Stability of a Mixed Type Cubic and Quartic Functional Equation in non-Archimedean ℓ-Fuzzy Normed Spaces

Ali Ebadian ${ }^{\dagger}$, Norouz Ghobadipour ${ }^{\dagger}$, Meysam Bavand Savadkouhi ${ }^{\dagger}$ and Madjid Eshaghi Gordji ${ }^{\dagger \dagger, \ddagger, 1}$
${ }^{\dagger}$ Department of Mathematics, Urmia University, Urmia, Iran e-mail : ebadian.ali@gmail.com
${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Semnan University, Semnan, Iran
${ }^{\ddagger}$ Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Iran e-mail : madjid.eshaghi@gmail.com

Abstract : In this paper, we prove the generalized Hyres-Ulam-Rassias stability of the mixed type cubic and quartic functional equation

$$
f(x+2 y)+f(x-2 y)=4(f(x+y)+f(x-y))-24 f(y)-6 f(x)+3 f(2 y)
$$

in non-Archimedean ℓ-fuzzy normed spaces.
Keywords : Generalized Hyers-Ulam-Rassias stability; Cubic functional equation; Quartic functional equation; ℓ-fuzzy metric and normed spaces; Non-Archimedean ℓ-fuzzy normed spaces.
2010 Mathematics Subject Classification : 39B82; 39B52.

1 Introduction

The stability problem of functional equations originated from a question of Ulam [1] in 1940, concerning the stability of group homomorphisms. We are

[^0]looking for situations when the homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism near it. The case of approximately additive mappings was solved by Hyers [2] under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, a generalized version of the theorem of Hyers for approximately linear mappings was given by Rassias [3]. This new concept is known as Hyers-Ulam-Rassias stability of functional equations (see [4-22]).

Jun and Kim [7] introduced the following functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.2}
\end{equation*}
$$

and they established the general solution and the generalized Hyers-Ulam-Rassias stability for the functional equation (1.2). The function $f(x)=x^{3}$ satisfies the functional equation (1.2), which is thus called a cubic functional equation. Every solution of the cubic functional equation is said to be a cubic function. Jun and Kim proved that a function f between real vector spaces X and Y is a solution of (1.2) if and only if there exists a unique function $C: X \times X \times X \rightarrow Y$ such that $f(x)=C(x, x, x)$ for all $x \in X$, and C is symmetric for each fixed one variable and is additive for fixed two variables. For more detailed definitions of such terminologies, we can refer to [17-58].

Rassias [8, 9] studied the stability of quartic functional equations. In the following Park [59] studied the quartic functional equation

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)=4(f(x+y)+f(x-y))+24 f(y)-6 f(x) \tag{1.3}
\end{equation*}
$$

In fact they proved that a function f between real vector spaces X and Y is a solution of (1.3) if and only if there exists a unique symmetric multi-additive function $Q: X \times X \times X \times X \rightarrow Y$ such that $f(x)=Q(x, x, x, x)$ for all $x \in X$. It is easy to show that the function $f(x)=x^{4}$ satisfies the functional equation (1.3), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic function.

The theory of fuzzy sets was introduced by Zadeh [60] in 1965. After the pioneering work of Zadeh, there has been a great effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive development is made in the field of fuzzy topology [61-64]. Saadati and Park [65] introduced and studied the concept of intuitionistic fuzzy normed spaces (see also [20]). The pioneering work of Zadeh provided some influence to several mathematicians to study fuzzy analogues of classical theories connected with functional equations in the framework of mathematical analysis.

A triangular norm (shortly, t-norm) is a binary operation $T:[0,1] \times[0,1] \rightarrow$ $[0,1]$ which is commutative, associative, monotone and has 1 as the unit element. A t-norm T can be extended (by associativity) in a unique way to an n-ary operation taking, for all $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$, the value $T\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
T_{i=1}^{0} x_{i}=1, \quad T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)=T\left(x_{1}, \ldots, x_{n}\right)
$$

A t-norm T can also be extended to a countable operation taking, for any sequence $\left\{x_{n}\right\}_{n \in N}$ in $[0,1]$, the value

$$
T_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} T_{i=1}^{n} x_{i} .
$$

Definition 1.1 ([66]). Let $\ell=\left(L, \leq_{L}\right)$ be a complete lattice and let U be a nonempty set called the universe. An ℓ-fuzzy set in U is defined as a mapping $A: U \rightarrow L$. For each u in $U, A(u)$ represents the degree (in L) to which u is an element of U.

Consider the set L^{*} and operation $\leq_{L^{*}}$ defined by

$$
\begin{gathered}
L^{*}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}\right) \in[0,1]^{2} \text { and } x_{1}+x_{2} \leq 1\right\} \\
\left(x_{1}, x_{2}\right) \leq_{L^{*}}\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} \leq y_{1}, x_{2} \geq y_{2}
\end{gathered}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in L^{*}$. Then $\left(L^{*}, \leq_{L^{*}}\right)$ is a complete lattice (see [67]).
Definition 1.2. A triangular norm (t-norm) on L is a mapping $T: L^{2} \rightarrow L$ satisfying the following conditions:
(1) $T\left(x, 1_{L}\right)=x$ for all $x \in L$; (boundary condition).
(2) $T(x, y)=T(y, x)$ for all $(x, y) \in L^{2}$; (commutativity).
(3) $T(x, T(y, z))=T(T(x, y), z)$ for all $(x, y, z) \in L^{3} ;($ associativity $)$.
(4) $x \leq_{L} x^{\prime}, y \leq_{L} y^{\prime} \Longrightarrow T(x, y) \leq_{L} T\left(x^{\prime}, y^{\prime}\right)$ for all $\left(x, x^{\prime}, y, y^{\prime}\right) \in L^{4}$; (monotonicity).

A t-norm T on ℓ is said to be continuous if, for any $x, y \in \ell$ and any sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ which converge to x and y, respectively,

$$
\lim _{n \rightarrow \infty} T\left(x_{n}, y_{n}\right)=T(x, y)
$$

A t-norm T can also be defined recursively as an $(n+1)$-ary operation $(n \in N)$ by $T^{1}=T$ and

$$
T^{n}\left(x_{1}, \ldots, x_{n+1}\right)=T\left(T^{n-1}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right)
$$

for all $n \geq 2$ and $x_{i} \in L$.

Definition 1.3.

(1) A negator on ℓ is any decreasing mapping $N: L \rightarrow L$ satisfying $N\left(0_{L}\right)=1_{L}$ and $N\left(1_{L}\right)=0_{L}$.
(2) If $N(N(x))=x$ for all $x \in L$, then N is called an involutive negator.
(3) The negator N_{s} on $([0,1], \leq)$ defined as $N_{s}(x)=1-x$ for all $x \in[0,1]$ is called the standard negator on $([0,1], \leq)$.

Definition 1.4. The triple (X, M, T) is said to be an ℓ-fuzzy metric space if X is an arbitrary (non-empty) set, T is a continuous t-norm on L and M is an ℓ-fuzzy set on $\left.X^{2} \times\right] 0,+\infty[$ satisfying the following conditions: for all $x, y, z \in X$ and $t, s \in] 0,+\infty[$,
(1) $M(x, y, t)>_{L} 0_{L}$;
(2) $M(x, y, t)=1_{L}$ for all $t>0$ if and only if $x=y$;
(3) $M(x, y, t)=M(y, x, t)$;
(4) $T(M(x, y, t), M(y, z, s)) \leq_{L} M(x, z, t+s)$;
(5) $M(x, y,):.] 0,+\infty[\rightarrow L$ is continuous.

In this case, M is called an ℓ-fuzzy metric.
Definition 1.5. The triple (V, P, T) is said to be an ℓ-fuzzy normed space if V is a vector space, T is a continuous t-norm on L and P is an ℓ-fuzzy set on $V \times] 0,+\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in] 0,+\infty[$,
(1) $P(x, t)>{ }_{L} 0_{L}$;
(2) $P(x, t)=1_{L}$ if and only if $x=0$;
(3) $P(\alpha x, t)=P\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;
(4) $T(P(x, t), P(y, s)) \leq_{L} P(x+y, t+s)$;
(5) $P(x,):.] 0,+\infty[\rightarrow L$ is continuous.
(6) $\lim _{t \rightarrow 0} P(x, t)=0_{L}$ and $\lim _{t \rightarrow \infty} P(x, t)=1_{L}$.

In this case, P is called an ℓ-fuzzy norm.

Definition 1.6.

(1) A sequence $\left\{x_{n}\right\}_{n \in N}$ in an ℓ-fuzzy normed space (V, P, T) is called a Cauchy sequence if, for each $\epsilon \in L \backslash\left\{0_{L}\right\}$ and $t>0$, there exists $n_{0} \in \mathbb{N}$ such that, for all $n, m \geq n_{0}$,

$$
P\left(x_{n}-x_{m}, t\right)>_{L} N(\epsilon),
$$

where N is a negator on ℓ.
(2) A sequence $\left\{x_{n}\right\}_{n \in N}$ is said to be convergent to $x \in V$ in the ℓ-fuzzy normed space (V, P, T), which is denoted by $x_{n} \rightarrow x$ if $P\left(x_{n}-x, t\right) \rightarrow 1_{\ell}$, whenever $n \rightarrow+\infty$ for all $t>0$.
(3) An ℓ - fuzzy normed space (V, P, T) is said to be complete if and only if every Cauchy sequence in V is convergent.

Note that, if P is an ℓ-fuzzy norm on V, then the following are satisfied:
(1) $P(x, t)$ is nondecreasing with respect to t for all $x \in V$.
(2) $P(x-y, t)=P(y-x, t)$ for all $x, y \in V$ and $t \in] 0,+\infty[$.

Let (V, P, T) be an ℓ-fuzzy normed space. If we define

$$
M(x, y, t)=P(x-y, t)
$$

for all $x, y \in V$ and $t \in] 0,+\infty[$, then M is an ℓ-fuzzy metric on V, which is called the ℓ-fuzzy metric induced by the ℓ-fuzzy norm P.

In 1897, Hensel [68] introduced a field with a valuation in which does not have the Archimedean property.
Definition 1.7. Let K be a field. A non-Archimedean absolute value on K is a function $||:. K \rightarrow[0,+\infty[$ such that, for any $a, b \in K$,
(1) $|a| \geq 0$ and equality holds if and only if $a=0$,
(2) $|a b|=|a||b|$,
(3) $|a+b| \leq \max \{|a|,|b|\}$ (the strict triangle inequality).

Note that $|n| \leq 1$ for each integer n. We always assume, in addition, that $|$. is non-trivial, i.e., there exists an $a_{0} \in K$ such that $\left|a_{0}\right| \neq 0,1$.
Definition 1.8. A non-Archimedean ℓ-fuzzy normed space is a triple (V, P, T), where V is a vector space, T is a continuous t-norm on L and P is an ℓ-fuzzy set on $V \times] 0,+\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in] 0,+\infty[$,
(1) $0_{L}<_{L} P(x, t)$;
(2) $P(x, t)=1_{L}$ if and only if $x=0$;
(3) $P(\alpha x, t)=P\left(x, \frac{t}{|\alpha|}\right)$ for all $\alpha \neq 0$;
(4) $T(P(x, t), P(y, s)) \leq_{L} P(x+y, \max \{t, s\})$;
(5) $P(x,):.] 0, \infty[\rightarrow L$ is continuous;
(6) $\lim _{t \rightarrow 0} P(x, t)=0_{L}$ and $\lim _{t \rightarrow \infty} P(x, t)=1_{L}$.

Recently, Gordji and Savadkouhi [29] proved the stability of cubic and quartic functional equations in non-Archimedean spaces. For more detailed definitions of such terminologies, we can refer to [30-32].

In 2010, Shakeri, Saadati and Park [69] investigated the classical quadratic functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

and proved the generalized Hyers-Ulam stability in the context of non-Archimedean l-fuzzy normed spaces. In the same year Xu, Rassias and Xu [70] investigated as well the stability of a mixed type additive cubic functional equation in nonArchimedean fuzzy normed spaces.

In the present paper we introduce the following functional equation

$$
f(x+2 y)+f(x-2 y)=4(f(x+y)+f(x-y))-24 f(y)-6 f(x)+3 f(2 y)
$$

and prove the generalized Hyers-Ulam-Rassias stability in non-Archimedean ℓ fuzzy normed spaces.

2 Main Results

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of the mixed type cubic and quartic functional equation

$$
f(x+2 y)+f(x-2 y)=4(f(x+y)+f(x-y))-24 f(y)-6 f(x)+3 f(2 y) .
$$

Let Ψ be an ℓ-fuzzy set on $X \times X \times[0, \infty)$ such that $\Psi(x, y,$.$) is nondecreasing,$

$$
\Psi(c x, c x, t) \geq_{L} \Psi\left(x, x, \frac{t}{|c|}\right), \quad \forall x \in X, c \neq 0
$$

and

$$
\lim _{t \rightarrow \infty} \Psi(x, y, t)=1_{\ell}, \forall x, y \in X, t>0 .
$$

Theorem 2.1. Let K be a non-Archimedean field, X a vector space over K and (Y, P, T) a non-Archimedean ℓ-fuzzy Banach space over K. Suppose that $f: X \rightarrow$ Y is an odd mapping satisfying
$P(f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+24 f(y)+6 f(x)-3 f(2 y), t) \geq_{L} \Psi(x, y, t)$
for all $x, y \in X$ and $t>0$. If there exists an $\alpha \in \mathbb{R}$ and an integer $k, k \geq 2$ with $\left|2^{k}\right|<\alpha$ and $|2| \neq 0$ such that

$$
\begin{gather*}
\Psi\left(2^{-k} x, 2^{-k} y, t\right) \geq_{L} \Psi(x, y, \alpha t), \quad \forall x \in X, t>0, \tag{2.2}\\
\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\alpha^{j} t}{|2|^{k j}}\right)=1_{\ell}, \quad \forall x \in X, t>0
\end{gather*}
$$

then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
P(f(x)-C(x), t) \geq T_{i=0}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{|2|^{k i}}\right), \quad \forall x \in X, t>0 \tag{2.3}
\end{equation*}
$$

where

$$
M(x, t):=T\left(\Psi(0, x, 3 t), \Psi(0,2 x, 3 t), \ldots, \Psi\left(0,2^{k-1} x, 3 t\right)\right)
$$

for all $x \in X, \quad t>0$.
Proof. First, we show, by induction on j, that, for all $x \in X, t>0$ and $j \geq 1$,

$$
\begin{equation*}
P\left(f\left(2^{j} x\right)-8^{j} f(x), t\right) \geq_{L} M_{j}(x, t):=T\left(\Psi(0, x, 3 t), \ldots, \Psi\left(0,2^{j-1} x, 3 t\right)\right) . \tag{2.4}
\end{equation*}
$$

Putting $x=0$ in (2.1), we obtain

$$
\begin{equation*}
P(3 f(2 y)-24 f(y), t) \geq_{L} \Psi(0, y, t), \tag{2.5}
\end{equation*}
$$

for all $y \in X$ and $t>0$. If we replace y in (2.5) by x, we get

$$
P(f(2 x)-8 f(x), t) \geq_{L} \Psi(0, x, 3 t),
$$

for all $x \in X$ and $t>0$. This proves (2.4) for $j=1$. Let (2.4) holds for some $j>1$. Putting $x=0$ and $y=2^{j} x$ in (2.1), we get

$$
P\left(f\left(2^{j+1} x\right)-8 f\left(2^{j} x\right), t\right) \geq_{L} \Psi\left(0,2^{j} x, 3 t\right)
$$

for all $x \in X$ and $t>0$. Since $|2|<1$, it follows that

$$
\begin{aligned}
& P\left(f\left(2^{j+1} x\right)-8^{j+1} f(x), t\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-8 f\left(2^{j} x\right), t\right), P\left(8 f\left(2^{j} x\right)-8^{j+1} f(x), t\right)\right) \\
& =T\left(P\left(f\left(2^{j+1} x\right)-8 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-8^{j} f(x), \frac{t}{|8|}\right)\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-8 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-8^{j} f(x), t\right)\right) \\
& =T\left(\Psi\left(0,2^{j} x, 3 t\right), M_{j}(x, t)\right) \\
& =M_{j+1}(x, t)
\end{aligned}
$$

for all $x \in X$ and $t>0$. Thus (2.4) holds for all $j \geq 1$. In particular, we have

$$
\begin{equation*}
P\left(f\left(2^{k} x\right)-8^{k} f(x), t\right) \geq_{L} M(x, t) \tag{2.6}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Replacing x by $2^{-(k n+k)} x$ in (2.6) and using the inequality (2.2), we obtain

$$
P\left(f\left(\frac{x}{2^{k n}}\right)-8^{k} f\left(\frac{x}{2^{k n+k}}\right), t\right) \geq_{L} M\left(\frac{x}{2^{k n+k}}, t\right) \geq_{L} M\left(x, \alpha^{n+1} t\right)
$$

for all $x \in X, t>0$ and $n \geq 0$. Thus we have

$$
\begin{aligned}
P\left(\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{3 k}\right)^{n+1} f\left(\frac{x}{\left(2^{k}\right)^{n+1}}\right), t\right) & \geq_{L} M\left(x, \frac{\alpha^{n+1}}{\left|\left(2^{3 k}\right)^{n}\right|} t\right) \\
& \geq_{L} M\left(x, \frac{\alpha^{n+1}}{\left|\left(2^{k}\right)^{n}\right|} t\right)
\end{aligned}
$$

for all $x \in X, t>0$ and $n \geq 0$. Hence it follows that

$$
\begin{aligned}
& P\left(\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{3 k}\right)^{n+p} f\left(\frac{x}{\left(2^{k}\right)^{n+p}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} P\left(\left(2^{3 k}\right)^{j} f\left(\frac{x}{\left(2^{k}\right)^{j}}\right)-\left(2^{3 k}\right)^{j+1} f\left(\frac{x}{\left(2^{k}\right)^{j+1}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} M\left(x, \frac{\alpha^{j+1}}{\left|\left(2^{k}\right)^{j}\right|} t\right)
\end{aligned}
$$

for all $x \in X, t>0$ and $n \geq 0$. Since $\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\alpha^{j+1}}{\left(\left(2^{k}\right)^{j} \mid\right.} t\right)=1_{\ell}$ for all $x \in X$ and $t>0,\left\{\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in the non-Archimedean ℓ-fuzzy Banach space (Y, P, T). Hence we can define a mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-C(x), t\right)=1_{\ell} \tag{2.7}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Next, for all $n \geq 1, x \in X$ and $t>0$, we have

$$
\begin{aligned}
& P\left(f(x)-\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right) \\
& =P\left(\sum_{i=0}^{n-1}\left[\left(2^{3 k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{3 k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right)\right], t\right) \\
& \geq_{L} T_{i=0}^{n-1}\left(P\left(\left(2^{3 k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{3 k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right), t\right)\right) \\
& \geq_{L} T_{i=0}^{n-1} M\left(x, \frac{\alpha^{i+1}}{\left|2^{k}\right|^{i}} t\right)
\end{aligned}
$$

and so

$$
\begin{align*}
& P(f(x)-C(x), t) \\
& \geq_{L} T\left(P\left(f(x)-\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-C(x), t\right)\right) \\
& \geq_{L} T\left(T_{i=0}^{n-1} M\left(x, \frac{\alpha^{i+1}}{\left|2^{k}\right|^{2}} t\right), P\left(\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-C(x), t\right)\right) . \tag{2.8}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (2.8), we obtain

$$
P(f(x)-C(x), t) \geq_{L} T_{i=0}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)
$$

which proves (2.3). Replacing x, y by $2^{-k n} x, 2^{-k n} y$ in (2.1) and (2.2), we get

$$
\begin{aligned}
P\left(\left(8^{k}\right)^{n} f\left(\frac{x+2 y}{2^{k n}}\right)\right. & +\left(8^{k}\right)^{n} f\left(\frac{x-2 y}{2^{k n}}\right)-4\left(8^{k}\right)^{n} f\left(\frac{x+y}{2^{k n}}\right)-4\left(8^{k}\right)^{n} f\left(\frac{x-y}{2^{k n}}\right) \\
& \left.+24\left(8^{k}\right)^{n} f\left(\frac{y}{2^{k n}}\right)+6\left(8^{k}\right)^{n} f\left(\frac{x}{2^{k n}}\right)-3\left(8^{k}\right)^{n} f\left(\frac{2 y}{2^{k n}}\right), t\right) \\
& \geq_{L} \Psi\left(2^{-k n} x, 2^{-k n} y, \frac{t}{\left|2^{3 k}\right|^{n}}\right) \\
& \geq_{L} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k}\right|^{n}}\right)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k}\right| n}\right)=1_{\ell}$, we infer that C is a cubic mapping. For the uniqueness of C, let $C^{\prime}: X \rightarrow Y$ be another cubic mapping such that

$$
P\left(C^{\prime}(x)-f(x), t\right) \geq_{L} T_{i=0}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)
$$

for all $x \in X$ and $t>0$. Then we have, for all $x, y \in X$ and $t>0$,

$$
\begin{aligned}
& P\left(C(x)-C^{\prime}(x), t\right) \\
& \geq_{L} T\left(P\left(C(x)-\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{3 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-C^{\prime}(x), t\right)\right) .
\end{aligned}
$$

Therefore, from (2.7), we conclude that $C=C^{\prime}$. This completes the proof.
Theorem 2.2. Let K be a non-Archimedean field, X a vector space over K and (Y, P, T) a non-Archimedean ℓ-fuzzy Banach space over K. Suppose that $f: X \rightarrow$ Y is an even mapping satisfying
$P(f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+24 f(y)+6 f(x)-3 f(2 y), t) \geq_{L} \Psi(x, y, t)$
for all $x, y \in X$ and $t>0$. If there exist an $\alpha \in \mathbb{R}$ and an integer $k, k \geq 2$ with $\left|2^{k}\right|<\alpha$ and $|2| \neq 0$ such that

$$
\begin{gather*}
\Psi\left(2^{-k} x, 2^{-k} y, t\right) \geq_{L} \Psi(x, y, \alpha t), \quad \forall x \in X, t>0 \tag{2.10}\\
\lim _{n \rightarrow \infty} T_{j=n}^{\infty} N\left(x, \frac{\alpha^{j} t}{|2|^{k j}}\right)=1_{\ell}, \quad \forall x \in X, t>0
\end{gather*}
$$

then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
P(f(x)-Q(x), t) \geq T_{i=0}^{\infty} N\left(x, \frac{\alpha^{i+1} t}{|2|^{k i}}\right), \forall x \in X, t>0 \tag{2.11}
\end{equation*}
$$

where

$$
N(x, t):=T\left(\Psi(0, x, t), \Psi(0,2 x, t), \ldots, \Psi\left(0,2^{k-1} x, t\right)\right)
$$

for all $x \in X, \quad t>0$.
Proof. First, we show, by induction on j, that, for all $x \in X, t>0$ and $j \geq 1$,

$$
\begin{equation*}
P\left(f\left(2^{j} x\right)-16^{j} f(x), t\right) \geq_{L} N_{j}(x, t):=T\left(\Psi(0, x, t), \ldots, \Psi\left(0,2^{j-1} x, t\right)\right) \tag{2.12}
\end{equation*}
$$

Putting $x=0$ in (2.9), we obtain

$$
\begin{equation*}
P(f(2 y)-16 f(y), t) \geq_{L} \Psi(0, y, t) \tag{2.13}
\end{equation*}
$$

for all $y \in X$ and $t>0$. If we replace y in (2.13) by x, we get

$$
P(f(2 x)-16 f(x), t) \geq_{L} \Psi(0, x, t)
$$

for all $x \in X$ and $t>0$. This proves (2.12) for $j=1$. Let (2.12) holds for some $j>1$. Putting $x=0$ and $y=2^{j} x$ in (2.9), we get

$$
P\left(f\left(2^{j+1} x\right)-16 f\left(2^{j} x\right), t\right) \geq_{L} \Psi\left(0,2^{j} x, t\right)
$$

for all $x \in X$ and $t>0$. Since $|2|<1$, it follows that

$$
\begin{aligned}
& P\left(f\left(2^{j+1} x\right)-16^{j+1} f(x), t\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-16 f\left(2^{j} x\right), t\right), P\left(16 f\left(2^{j} x\right)-16^{j+1} f(x), t\right)\right) \\
& =T\left(P\left(f\left(2^{j+1} x\right)-16 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-16^{j} f(x), \frac{t}{|16|}\right)\right) \\
& \geq_{L} T\left(P\left(f\left(2^{j+1} x\right)-16 f\left(2^{j} x\right), t\right), P\left(f\left(2^{j} x\right)-16^{j} f(x), t\right)\right) \\
& =T\left(\Psi\left(0,2^{j} x, t\right), N_{j}(x, t)\right) \\
& =N_{j+1}(x, t)
\end{aligned}
$$

for all $x \in X$ and $t>0$. Thus (2.12) holds for all $j \geq 1$. In particular, we have

$$
\begin{equation*}
P\left(f\left(2^{k} x\right)-16^{k} f(x), t\right) \geq_{L} N(x, t), \tag{2.14}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Replacing x by $2^{-(k n+k)} x$ in (2.14) and using the inequality (2.10), we obtain

$$
P\left(f\left(\frac{x}{2^{k n}}\right)-16^{k} f\left(\frac{x}{2^{k n+k}}\right), t\right) \geq_{L} N\left(\frac{x}{2^{k n+k}}, t\right) \geq_{L} N\left(x, \alpha^{n+1} t\right)
$$

for all $x \in X, t>0$ and $n \geq 0$. Thus we have

$$
\begin{aligned}
P\left(\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{4 k}\right)^{n+1} f\left(\frac{x}{\left(2^{k}\right)^{n+1}}\right), t\right) & \geq_{L} N\left(x, \frac{\alpha^{n+1}}{\left|\left(2^{4 k}\right)^{n}\right|} t\right) \\
& \geq_{L} N\left(x, \frac{\alpha^{n+1}}{\left|\left(2^{k}\right)^{n}\right|} t\right)
\end{aligned}
$$

for all $x \in X, t>0$ and $n \geq 0$. Hence it follows that

$$
\begin{aligned}
& P\left(\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-\left(2^{4 k}\right)^{n+p} f\left(\frac{x}{\left(2^{k}\right)^{n+p}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} P\left(\left(2^{4 k}\right)^{j} f\left(\frac{x}{\left(2^{k}\right)^{j}}\right)-\left(2^{4 k}\right)^{j+1} f\left(\frac{x}{\left(2^{k}\right)^{j+1}}\right), t\right) \\
& \geq_{L} T_{j=n}^{n+p-1} N\left(x, \frac{\alpha^{j+1}}{\left|\left(2^{k}\right)^{j}\right|} t\right)
\end{aligned}
$$

for all $x \in X, t>0$ and $n \geq 0$. Since $\lim _{n \rightarrow \infty} T_{j=n}^{\infty} N\left(x, \frac{\alpha^{j+1}}{\left|\left(2^{k}\right)\right|} t\right)=1_{\ell}$ for all $x \in X$ and $t>0,\left\{\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in the non-Archimedean ℓ-fuzzy Banach space (Y, P, T). Hence we can define a mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q(x), t\right)=1_{\ell} \tag{2.15}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Next, for all $n \geq 1, x \in X$ and $t>0$, we have

$$
\begin{aligned}
& P\left(f(x)-\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right) \\
& =P\left(\sum_{i=0}^{n-1}\left[\left(2^{4 k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{4 k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right)\right], t\right) \\
& \geq_{L} T_{i=0}^{n-1}\left(P\left(\left(2^{4 k}\right)^{i} f\left(\frac{x}{\left(2^{k}\right)^{i}}\right)-\left(2^{4 k}\right)^{i+1} f\left(\frac{x}{\left(2^{k}\right)^{i+1}}\right), t\right)\right) \\
& \geq_{L} T_{i=0}^{n-1} N\left(x, \frac{\alpha^{i+1}}{\frac{\left.2^{k}\right|^{i}}{}} t\right)
\end{aligned}
$$

and so

$$
\begin{align*}
& P(f(x)-Q(x), t) \\
& \geq_{L} T\left(P\left(f(x)-\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q(x), t\right)\right) \\
& \geq_{L} T\left(T_{i=0}^{n-1} N\left(x, \frac{\alpha^{i+1}}{\left|2^{k}\right|^{i}} t\right), P\left(\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q(x), t\right)\right) . \tag{2.16}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (2.16), we obtain

$$
P(f(x)-Q(x), t) \geq_{L} T_{i=0}^{\infty} N\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)
$$

which proves (2.11). As T is continuous, from a well known result in ℓ-fuzzy (probabilistic) normed space, replacing x, y by $2^{-k n} x, 2^{-k n} y$ in (2.9) and (2.10), we get

$$
\begin{aligned}
P\left(\left(16^{k}\right)^{n} f\left(\frac{x+2 y}{2^{k n}}\right)\right. & +\left(16^{k}\right)^{n} f\left(\frac{x-2 y}{2^{k n}}\right)-4\left(16^{k}\right)^{n} f\left(\frac{x+y}{2^{k n}}\right)-4\left(16^{k}\right)^{n} f\left(\frac{x-y}{2^{k n}}\right) \\
& \left.+24\left(16^{k}\right)^{n} f\left(\frac{y}{2^{k n}}\right)+6\left(16^{k}\right)^{n} f\left(\frac{x}{2^{k n}}\right)-3\left(16^{k}\right)^{n} f\left(\frac{2 y}{2^{k n}}\right), t\right) \\
& \geq_{L} \Psi\left(2^{-k n} x, 2^{-k n} y, \frac{t}{\left|2^{4 k}\right|^{n}}\right) \\
& \geq_{L} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k}\right|^{n}}\right)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|2^{k}\right|^{n}}\right)=1_{\ell}$, we infer that Q is a quartic mapping. For the uniqueness of Q, let $Q^{\prime}: X \rightarrow Y$ be another quartic mapping such that

$$
P\left(Q^{\prime}(x)-f(x), t\right) \geq_{L} T_{i=0}^{\infty} N\left(x, \frac{\alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)
$$

for all $x \in X$ and $t>0$. Then we have, for all $x, y \in X$ and $t>0$,

$$
\begin{aligned}
& P\left(Q(x)-Q^{\prime}(x), t\right) \\
& \geq_{L} T\left(P\left(Q(x)-\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right), t\right), P\left(\left(2^{4 k}\right)^{n} f\left(\frac{x}{\left(2^{k}\right)^{n}}\right)-Q^{\prime}(x), t\right)\right)
\end{aligned}
$$

Therefore, from (2.15), we conclude that $Q=Q^{\prime}$. This completes the proof.
Theorem 2.3. Let K be a non-Archimedean field, X a vector space over K and (Y, P, T) a non-Archimedean $\ell-f u z z y$ Banach space over K. Suppose that $f: X \rightarrow$ Y is a mapping satisfying

$$
\begin{equation*}
P(f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+24 f(y)+6 f(x)-3 f(2 y), t) \geq_{L} \Psi(x, y, t) \tag{2.17}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. If there exist an $\alpha \in \mathbb{R}$ and an integer $k, k \geq 2$ with $\left|2^{k}\right|<\alpha$ and $|2| \neq 0$ such that

$$
\begin{gather*}
\Psi\left(2^{-k} x, 2^{-k} y, t\right) \geq_{L} \Psi(x, y, \alpha t), \quad \forall x \in X, t>0, \tag{2.18}\\
\lim _{n \rightarrow \infty} T_{j=n}^{\infty}\left(T\left(M\left(x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right), M\left(-x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right)\right)\right)=1_{\ell},
\end{gather*}
$$

and

$$
\lim _{n \rightarrow \infty} T_{j=n}^{\infty}\left(T\left(N\left(x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right), N\left(-x, \frac{2 \alpha^{j} t}{|2|^{k j}}\right)\right)\right)=1_{\ell}
$$

then there exist a cubic mapping $C: X \rightarrow Y$ and a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{array}{r}
P(f(x)-C(x)-Q(x), t) \geq_{L} T\left(T_{i=0}^{\infty}\left(T\left(M\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right), M\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right),\right. \\
\left.T_{i=0}^{\infty}\left(T\left(N\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right), N\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right)\right), \tag{2.19}
\end{array}
$$

where

$$
\begin{gathered}
M(x, t):=T\left(\Psi(0, x, 3 t), \Psi(0,2 x, 3 t), \ldots, \Psi\left(0,2^{k-1} x, 3 t\right)\right), \\
N(x, t)
\end{gathered}:=T\left(\Psi(0, x, t), \Psi(0,2 x, t), \ldots, \Psi\left(0,2^{k-1} x, t\right)\right),
$$

for all $x \in X, t>0$.
Proof. Let $f_{o}(x)=\frac{1}{2}[f(x)-f(-x)]$ for all $x \in X$. Then $f_{o}(0)=0, f_{o}(-x)=$ $-f_{o}(x)$, and

$$
\begin{aligned}
& P\left(f_{o}(x+2 y)+f_{o}(x-2 y)-4 f_{o}(x+y)-4 f_{o}(x-y)+24 f_{o}(y)+6 f_{o}(x)-3 f_{o}(2 y), t\right) \\
& \geq_{L} T(P((1 / 2)[f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+24 f(y)+6 f(x) \\
& \quad-3 f(2 y)], t), P((-1 / 2)[f(-x-2 y)+f(-x+2 y)-4 f(-x-y)-4 f(-x+y) \\
& \quad+24 f(-y)+6 f(-x)-3 f(-2 y)], t)) \\
& \geq_{L} T(\Psi(x, y, 2 t), \Psi(-x,-y, 2 t))
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. By Theorem 2.1, it follows that there exists a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\begin{equation*}
P\left(f_{o}(x)-C(x), t\right) \geq_{L} T_{i=0}^{\infty}\left(T\left(M\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right), M\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right) \tag{2.20}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Let $f_{e}(x)=\frac{1}{2}[f(x)+f(-x)]$ for all $x \in X$. Then $f_{e}(0)=0, f_{e}(-x)=f_{e}(x)$, and

$$
\begin{aligned}
& P\left(f_{e}(x+2 y)+f_{e}(x-2 y)-4 f_{e}(x+y)-4 f_{e}(x-y)+24 f_{e}(y)+6 f_{e}(x)-3 f_{e}(2 y), t\right) \\
& \geq_{L} T(P((1 / 2)[f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+24 f(y)+6 f(x) \\
& \quad-3 f(2 y)], t), P((1 / 2)[f(-x-2 y)+f(-x+2 y)-4 f(-x-y)-4 f(-x+y) \\
& \quad+24 f(-y)+6 f(-x)-3 f(-2 y)], t)) \\
& \geq_{L} T(\Psi(x, y, 2 t), \Psi(-x,-y, 2 t))
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. By Theorem 2.2, it follows that there exists a unique quartic function $Q: X \rightarrow Y$ satisfying

$$
\begin{equation*}
P\left(f_{e}(x)-Q(x), t\right) \geq_{L} T_{i=0}^{\infty}\left(T\left(N\left(x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right), N\left(-x, \frac{2 \alpha^{i+1} t}{\left|2^{k}\right|^{i}}\right)\right)\right) \tag{2.21}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Hence (2.19) follows from (2.20) and (2.21).

Acknowledgements : The authors would like to thank the referees for his comments and suggestions on the manuscript.

References

[1] S.M. Ulam, Problems in modern mathematics, Chapter VI, science ed., Wiley, New York, 1940.
[2] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941) 222-224.
[3] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[4] J. Aczel, J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, 1989.
[5] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.
[6] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996) 217-235.
[7] K.W. Jun, and H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2) (2002) 267-278.
[8] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc. Palm Harbor, Florida, 2001.
[9] S.M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998) 3137-3143.
[10] S.M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000) 175-190.
[11] J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. Indian Math. Soc. 67 (2000) 169-178.
[12] J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34 (54) (1999) 243-252.
[13] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl. 62 (2000) 23-130.
[14] Th.M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2) (2000) 352-378.
[15] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264-284.
[16] Th.M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992) 989-993.
[17] A. Ebadian, A. Najati, M.E. Gordji, On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups, Results Math, 2010.
[18] Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci 14 (1991) 431-434.
[19] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
[20] C. Park, On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc. 132 (2004) 1739-1745.
[21] J. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals 22 (2004) 1039-1046.
[22] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets and Systems 160 (2009) 1632-1642.
[23] S. Abbaszadeh, Intuitionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl. 1 (2010) 100-124.
[24] M.B. Savadkouhi, M.E. Gordji, J.M. Rassias, N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50 (2009), 9 pages.
[25] Y.J. Cho, M.E. Gordji, S. Zolfaghari, Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces, Journal of Inequalities and Applications Volume 2010, Article ID 403101, 17 pages.
[26] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math 27 (1984) 76-86.
[27] A. Ebadian, N. Ghobadipour, M.E. Gordji, A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C^{*}-ternary algebras, J. Math. Phys. 51 (2010), 10 pages.
[28] M.E. Gordji, Stability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc. 47 (2010) 491-502.
[29] M.E. Gordji, M.B. Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math. 110 (2010) 1321-1329.
[30] M.E. Gordji, M.B. Savadkouhi, Stability of a mixed type cubicquartic functional equation in non-Archimedean spaces, Appl. Math. Lett. 23 (2010) 1198-1202.
[31] M.E. Gordji, H. Khodaei, Stability of Functional Equations, LAP LAMBERT Academic Publishing, 2010.
[32] M.E. Gordji, H. Khodaei, R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U. P. B. Sci. Bull., Series A 72 (3) (2010) 69-84.
[33] M.E. Gordji, H. Khodaei, On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abstr. Appl. Anal. Vol. 2009, Article ID 923476, 11 pages.
[34] M.E. Gordji, A. Ebadian, S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstr. Appl. Anal. Vol. 2008, Article ID 801904, 17 pages.
[35] M.E. Gordji, M.B. Ghaemi, S.K. Gharetapeh, S. Shams, A. Ebadian, On the stability of J^{*}-derivations, J. Geometry and Physics 60 (2010) 454-459.
[36] M.E. Gordji, A. Najati, Approximately J^{*}-homomorphisms: A fixed point approach, J. Geometry and Physics 60 (2010) 809-814.
[37] M.E. Gordji, R. Khodabakhsh, H. Khodaei, C. Park, Approximation of a functional equation associated with inner product spaces, J. Inequal. Appl. Vol. 2010, Article ID 428324.
[38] M.E. Gordji, M.B. Savadkouhi, On approximate cubic homomorphisms, Advance in Difference Equat. Vol. 2009, Article ID 618463, 11 pages.
[39] M.E. Gordji, M.B. Ghaemi, H. Majani, Generalized Hyers-Ulam-Rassias Theorem in Menger Probabilistic Normed Spaces, Discrete Dynamics in Nature and Soc. Vol. 2010, Article ID 162371, 11 pages.
[40] M.E. Gordji, M.B. Ghaemi, H. Majani, C. Park, Generalized Ulam-Hyers Stability of Jensen Functional Equation in Erstnev PN-Spaces, J. Inequal. Appl. Vol. 2010, Article ID 868193, 14 pages.
[41] M.E. Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71 (2009) 5629-5643.
[42] R. Farokhzad, S.A.R. Hosseinioun, Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Internat. J. Nonlinear Anal. Appl. 1 (2010) 42-53.
[43] P. Gǎvruta, L. Gǎvruta, A new method for the generalized Hyers-UlamRassias stability, Internat. J. Nonlinear Anal. Appl. 1 (2010) 11-18.
[44] M.E. Gordji, S. Zolfaghari, J.M. Rassias, M.B. Savadkouhi, Solution and Stability of a Mixed type Cubic and Quartic functional equation in QuasiBanach spaces, Abstr. Appl. Anal. Vol. 2009, Article ID 417473, 14 pages.
[45] M.E. Gordji, S.K. Gharetapeh, C. Park, S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, Advances in Difference Equat. Vol. 2009, Article ID 395693, 20 pages.
[46] M.E. Gordji, S.K. Gharetapeh, J.M. Rassias, S. Zolfaghari, Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advance in Difference Equat. Vol. 2009, Article ID 826130, 17 pages.
[47] M.E. Gordji, M.B. Savadkouhi, J.M. Rassias, S. Zolfaghari, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abstr. Appl. Anal. Vol. 2009, Article ID 417473, 14 pages.
[48] M.E. Gordji, M.B. Savadkouhi, Stability of a mixed type cubic and quartic functional equations in random normed spaces, J. Inequal. Appl. Vol. 2009, Article ID 527462, 9 pages.
[49] M.E. Gordji, S. Abbaszadeh, C. Park, On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces, J. Inequal. Appl. Vol. 2009, Article ID 153084, 26 pages.
[50] M.E. Gordji, M.B. Savadkouhi, C. Park, Quadratic-quartic functional equations in RN-spaces, J. Inequal. Appl. Vol. 2009, Article ID 868423, 14 pages.
[51] M.E. Gordji, M.B. Savadkouhi, Approximation of generalized homomorphisms in quasi-Banach algebras, Analele Univ. Ovidius Constata, Math. Series 17 (2009) 203-214.
[52] M.E. Gordji, M.B. Savadkouhi, M. Bidkham, Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl. 12 (2010) 454-462.
[53] H. Khodaei, Th.M. Rassias, Approximately generalized additive functions in several variables, Internat. J. Nonlinear Anal. Appl. 1 (2010) 22-41.
[54] H. Khodaei, M. Kamyar, Fuzzy approximately additive mappings, Int. J. Nonlinear Anal. Appl. 1 (2010) 44-53.
[55] A. Najati, C. Park, On the Stability of a Cubic Functional Equation, Acta Mathematica Sinica, English Series 24 (2008) 1953-1964.
[56] C. Park, M.E. Gordji, Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. 51, 044102 (2010) (7 pages).
[57] C. Park, A. Najati, Generalized additive functional inequalities in Banach algebras, Interant. J. Nonlinear Anal. Appl. 1 (2010) 54-62.
[58] C. Park, Th.M. Rassias, Isomorphisms in unital C^{*}-algebras, Interant. J. Nonlinear Anal. Appl. 1 (2010) 1-10.
[59] W.-G. Park, J.-H. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal. 62 (4) (2005) 643-654.
[60] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.
[61] M. Amini, R. Saadati, Topics in fuzzy metric space, J. Fuzzy Math 4 (2003) 765-768.
[62] A. George, P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and System 64 (1994) 395-399.
[63] A. George, P. Veeramani, On some result of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997) 365-368.
[64] V. Gregori, S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004) 411-420.
[65] R. Saadati, J. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006) 331-344.
[66] J. Goguen, ℓ-fuzzy sets, J. Math. Anal. Appl 18 (1967) 145-174.
[67] G. Deschrijver, E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2003) 227-235.
[68] K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahres, Deutsch. Math. Verein 6 (1897) 83-88.
[69] S. Shakeri, R. Saadati, C. Park, Stability of the quadratic functional equation in Non-Archimedean ℓ-fuzzy normed spaces, Int. J. Nonlinear Anal. Appl, 1 (2) (2010) 1-12.
[70] T.-Z. Xu, J.M. Rassias, W.X. Xu, Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces, J. Math. Phys. 51 (2010), 19 pages
(Received 4 December 2010)
(Accepted 9 January 2011)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Corresponding author email: madjid.eshaghi@gmail.com (M.E. Gordji)
 Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.

