Then the sequence {xn} given by (2.22) converges strongly to x∗ ∈ F ,
where x∗ = PF x1.
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