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Abstract : Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say that a
graph G satisfies a term equation s ≈ t if the corresponding graph algebra A(G)
satisfies s ≈ t. A class of graph algebras V is called a graph variety if V = ModgΣ

where Σ is a subset of W(2)(X)×W(2)(X). A graph variety V ′ = ModgΣ
′

is called

(x(yz))z with loop graph variety if Σ
′

is a set of (x(yz))z with loop term equations.
A term equation s ≈ t is called an identity in a graph variety V if A(G) satisfies
s ≈ t for all G ∈ V . An identity s ≈ t of a variety V is called a hyperidentity of a
graph algebra A(G), G ∈ V whenever the operation symbols occuring in s and t
are replaced by any term operations of A(G) of the appropriate arity, the resulting
identities hold in A(G). An identity s ≈ t of a variety V is called a hyperidentity
of V if it is a hyperidentity of A(G) for all G ∈ V .

In this paper we characterize all hyperidentities of each (x(yz))z with loop
graph variety. For identities, varieties and other basic concepts of universal algebra
see e.g. [1].
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1 Introduction

An identity s ≈ t of terms s, t of any type τ is called a hyperidentity of an
algebra A if whenever the operation symbols occurring in s and t are replaced
by any term operations of A of the appropriate arity, the resulting identity holds
in A. Hyperidentities can be defined more precisely by using the concept of a
hypersubstitution, which was introduced by Denecke, Lau, Pöschel and Schweigert
in [2].

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I, and operation symbols (fi)i∈I ,
where fi is ni − ary. Let Wτ (X) be the set of all terms of type τ over some fixed
alphabet X , and let Alg(τ) be the class of all algebras of type τ . Then, a mapping

σ : {fi|i ∈ I} −→ Wτ (X)

which assigns to every ni − ary operation symbol fi an ni − ary term will be
called a hypersubstitution of type τ (for short, a hypersubstitution). We denote
the extension of the hypersubstitution σ by a mapping

σ̂ : Wτ (X) −→ Wτ (X).

The term σ̂[t] is defined inductively by

(i) σ̂[x] = x for any variable x in the alphabet X , and

(ii) σ̂[fi(t1, ..., tni
)] = σ(fi)

Wτ (X)(σ̂[t1], ..., σ̂[tni
]).

Here σ(fi)
Wτ (X) on the right hand side of (ii) is the operation induced by σ(fi)

on the term algebra with the universe Wτ (X).
Graph algebras were invented by Shallon in [3], to obtain examples of infinitely

based on finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V and the edge set E ⊆ V × V . Define the graph
algebra A(G) corresponding to G with the underlying set V ∪ {∞}, where ∞
is a symbol outside V , and with two fundamental operations, namely a nullary
operation pointing to ∞ and a binary one denoted by juxtaposition, i.e. for u, v ∈
V ∪ {∞}

uv =

{

u, if (u, v) ∈ E,
∞, otherwise.

Pöschel and Wessel investigated graph varieties for finite undirected graphs in
order to get graph theoretic results (structure theorems) from universal algebra
via graph algebras [4]. These investigations were extended to arbitrary (finite)
directed graphs where the authors ask for a graph theoretic characterization of
graph varieties, i.e., of classes of graphs which can be defined by identities for
their corresponding graph algebras [5]. The answer is a theorem of Birkhoff-
type, which uses graph theoretic closure operations. A class of finite directed
graphs is equational (i.e., a graph variety) if and only if it is closed with respect to
finite restricted pointed subproducts and isomorphic copies.

Poomsa-ard et al. studied hyperidentities in the class of graph algebras which
satisfy various term equations [6, 7, 8, 9]. For (x(yz))z with loop term equations,
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Anantpinitwatna and Poomsa-ard studied the properties of graph algebras in each
(x(yz))z with loop graph variety [10]. Further, they characterized identities in
each (x(yz))z with loop graph variety [11].

In this paper we characterized all hyperidentities in each (x(yz))z with loop
graph variety.

2 Terms, identities and graph varieties

Dealing with terms for graph algebras, the underlying formal language has to
contain a binary operation symbol (juxtaposition) and a symbol for the constant
∞ (denoted by ∞ too).

Definition 2.1. The set W(2)(X) of all terms over the alphabet

X = {x1, x2, x3, ...}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;

(ii) if t1 and t2 are terms, then t1t2 is a term;

(iii) W(2)(X) is the set of all terms which can be obtained from (i) and (ii) in
finitely many steps.

Terms built up from the two-element set X2 = {x1, x2} of variables are thus binary
terms. We denote the set of all binary terms by W(2)(X2). The leftmost variable
of a term t is denoted by L(t), the rightmost variable of a term t is denoted by
R(t). A term in which the symbol ∞ occurs is called a trivial term.

Definition 2.2. For each non-trivial term t of type τ = (2, 0), one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of all
variables occurring in t and the edge set E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}

where t = t1t2 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the rooted
graph corresponding to t. Formally, we assign the empty graph φ to every trivial
term t.

Definition 2.3. A non-trivial term t of type τ = (2, 0) is called (x(yz))z with loop
term if and only if G(t) is a graph with V (t) = {x, y, z} and E(t) = E ∪E′, where
E = {(x, y), (x, z), (y, z)}, E′ ⊆ {(x, x), (y, y), (z, z)}, E′ 6= φ. A term equation
s ≈ t is called (x(yz)))z with loop term equation if s and t are (x(yz))z with loop
terms.
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Definition 2.4. We say that a graph G = (V, E) satisfies a term equation s ≈ t if
the corresponding graph algebra A(G) satisfies s ≈ t (i.e., we have s = t for every
assignment V (s)∪V (t) → V ∪{∞}), and in this case, we write G |= s ≈ t. Given
a class G of graphs and a set Σ of term equations (i.e., Σ ⊆ W(2)(X) × W(2)(X))
we introduce the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ,

G |= s ≈ t if G |= s ≈ t for all G ∈ G,

G |= Σ if G |= Σ for all G ∈ G,

IdG = {s ≈ t | s, t ∈ W(2)(X), G |= s ≈ t},

ModgΣ = {G | G is a graph and G |= Σ},

Vg(G) = ModgIdG.
Vg(G) is called the graph variety generated by G and G is called graph variety if

Vg(G) = G. G is called equational if there exists a set Σ
′

of term equations such

that G = ModgΣ
′

. Obviously Vg(G) = G if and only if G is an equational class.

3 (x(yz))z with loop graph varieties and identities

All (x(yz))z with loop graph varieties were characterized in [10] which there
are only ten graph varieties. Let A = {K0,K1,K2, ...,K9} is the set of all (x(yz))z
with loop graph varieties.

In [11], Anantpinitwatna and Poomsa-ard characterized all identities in each
(x(yz))z with loop graph variety. The common properties of all identities s ≈ t
in each (x(yz))z with loop graph variety are (i) L(s) = L(t), (ii) V (s) = V (t)
and (iii) for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(s) if and only if (x, y) ∈ E(t).
Further, we see that if s′ ≈ t′ is a trivial term equation (s′, t′ are both trivial or
G(s′) = G(t′), and L(s′) = L(t′)), then s′ ≈ t′ ∈ IdK for every (x(yz))z with loop
graph variety K. Hence, we consider the case that s ≈ t is a non-trivial equation
with G(s) 6= G(t), V (s) = V (t) and L(s) = L(t). For the others properties, we
will quote only which we need to be refered. At first, we give some notations, for
any non-trivial term t and for any x ∈ V (t), let

N t
i (x) = {x′ ∈ V (t) | x′ is an in-neighbor of x in G(t)},

N t
o(x) = {x′ ∈ V (t) | x′ is an out-neighbor of x in G(t)},

A0
x(t) = {x}, A1

x(t) = {x′ ∈ V (t) |x′ is an out-neighbor of x or x′ is an
in-neighbor of x which there exists z′ such that (x, z′), (x′, z′) ∈ E(t)},

A2
x(t) =

⋃

y∈A1
x
(t)

A1
y(t),· · · ,An

x(t) =
⋃

y∈A
n−1
x (t)

A1
y(t), A∗

x(t) =
∞
⋃

i=0

Ai
x(t),

C0
x(t) = {x}, C1

x(t) = {x′ ∈ V (t) |x′ is both out and in-neighbor of x or x′ is
an out-neighbor of x which there exists z such that (z, x), (z, x′) ∈ E(t)},

C2
x(t) =

⋃

y∈C1
x
(t)

C1
y (t),· · · ,Cn

x (t) =
⋃

y∈C
n−1
x (t)

C1
y(t), C∗

x(t) =
∞
⋃

i=0

Ci
x(t).

Then, all identities in some (x(yz))z with loop graph varieties are characterized
by the following table:
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Table 1. The properties of identities in some (x(yz))z with loop graph varieties.
Variety Properties of s and t.
K1 There exists y ∈ V (s) such that (y, y) ∈ E(s)

iff there exists z ∈ V (t) such that (z, z) ∈ E(t).
K2 For any x ∈ V (s), there exists, y ∈ A∗

x(s) such that (y, y)
∈ E(s) iff there exists z ∈ A∗

x(t) such that (z, z) ∈ E(t).
K6 For any x ∈ V (s), there exists, y ∈ C∗

x(s) such that (y, y)
∈ E(s) iff there exists z ∈ C∗

x(t) such that (z, z) ∈ E(t).

4 Hyperidentities in (x(yz))z with loop graph

varieties

Let K be a graph variety. Now, we want to formulate precise the concept of a
graph hypersubstitution for graph algebras.

Definition 4.1. A mapping σ : {f,∞} → W(2)(X2), where X2 = {x1, x2} and f
is the operation symbol corresponding to the binary operation of a graph algebra
is called a graph hypersubstitution if σ(∞) = ∞ and σ(f) = s ∈ W(2)(X2). The
graph hypersubstitution with σ(f) = s is denoted by σs.

Definition 4.2. An identity s ≈ t is a K graph hyperidentity iff for all graph
hypersubstitutions σ, the equations σ̂[s] ≈ σ̂[t] are identities in K.

If we want to check that an identity s ≈ t is a hyperidentity in K we can
restrict our consideration to a (small) subset of HypG - the set of all graph hy-
persubstitutions. In [12], the following relation between hypersubstitutions was
defined:

Definition 4.3. Two graph hypersubstitutions σ1, σ2 are called K-equivalent iff
σ1(f) ≈ σ2(f) is an identity in K. In this case we write σ1 ∼K σ2.

The following lemma was proven in [13].

Lemma 4.4. If σ̂1[s] ≈ σ̂1[t] ∈ IdK and σ1 ∼K σ2, then σ̂2[s] ≈ σ̂2[t] ∈ IdK.

Therefore, it is enough to consider the quotient set HypG/ ∼K.

In [14], it was shown that any non-trivial term t over the class of graph algebras
has a uniquely determined normal form term NF (t) and there is an algorithm to
construct the normal form term to a given term t. Without difficulties one shows
G(NF (t)) = G(t), L(NF (t)) = L(t).

The following definition was given in [15].

Definition 4.5. The graph hypersubstitution σNF (t), is called normal form graph
hypersubstitution. Here NF (t) is the normal form of the binary term t.
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Since for any binary term t the rooted graphs of t and NF (t) are the same,
we have t ≈ NF (t) ∈ IdK. Then for any graph hypersubstitution σt with σt(f) =
t ∈ W(2)(X2), one obtains σt ∼K σNF (t).

In [15], all rooted graphs with at most two vertices were considered. Then,
we formed the corresponding binary terms and used the algorithm to construct
normal form terms. The result is given as the following table:

Table 2. Normal form terms of binary terms.

normal form term graph hypers normal form term graph hypers

x1x2 σ0 x1 σ1

x2 σ2 x1x1 σ3

x2x2 σ4 x2x1 σ5

(x1x1)x2 σ6 (x2x1)x2 σ7

x1(x2x2) σ8 x2(x1x1) σ9

(x1x1)(x2x2) σ10 (x2(x1x1))x2 σ11

x1(x2x1) σ12 x2(x1x2) σ13

(x1x1)(x2x1) σ14 (x2(x1x2))x2 σ15

x1((x2x1)x2) σ16 x2((x1x1)x2) σ17

(x1x1)((x2x1)x2) σ18 (x2((x1x1)x2))x2 σ19

Let MG be the set of all normal form graph hypersubstitutions. Then we get,

MG = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.

We defined the product of two normal form graph hypersubstitutions in MG

as follows.

Definition 4.6. The product σ1N ◦N σ2N of two normal form graph hypersubsti-
tutions is defined by (σ1N ◦N σ2N )(f) = NF (σ̂1N [σ2N (f)]).

The concept of a proper hypersubstitution of a class of algebras was introduced
in [13].

Definition 4.7. A hypersubstitution σ is called proper with respect to a class K
of algebras if σ̂[s] ≈ σ̂[t] ∈ IdK for all s ≈ t ∈ IdK.

A graph hypersubstitution with the property that σ(f) contains both variables
x1 and x2 is called regular. It is easy to check that the set of all regular graph
hypersubstitutions Mreg forms a groupoid.

The following lemma was proved in [15].

Lemma 4.8. For each non-trivial term s, (s 6= x ∈ X) and for all u, v ∈ X, we
have

E(σ̂6[s]) = E(s) ∪ {(u, u)|(u, v) ∈ E(s)},
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E(σ̂8[s]) = E(s) ∪ {(v, v)|(u, v) ∈ E(s)},

and
E(σ̂12[s]) = E(s) ∪ {(v, u)|(u, v) ∈ E(s)}.

In the similar way we prove that,

E(σ̂10[s]) = E(s) ∪ {(u, u), (v, v)|(u, v) ∈ E(s)}.

Let PMK is the set of all proper graph hypersubstitutions with respect to the class
K. In [2], it proved for the class of all graph algebras G that

PMG = {σ0, σ6, σ8, σ10, σ12, σ14, σ16, σ18}.

We want to find all proper graph hypersubstitutions with respect to each (x(yz))z
with loop graph variety. Before to do this we have some remark.

Remark 4.9.

(i) σ0 is a proper graph hypersubstitution with respect to every (x(yz))z with
loop graph variety.

(ii) For any (x(yz))z with loop graph variety K, suppose s ≈ t ∈ IdK and is a
trivial equation, then for any σ ∈ {σ6, σ8, σ10, σ12}, we have σ̂[s] ≈ σ̂[t] ∈
IdK. Further, if s and t are non-trivial terms, L(s) = L(t), V (s) = V (t),
then we have L(σ̂[s]) = L(s) = L(t) = L(σ̂[t]). Since σ is a regular, we get
V (σ̂[s]) = V (s) = V (t) = V (σ̂[t]).

(iii) If s and t are trivial terms with different leftmost and different rightmost,
then σ̂1[s] ≈ σ̂1[t] /∈ IdK, σ̂3[s] ≈ σ̂3[t] /∈ IdK, σ̂2[s] ≈ σ̂2[t] /∈ IdK and
σ̂4[s] ≈ σ̂4[t] /∈ IdK. If s = x1(x2x1), t = x1(x2(x1x2)), then G(s) = G(t)
and L(s) = L(t). Hence s ≈ t ∈ IdK. For any σ which L(σ(f)) = x2,
we see that L(σ̂[s]) = x1 and L(σ̂[t]) = x2. Thus, σ̂[s] ≈ σ̂[t] /∈ IdK.
Therefore, σ1, σ2, σ3, σ4 and σ which L(σ(f)) = x2 are not proper graph
hypersubstitutions with respect to K.

Now, we use Table 1, to consider the relation between graph hypersubstitutions
for each Ki, i = 1, 2, ..., 9 and find MKi

, i = 1, 2, ..., 9. Then, use Lemma 4.2 and
Remark 4.1 to find PMKi

, i = 1, 2, ..., 9.
For K1, we have the following relations:

(i) σ6∼K1
σ8∼K1

σ10, (ii) σ7∼K1
σ9∼K1

σ11,

(iii) σ14∼K1
σ16∼K1

σ18, (iv) σ15∼K1
σ17∼K1

σ19.

Then, we get,

MK1
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ12, σ13, σ14, σ15}.

Theorem 4.10. PMK1
= {σ0, σ6, σ12, σ14}.
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Proof. Assume that s ≈ t is a non-trivial equation and s ≈ t ∈ IdK1. For σ6:
Since s ≈ t is a non-trivial equation and s ≈ t ∈ IdK1, by Lemma 4.2, we have
(L(s), L(s)) ∈ E(σ̂6[s]), (L(t), L(t)) ∈ E(σ̂6[t]) and for any x, y ∈ V (s), x 6= y,
(x, y) ∈ E(σ̂6[s]) if and only if (x, y) ∈ E(σ̂6[t]). Then by Table 1 and Remark 4.1,
we get σ̂6[s] ≈ σ̂6[t] ∈ IdK1.

For σ12: Suppose that there exists y ∈ V (s) such that (y, y) ∈ E(σ̂12[s]).
By Lemma 4.2, we have (y, y) ∈ E(s). Since s ≈ t ∈ IdK1, we get there exists
z ∈ V (s) such that (z, z) ∈ E(t). Hence, (z, z) ∈ E(σ̂12[t]). Since s ≈ t ∈ IdK1,
we have for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(s) if and only if (x, y) ∈ E(t). By
Lemma 4.2, we get for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(σ̂12[s]) if and only if
(x, y) ∈ E(σ̂12[t]). Then by Table 1 and Remark 4.1, we get σ̂12[s] ≈ σ̂12[t] ∈ IdK1.

Because of σ12 ◦N σ6 = σ14. We have σ̂14[s] ≈ σ̂14[t] ∈ IdK1.

For K2, we have the following relations:

(i) σ8∼K2
σ10, (ii) σ9∼K2

σ11, (iii) σ14∼K2
σ16∼K2

σ18, (iv) σ15∼K2
σ17∼K2

σ19.

Then we get,

MK2
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ12, σ13, σ14, σ15}.

For K3, we have the following relations:

(i) σ8∼K3
σ10, (ii) σ9∼K3

σ11, (iii) σ14∼K3
σ16∼K3

σ18, (iv) σ15∼K3
σ17∼K3

σ19.

Then we get,

MK3
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ12, σ13, σ14, σ15}.

For K4, we have the following relations:

(i) σ6∼K4
σ10, (ii) σ7∼K4

σ11, (iii) σ14∼K4
σ16∼K4

σ18, (iv) σ15∼K4
σ17∼K4

σ19.

Then we get,

MK4
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ12, σ13, σ14, σ15}.

For K5, we have the following relations:

(i) σ6∼K5
σ10, (ii) σ7∼K5

σ11, (iii) σ14∼K5
σ16∼K5

σ18, (iv) σ15∼K5
σ17∼K5

σ19.

Then we get,

MK5
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ12, σ13, σ14, σ15}.

Theorem 4.11.

(i) PMK2
= {σ0, σ6, σ8, σ12, σ14}. (ii) PMK3

= {σ0, σ6, σ8, σ12, σ14}.
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(iii) PMK4
= {σ0, σ6, σ8, σ12, σ14}. (iv) PMK5

= {σ0, σ6, σ8, σ12, σ14}.

Proof. Assume that s ≈ t is a non-trivial equation and s ≈ t ∈ IdK2. Since
s ≈ t ∈ IdK2, by Lemma 4.2, we have for any x ∈ V (s),

A∗
x(σ̂8[s]) = A∗

x(σ̂6[s]) = A∗
x(s) = A∗

x(t) = A∗
x(σ̂6[t]) = A∗

x(σ̂8[t]), A∗
x(σ̂12[s]) =

V (s) = V (t) = A∗
x(σ̂12[t]).

For σ6: For any x ∈ V (s), suppose that there exists y ∈ A∗
x(σ̂6[s]) such that

(y, y) ∈ E(σ̂6[s]). If (y, y) ∈ E(s), then y ∈ A∗
x(s) such that (y, y) ∈ E(s).

We get there exists z ∈ A∗
x(t) such that (z, z) ∈ E(t). Hence, z ∈ A∗

x(σ̂6[t])
such that (z, z) ∈ E(σ̂6[t]). If (y, y) /∈ E(s), then there exists y′ ∈ V (s) such
that (y, y′) ∈ E(s). Hence, (y, y′), (y, y) ∈ E(σ̂6[t]). Further, we have, for any
x, y ∈ V (s), x 6= y, (x, y) ∈ E(σ̂6[s]) if and only if (x, y) ∈ E(σ̂6[t]). Therefore,
σ̂6[s] ≈ σ̂6[t] ∈ IdK2.

For σ8: By Lemma 4.2, we have (x, x) ∈ E(σ̂8[s]) and (x, x) ∈ E(σ̂8[t]) for
all x ∈ V (s), x 6= L(s). For L(s), we get y ∈ V (s), y 6= L(s), y ∈ A∗

L(s)(σ̂8[s])

and y ∈ A∗
L(t)(σ̂8[t]) such that (y, y) ∈ E(σ̂8[s]) and (y, y) ∈ E(σ̂8[t]). Further, we

have for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(σ̂8[s]) if and only if (x, y) ∈ E(σ̂8[t]).
Therefore, σ̂8[s] ≈ σ̂8[t] ∈ IdK2.

For σ12: By Lemma 4.2 and s ≈ t ∈ IdK2, we have for any x, y ∈ V (s), x 6= y,
(x, y) ∈ E(σ̂12[s]) if and only if (x, y) ∈ E(σ̂12[t]). For any x ∈ V (s) suppose
that there exists z ∈ A∗

x(σ̂12[s]) such that (z, z) ∈ E(σ̂12[s]). If (z, z) ∈ E(σ̂12[t]),
then z ∈ A∗

x(σ̂12[t]) such that (z, z) ∈ E(σ̂12[t]). Suppose that (z, z) /∈ E(σ̂12[t]).
Since (z, z) ∈ E(s) and s ≈ t ∈ IdK2. We have there exists z′ ∈ A∗

z(t) such
that (z′, z′) ∈ E(t). So z′ ∈ A∗

x(σ̂12[t]) such that (z′, z′) ∈ E(σ̂12[t]). Therefore,
σ̂12[s] ≈ σ̂12[t] ∈ IdK2.

Because of σ12 ◦N σ6 = σ14. We have σ̂14[s] ≈ σ̂14[t] ∈ IdK2. Then by Remark
4.1, we get PMK2

= {σ0, σ6, σ8, σ12, σ14}.
The proof of (ii) − (iv) are similar to the proof of (i).

For K6, we have the following relations:

(i) σ14∼K6
σ16∼K6

σ18, (ii) σ15∼K6
σ17∼K6

σ19.

Then, we get

MK6
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15}.

For K7, we have the following relations:

(i) σ14∼K7
σ16∼K7

σ18, (ii) σ15∼K7
σ17∼K7

σ19.

Then, we get

MK7
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15}.

For K8, we have the following relations:

(i) σ14∼K8
σ16∼K8

σ18, (ii) σ15∼K8
σ17∼K8

σ19.
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Then, we get

MK8
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15}.

For K9, we have the following relations:

(i) σ14∼K9
σ16∼K9

σ18, (ii) σ15∼K9
σ17∼K9

σ19.

Then, we get

MK9
= {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15}.

Theorem 4.12.

(i) PMK6
= {σ0, σ6, σ8, σ10, σ12, σ14}. (ii) PMK7

= {σ0, σ6, σ8, σ10, σ12, σ14}.

(iii) PMK8
= {σ0, σ6, σ8, σ10, σ12, σ14}. (iv) PMK9

= {σ0, σ6, σ8, σ10, σ12, σ14}.

Proof. Assume that s ≈ t is a non-trivial equation and s ≈ t ∈ IdK6. Since
s ≈ t ∈ IdK6, we have for any x ∈ V (s),

C∗
x(σ̂10[s]) = C∗

x(σ̂8[s]) = C∗
x(σ̂6[s]) = C∗

x(s) = C∗
x(t) = C∗

x(σ̂6[t]) = C∗
x(σ̂8[t]) =

C∗
x(σ̂10[t]), C∗

x(σ̂12[s]) = V (s) = V (t) = C∗
x(σ̂12[t]).

For σ6: Suppose that there exists y ∈ C∗
x(σ̂6[s]) such that (y, y) ∈ E(σ̂6[s]).

We see that (x, x) ∈ E(σ̂6[s]). Suppose that (x, x) ∈ E(s). Since s ≈ t ∈ IdK6, we
have there exists z ∈ C∗

x(t) such that (z, z) ∈ E(t). Hence, z ∈ C∗
x(σ̂6[t]) such that

(z, z) ∈ E(σ̂6[t]). If (x, x) /∈ E(s), then there exists z′ 6= x such that (x, z′) ∈ E(s).
We have (x, z′) ∈ E(t), too. Hence, (x, x) ∈ E(σ̂6[t]). Further, we have, for any
x, y ∈ V (s), x 6= y, (x, y) ∈ E(σ̂6[s]) if and only if (x, y) ∈ E(σ̂6[t]). Therefore,
σ̂6[s] ≈ σ̂6[t] ∈ IdK6.

For σ8: Suppose that there exists y ∈ C∗
x(σ̂8[s]) such that (y, y) ∈ E(σ̂8[s]).

Suppose that (y, y) ∈ E(s). Since s ≈ t ∈ IdK6, we have there exists z ∈ C∗
x(t)

such that (z, z) ∈ E(t). Hence, z ∈ C∗
x(σ̂8[t]) such that (z, z) ∈ E(σ̂8[t]). If

(y, y) /∈ E(s), then there exists z′ 6= x such that (z′, y) ∈ E(s). We have (z′, y) ∈
E(t), too. Hence, (y, y) ∈ E(σ̂8[t]). Further, we have, for any x, y ∈ V (s), x 6= y,
(x, y) ∈ E(σ̂8[s]) if and only if (x, y) ∈ E(σ̂8[t]). Therefore, σ̂8[s] ≈ σ̂8[t] ∈ IdK8.

For σ10: By Lemma 4.2, we have (x, x) ∈ E(σ̂10[s]) and (x, x) ∈ E(σ̂10[t])
for all x ∈ V (s). Hence, for any x ∈ V (s), we get x ∈ C∗

x(σ̂10[s]) such that
(x, x) ∈ E(σ̂10[s]) and x ∈ C∗

x(σ̂10[t]) such that (x, x) ∈ E(σ̂10[t]). Further, we
have, for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(σ̂10[s]) if and only if (x, y) ∈ E(σ̂10[t]).
Therefore, σ̂10[s] ≈ σ̂10[t] ∈ IdK6.

For σ12: By Lemma 4.2 and s ≈ t ∈ IdK6, we have for any x, y ∈ V (s), x 6= y,
(x, y) ∈ E(σ̂12[s]) if and only if (x, y) ∈ E(σ̂12[t]). For any x ∈ V (s), suppose
that there exists z ∈ C∗

x(σ̂12[s]) such that (z, z) ∈ E(σ̂12[s]). If (z, z) ∈ E(σ̂12[t]),
then z ∈ C∗

x(σ̂12[t]) such that (z, z) ∈ E(σ̂12[t]). Suppose that (z, z) /∈ E(σ̂12[t]).
Since (z, z) ∈ E(s) and s ≈ t ∈ IdK6. We have there exists z′ ∈ C∗

z (t) such
that (z′, z′) ∈ E(t). So z′ ∈ C∗

x(σ̂12[t]) such that (z′, z′) ∈ E(σ̂12[t]). Therefore,
σ̂12[s] ≈ σ̂12[t] ∈ IdK6.
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Because of σ12 ◦N σ6 = σ14. We have σ̂14[s] ≈ σ̂14[t] ∈ IdK6. Then by Remark
4.1, we get PMK6

= {σ0, σ6, σ8, σ10, σ12, σ14}.
The proof of (ii) − (iv) are similar to the proof of (i).

Now, we apply our results to characterize all hyperidentities in each (x(yz))z
with loop graph variety. Clearly, if s and t are trivial terms, then s ≈ t is a
hyperidentity in each (x(yz))z with loop graph variety if and only if L(s) = L(t),
R(s) = R(t) and s ≈ t which G(s) = G(t), L(s) = L(t) is a hyperidentity in each
(x(yz))z with loop graph variety, too. So, we consider the case that s ≈ t is a
non-trivial equation.

Theorem 4.13. An identity s ≈ t in K ∈ {K0,K1,K2, ...,K9}, where s ≈ t is a
non-trivial equation, is a hyperidentity in K if and only if σ̂5[s] ≈ σ̂5[t] is also an
identity in K.

Proof. For K0: It was proven in [15]. Consider for K1. If s ≈ t is a hyperidentity
in K1, then σ̂5[s] ≈ σ̂5[t] is an identity in K1. Conversely, assume that s ≈ t is an
identity in K1 and that σ̂5[s] ≈ σ̂5[t] is an identity in K1, too. We have to prove
that s ≈ t is closed under all graph hypersubstitutions from MK1

.
If σ is a proper, then we get σ̂[s] ≈ σ̂[t] ∈ IdK1. By assumption, σ̂5[s] ≈ σ̂5[t]

is an identity in K1.
For σ1, σ2, σ3 and σ4, we have σ̂1[s] = L(s) = L(t) = σ̂1[t], σ̂2[s] = L(σ̂5[s]) =

L(σ̂5[t]) = σ̂2[t], σ̂3[s] = L(s)L(s) = L(t)L(t) = σ̂3[t] and σ̂4[s] = L(σ̂5[s])L(σ̂5[s]) =
L(σ̂5[t])L(σ̂5[t]) = σ̂4[t].

Since σ6◦Nσ5 = σ7, σ12◦Nσ5 = σ13, σ14◦Nσ5 = σ15 and σ̂[σ̂5[t′]] = σ̂
′

[t′
d
] for

all σ ∈ MK1
, t′ ∈ T (X). We have that σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈ σ̂13[t], σ̂15[s] ≈ σ̂15[t]

are identities in K1.
The proof of K ∈ {K2,K3, ...,K9} are similar to the proof of K1.
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Verlag Hölder-Pichler-Tempsky, Wien (1991) 97–118.

[3] C. R. Shallon, Nonfinitely based finite algebras derived from lattices, Ph. D.
Dissertation, Uni. of California, Los Angeles, 1979.



248 Thai J. Math. 9 (2011)/ M. Krapeedang and T. Poomsa-ard
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