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1 Introduction

The stability problem of functional equations originated from a question of
Ulam [1] in 1940, concerning the stability of group homomorphisms. We are
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looking for situations when the homomorphisms are stable, i.e., if a mapping is
almost a homomorphism, then there exists a true homomorphism near it. The case
of approximately additive mappings was solved by Hyers [2] under the assumption
that G; and G2 are Banach spaces. In 1978, a generalized version of the theorem
of Hyers for approximately linear mappings was given by Rassias [3]. This new
concept is known as Hyers—Ulam—Rassias stability of functional equations (see
[4-22]).
Jun and Kim [7] introduced the following functional equation

fRe+y)+ fQRr—y) =2f(z+y) +2f(x —y) + 12f(z) (1.2)

and they established the general solution and the generalized Hyers—Ulam—Rassias
stability for the functional equation (1.2). The function f(z) = 2 satisfies the
functional equation (1.2), which is thus called a cubic functional equation. Every
solution of the cubic functional equation is said to be a cubic function. Jun and
Kim proved that a function f between real vector spaces X and Y is a solution
of (1.2) if and only if there exists a unique function C : X x X x X — Y such
that f(z) = C(z,z,z) for all x € X, and C is symmetric for each fixed one
variable and is additive for fixed two variables. For more detailed definitions of
such terminologies, we can refer to [17-58].

Rassias [8, 9] studied the stability of quartic functional equations. In the
following Park [59] studied the quartic functional equation

fl@+2y) + f(o = 2y) = 4(f(z +y) + f(z —y)) + 24/ (y) — 6/ (2). (1.3)

In fact they proved that a function f between real vector spaces X and Y is a
solution of (1.3) if and only if there exists a unique symmetric multi-additive
function @ : X x X x X x X — Y such that f(z) = Q(z,z,x,z) for all x € X. It
is easy to show that the function f(x) = 2* satisfies the functional equation (1.3),
which is called a quartic functional equation and every solution of the quartic
functional equation is said to be a quartic function.

The theory of fuzzy sets was introduced by Zadeh [60] in 1965. After the pio-
neering work of Zadeh, there has been a great effort to obtain fuzzy analogues of
classical theories. Among other fields, a progressive development is made in the
field of fuzzy topology [61-64]. Saadati and Park [65] introduced and studied the
concept of intuitionistic fuzzy normed spaces (see also [20]). The pioneering work
of Zadeh provided some influence to several mathematicians to study fuzzy ana-
logues of classical theories connected with functional equations in the framework
of mathematical analysis.

A triangular norm (shortly, t-norm) is a binary operation T : [0,1] x [0,1] —
[0, 1] which is commutative, associative, monotone and has 1 as the unit element. A
t-norm 7' can be extended (by associativity) in a unique way to an n-ary operation
taking, for all (x1,...,x,) € [0,1]", the value T'(x1, ..., z,,) defined by

TZQ:l:z:i =1, Tryx, =T (77’:_11:171,:1:") =T(x1, .., Tn).
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A t-norm T can also be extended to a countable operation taking, for any sequence
{zn}nen in [0, 1], the value

T2z, = lim T2 ;.
n—oo

Definition 1.1 ([66]). Let £ = (L,<r) be a complete lattice and let U be a
nonempty set called the universe. An l-fuzzy set in U is defined as a mapping
A :U — L. For each u in U, A(u) represents the degree (in L) to which u is an
element of U.

Consider the set L* and operation <y« defined by
L* = {(z1,22) : (21,22) € [0,1) and z1 + x5 < 1},

(21, 22) <+ (y1,92) &= 71 < Y1,72 > Y2
for all (x1,x2), (y1,y2) € L*. Then (L*,<r+) is a complete lattice (see [67]).

Definition 1.2. A triangular norm (t-norm) on L is a mapping T : L? — L
satisfying the following conditions:

(1) T(z,11) = x for all x € L; (boundary condition).
(2) T(z,y)=T(y,z) for all (z,y) € L*; (commutativity).
(3) T(z,T(y,2))=T(T(z,y),z) for all (z,y,2) € L3; (associativity).

(4) v <p a2’y <py = T(x,y) <p T(z',y) for all (z,2',y,y") € L*;
(monotonicity).

A t-norm T on / is said to be continuous if, for any =,y € ¢ and any sequences
{z,} and {y,} which converge to = and y, respectively,

lim T(xn,yn) = T(x,y).

A t-norm T can also be defined recursively as an (n + 1)-ary operation (n € N)
by T' =T and

Tn(xlv ad) $n+1) =T (Tn_l(xla ) In)a In+l)
for all n > 2 and z; € L.

Definition 1.3.

(1) A negator on ¢ is any decreasing mapping N : L — L satisfying N(0) = 11,
and N(lL) = OL.

(2) If N(N(z)) =« for all x € L, then N is called an involutive negator.

(3) The negator Ny on ([0,1],<) defined as Ny(xz) =1 —x for all x € [0,1] is
called the standard negator on ([0, 1], <).
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Definition 1.4. The triple (X, M,T) is said to be an L-fuzzy metric space if X is
an arbitrary (non-empty) set, T is a continuous t-norm on L and M is an £-fuzzy
set on X?x]0,+oo| satisfying the following conditions: for all x,y,z € X and
t,s €]0, +o0],

(1) M(z,y,
(2) M(z,y,

t) > 0r;
t)
(3) M(z,y,t) =M(y,x,t);
Y,
)

=1 for allt >0 if and only if = =1y;

(4) T( ( ) M(yazas)) <L M(I,Z,t—I—S);
(5) M(z,y,

In this case, M is called an ¢-fuzzy metric.

:]0, +o00[— L is continuous.

Definition 1.5. The triple (V, P,T) is said to be an {-fuzzy normed space if V is a
vector space, T is a continuous t-norm on L and P is an {-fuzzy set on V x]0, +00]
satisfying the following conditions: for all z,y € V and t, s €]0,4+o00],

(1) P(z,t) > 0p;

(2) P(x,t) =1g if and only if = =0;

(3) Plaz,t) = P(x, \al) for each o # 0;

(4) T(P(x,t), Py, s)) <p P(z +y,t +5);

(5) P(z,.):]0,+o00[— L is continuous.

(6) lim;_,o P(x,t) =05, and lim;_,o P(x,t) =1p.
In this case, P is called an ¢-fuzzy norm.

Definition 1.6.

(1) A sequence {xptnen in an l-fuzzy normed space (V, P,T) is called a Cauchy
sequence if, for each € € L\{0p} and t > 0, there exists ng € N such that,
for all n,m > ng,

P(xy — @, t) >1, N(e),
where N is a negator on £.

(2) A sequence {x, }nen 15 said to be convergent to x € V in the L-fuzzy normed
space (V, P,T), which is denoted by x,, — x if P(x, — x,t) — 1,4, whenever
n — +oo for all t > 0.

(8) An - fuzzy normed space (V, P,T) is said to be complete if and only if every
Cauchy sequence in V' is convergent.

Note that, if P is an ¢-fuzzy norm on V, then the following are satisfied:

(1) P(x,t) is nondecreasing with respect to ¢ for all z € V.
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(2) P(x—y,t)=P(y —z,t) for all z,y € V and ¢ €]0, +o0].
Let (V, P,T) be an ¢-fuzzy normed space. If we define
M(z,y,t) = P(xz — y,t)

for all z,y € V and t €]0, 40|, then M is an ¢-fuzzy metric on V, which is called
the (-fuzzy metric induced by the ¢-fuzzy norm P.

In 1897, Hensel [68] introduced a field with a valuation in which does not have
the Archimedean property.

Definition 1.7. Let K be a field. A non-Archimedean absolute value on K is a
function |.| : K — [0, 400[ such that, for any a,b € K,

(1) la] > 0 and equality holds if and only if a = 0,

(2) |ab] = |al|b],

(3) la+b| < max{|al,|b|} (the strict triangle inequality).

Note that |n| < 1 for each integer n. We always assume, in addition, that ||
is non-trivial, i.e., there exists an ag € K such that |ag| # 0, 1.

Definition 1.8. A non-Archimedean (-fuzzy normed space is a triple (V, P,T),
where V is a vector space, T is a continuous t-norm on L and P is an {-fuzzy set on
V' x]0, +o0[ satisfying the following conditions: for all x,y € V and t, s €]0, +o0],

(1) 0L <, P(x,t);

(2) P(x,t) =1g if and only if x = 0;

(8) P(az,t) = P(x, ﬁ) for all a # 0;

(4) T(P(x,t), P(y,s)) <r P(x +y,max{t, s});

(5) P(x,.):]0,00[— L is continuous;

(6) lim;_,o P(x,t) = 0r and lim;_» P(x,t) = 15.

Recently, Gordji and Savadkouhi [29] proved the stability of cubic and quartic

functional equations in non-Archimedean spaces. For more detailed definitions of
such terminologies, we can refer to [30-32].

In 2010, Shakeri, Saadati and Park [69] investigated the classical quadratic
functional equation

fle+y)+ flx—y) =2f(x) +2f(y)

and proved the generalized Hyers—Ulam stability in the context of non-Archimedean
[—fuzzy normed spaces. In the same year Xu, Rassias and Xu [70] investigated
as well the stability of a mixed type additive cubic functional equation in non—
Archimedean fuzzy normed spaces.

In the present paper we introduce the following functional equation

fle+2y) + fle=2y) =4(f(z +y) + f(z —y)) — 24f(y) — 6/ (x) + 3/ (2y)

and prove the generalized Hyers-Ulam-Rassias stability in non-Archimedean ¢-
fuzzy normed spaces.
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2 Main Results

In this section, we investigate the generalized Hyers—Ulam—Rassias stability of
the mixed type cubic and quartic functional equation

fle+2y) + f(@ = 2y) =4(f(z +y) + f(z —y)) — 24f(y) — 6f(x) + 3/ (2y).

Let ¥ be an (-fuzzy set on X x X x [0, 00) such that ¥(z,y,.) is nondecreasing,
t
U(cx,cx,t) > U (:v,;a ﬂ) , Vee X, ¢#0
c

and
tlim U(z,y,t) =1y, Vo,y € X, t > 0.

Theorem 2.1. Let K be a non-Archimedean field, X a vector space over K and
(Y, P, T) a non-Archimedean £-fuzzy Banach space over K. Suppose that f: X —
Y is an odd mapping satisfying

P(f (z42y)+f (z—2y)—4f (z+y)—4f (z—y)+24 (y)+6f (x)=3f (2y), 1) =1 ¥(z,y,1)

(2.1)
for all x,y € X and t > 0. If there exists an a € R and an integer k, k > 2 with
12F| < a and |2| # 0 such that

U2z, 27y, t) > U(z,y,at), Ve e X, t >0, (2.2)

. alt
lim 772, M =1y, Ve X, t>0,

ey AP
then there exists a unique cubic mapping C : X — 'Y such that
ot

P(f(‘r) - C(‘T)v t) > TioiOM(xv W

), Yz e X, t>0, (2.3)

where

M (z,t) == T(¥(0,z,3t),¥(0,2x,3t), ..., ¥(0,28 1z, 3t))
forallz e X, t>0.
Proof. First, we show, by induction on j, that, forallz € X, ¢ >0 and j > 1,
P(f(27x) — & f(x),t) >1 Mj(z,t) := T(¥(0,,3t),...,0(0,2/ 1x,3t)). (2.4)
Putting = 0 in (2.1), we obtain
P(3f(2y) — 241 (y),t) 2L ¥(0,y,1), (2.5)
for all y € X and t > 0. If we replace y in (2.5) by =, we get

P(f(sz) - 8f(117),t) 2L \IJ(va73t)a
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for all z € X and ¢ > 0. This proves (2.4) for j = 1. Let (2.4) holds for some j > 1.
Putting z = 0 and y = 272 in (2.1), we get
P(f(27 ) — 8f(27x),t) >, ©(0,2%x,3t),

for all z € X and ¢ > 0. Since |2| < 1, it follows that

P(f(2"2) — 87 f(2),1)

> T(P(f(2 ) = 8f(2),1), P(8F(2'w) = 87 f(2),1))

t

=1 (P ) - 80, P (1@0) - 10 ) )

8
21 T(P(f(2"2) = 8f(2a),t), P(f(¥z) =8/ f(w), t>|) |
=T(¥(0,2x,3t), Mj(z,t))
= Mja(z,1),
for all x € X and ¢ > 0. Thus (2.4) holds for all j > 1. In particular, we have
P(f(2"z) = 8" f(2),t) >0 M(z,1), (2.6)

forall z € X and ¢t > 0. Replacing z by 2~ *"+k)z in (2.6) and using the inequality
(2.2), we obtain

P (1 () - () )22 () 20

for all x € X, ¢t > 0 and n > 0. Thus we have

(e () - s (o) ) 220 (- )

anJrl
ZL M <:E, t>
|(2%)"|

for all z € X, t > 0 and n > 0. Hence it follows that

(s () -0 ()

>, TP P <(23k)jf ((lei)j) - (@Y ((2’“9)6”1) ’t)

adtl
>, TP M <x —,t)
! (27)7]
forallz € X, ¢t > 0and n > 0. Since lim,,_ Tj?ﬁnM(x, ‘23‘2]—:;‘1%) =1yforallz € X

and t > 0, {(23k)”f(ﬁ)}n€N is a Cauchy sequence in the non-Archimedean

(-fuzzy Banach space (Y, P,T). Hence we can define a mapping C : X — Y such
that

lim P ((23k)"f ((;)n) - C(:c),t) ~1, (2.7)

n—oo
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for all x € X and ¢ > 0. Next, for alln > 1, x € X and ¢t > 0, we have

P (f(w) — (2% f ( (zf)n) n:)
- @ 1 (i) -2 ()| ’t>

1 ottt
215 ()

and so

P(f(z) = C(x),1)

> T (P (f(w) — (2t ((;)n) i) P (<23’“>"f ((2?5)") @, t)>

>, T <Ti”_01M <a: %t) P ((23k)”f ((2f)n) — O(x), t)) . (2.8)

Taking the limit as n — oo in (2.8), we obtain

P ()~ Ca).0) 22 T2 (. 5 )

which proves (2.3). Replacing x,y by 27%"z,27%"¢ in (2.1) and (2.2), we get

P07 (St + s (S ) - atstys () - aers (5e2)
+ 248" (557 ) + 689" f (557 ) — 368" (;%) ,t>
> v (2_’“":10, o kny, ﬁ)

for all z,y € X and t > 0. Since lim, o ¥(z,y, %) = 1y, we infer that C is

a cubic mapping. For the uniqueness of C, let C' : X — Y be another cubic
mapping such that

, ai-‘,—lt
P (C (z) — f('r)vt) =1 TiZoM (I, W)
for all x € X and ¢t > 0. Then we have, for all x,y € X and t > 0,

P(C(z) - C'(2).1)

ST (P (C(:v) _ (2% g ((2:5)”) ,t) P ((23k)"f ((2Z)n> — Cl(:c)nf)) .
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Therefore, from (2.7), we conclude that C' = C". This completes the proof. O

Theorem 2.2. Let K be a non-Archimedean field, X a vector space over K and
(Y, P,T) a non-Archimedean £-fuzzy Banach space over K. Suppose that f : X —
Y is an even mapping satisfying

P(f(z+2y)+f(x—2y)—4f (a+y)—4f (x—y)+24f (y)+6f (2) -3 (2y),t) =L ¥ (z,y,1)

(2.9)
for all xz,y € X and t > 0. If there exist an a € R and an integer k, k > 2 with
|2F| < o and |2| # O such that

W27 kz, 27Fy t) > U(z,y,at), Yo e X, t >0, (2.10)

alt
. %) .
nh_I,I;OTJ':"N (3:, —|2|kj> =1y, VzE X, t>0,
then there exists a unique quartic mapping @ : X —'Y such that

P(f(z) — Q(z),t) > TX N <33 %ﬁ) Vo eX, t>0, (2.11)

where
N(z,t) == T(¥(0,z,t), ¥(0,2x,1),..., ¥(0,2" 2, 1))
forallz e X, t>0.
Proof. First, we show, by induction on j, that, for all z € X, ¢ > 0 and j > 1,
P(f(27x) — 167 f(x),t) >1 Nj(z,t) :=T(¥(0,2,t), ..., ¥(0,27 2, 1)). (2.12)

Putting z = 0 in (2.9), we obtain

P(f(2y) =161 (), 1) > ¥(0,y,1), (2.13)
for all y € X and t > 0. If we replace y in (2.13) by z, we get

P(f(22) — 16f(2),1) =1 W(0,2,1),

for all z € X and ¢ > 0. This proves (2.12) for j = 1. Let (2.12) holds for some
j > 1. Putting = 0 and y = 272 in (2.9), we get

P(f(27"x) = 16f(272),t) >1 U(0,2x,1),
for all z € X and ¢ > 0. Since |2| < 1, it follows that
P(f(27* ) =167 f(2), 1)
>1 T(P(f(27" ') = 16f(27x),t), P(16£(27x) — 16" f(x), 1))
=T (P(f(2j+1:c) —16f(2/x),t), P (f(2jx) — 167 f (z), ﬁ))
> T(P(f(27"a) = 16f(27x), 1), P(f(2'z) — 167 f(x), 1))
=T(¥(0,27x,t), Nj(z,1))

= j+1(Ia t)v
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for all z € X and ¢t > 0. Thus (2.12) holds for all j > 1. In particular, we have
P(f(2*z) — 16" f(2),t) 2L N(z,1), (2.14)

forall z € X and t > 0. Replacing z by 2= 7% 2 in (2.14) and using the inequality
(2.10), we obtain

P (5 () 0 () ) 2 ()22 ¥

forall x € X, ¢t > 0 and n > 0. Thus we have

e e (i) - s () ) 208 (o )

an-i—l
ZL N (w, t)
|(25)"]

for all x € X, t > 0 and n > 0. Hence it follows that

(o) -worr )
> TP <(24k)jf ((2%3‘) - @Ry ((2’;)6”1) ’t>

J+1
>, THPIN (a:, x t)

Y (2%)7]
forallz € X, t > 0 and n > 0. Since lim,, TJ‘-ﬁnN(:zz, ‘E’;—%t) =1,forallz e X
and t > 0, {(2**)" f( &+ ) }nen is a Cauchy sequence in the non-Archimedean

(2F)m
¢-fuzzy Banach space (Y, P,T). Hence we can define a mapping @ : X — Y such
that

Tim P ((24k)”f ((;)n) - Q(:z:),t) =1, (2.15)

for all x € X and ¢ > 0. Next, for alln > 1, x € X and ¢t > 0, we have
P (f(w) - 2%y ( (zf)n) n:)
- @ s (i) -2 ()| ’t>

1 ottt
.
2115 (o )
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and so

P(f(z) — Q(z),1)

>, T (P (f(:v) — (@2 f <(2f>n> vf> P ((24k)nf ((;)n) - Q(x)’t»

>, T (Tin_olN (w %t) P ((24k)"f ((;)n) — Q(x), t)) . (2.16)

Taking the limit as n — oo in (2.16), we obtain

P )~ Q) ) 20 TN (7. L)

which proves (2.11). As T is continuous, from a well known result in ¢-fuzzy (prob-
abilistic) normed space, replacing ,y by 27%"x, 27*"y in (2.9) and (2.10), we get

P (e (P52 sty (S5 ) —anehys (S - aaetys (SY)
+24(16%)" f (2%) +6(16")" f (2%) —3(16%)"f (22%) ,t>
>0 (2knx,2kny, @)

for all z,y € X and t > 0. Since lim, o ¥ (z,y, %) = 1y, we infer that @ is

a quartic mapping. For the uniqueness of @, let Ql : X — Y be another quartic
mapping such that

, ai+1t
PQ (z) — f(z),t) 2L T2y N (17, W)

for all x € X and ¢ > 0. Then we have, for all x,y € X and t > 0,

’

PQ(z) - Q (z),1)

con (o () ) (2 ) -0)

Therefore, from (2.15), we conclude that @ = Q'. This completes the proof. O

Theorem 2.3. Let K be a non-Archimedean field, X a vector space over K and
(Y, P,T) a non-Archimedean £-fuzzy Banach space over K. Suppose that f : X —
Y is a mapping satisfying

P(f(z+2y)+f(z—2y)—4f(v+y)—4f(z—y)+24f (y)+6 f () =3[ (2y), 1) >L \I’Ew ya)t)
2.17
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for all xz,y € X and t > 0. If there exist an a € R and an integer k, k > 2 with
12%| < a and |2| # 0 such that

W2 kg, 27%y t) > U(x,y,at), Ve e X, t >0, (2.18)

. . 207t 20t B
i 1 (1 (30 (o ) 1 (75 ))) =

. oo 209t 207t B
i 73 (1 ( (5557 ) (35 )) ) =

then there exist a cubic mapping C : X — Y and a quartic mapping Q : X — Y
such that

PU() ~ O - Q)0 2.7 (125 (7 (31 (o 2|‘“2—,f|t> (- 2|‘“2—,f|t>)> |

20411t 20411t
T (T |N — | N| -2, ————
< ( <w 2] ) (”” 2] ))))

(2.19)

and

where
M(z,t) :=T(¥(0,x,3t), (0, 2z, 3t), ..., ¥(0, 2’“713:, 3t)),

N(z,t) := T(¥(0,z,t),¥(0,2x,1),... U(0,2" 1z, 1)),
forallz e X, t>0.
Proof. Let fo(z) = 3[f(z) — f(—=)] for all z € X. Then fo(0) = 0, fo(—x) =
—fo(x), and
P(fo(z +2y) + fo(z — 2y) — 4fo(z +y) — 4fo(z —y) + 24fo(y) + 6.fo(2) — 3fo(2y),1)
> T(P((1/2)[f(z+2y) + f(z —2y) —4f(z +y) —4f(x —y) +24f(y) + 6f(z)
=3f(2y),t), P((=1/2)[f(mz = 2y) + f(—x +2y) —4f(-z —y) —4f(—z +y)
+24f(=y) + 6f(—z) — 3f(—2y)], 1))
zp T(¥(z,y,2t), ¥(—z, —y,2t))

for all z,y € X and ¢ > 0. By Theorem 2.1, it follows that there exists a unique
cubic function C : X — Y satisfying

Pt~ C(a)ot) 20 5 (7 (1 (= 2|a2_+|f) (o, 2{“2_7))) (2.20)

for all z,y € X and t > 0. Let f.(z) = $[f(2) + f(—2)] for all z € X. Then

fe(0) =0, fo(—2) = fe(z), and

P(fe(z +2y) + fe(w = 2y) — 4fe(z +y) — 4fe(z —y) + 24fe(y) + 6fc(x) — 3fe(2y),1)

> T(P((1/2)[f(z +2y) + f(z — 2y) —4f(z +y) —4f(x —y) + 24f(y) + 6f(2)
=3f2y)), 1), P(1/2)[f (=2 = 2y) + f(—2 +2y) —4f(—z —y) —4f (2 +y)
+24f(=y) +6f(—x) — 3f(=2y)].1))

2L T(¥(z,y,2t), ¥ (-, —y,2t))
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for all z,y € X and ¢t > 0. By Theorem 2.2, it follows that there exists a unique
quartic function Q : X — Y satisfying

P(fe(z) — Q(x),t) > T;X, (T <N <x, 2|o;—k+|jt) N <—:z:, 2|o;—k+|jt)>> (2.21)

for all z,y € X and ¢ > 0. Hence (2.19) follows from (2.20) and (2.21). O
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