

Some Classes of Difference Paranormed Sequence Spaces Defined by Orlicz Functions

B. C. Tripathy and B. Sarma

Abstract : In this article we introduce the difference paranormed sequence spaces $c_0\{M, \Delta, p, q\}$, $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ defined by Orlicz functions. We study its different properties like solidness, symmetricity, completeness etc. and prove some inclusion results.

Keywords : Orlicz sequence space, paranorm, solid space, symmetric space, completeness, difference sequence space.

2000 Mathematics Subject Classification : 40A05, 46A45, 46E30.

1 Introduction

Throughout the article w, c, c_0 and ℓ_{∞} denote the spaces of all convergent, null and bounded sequences, respectively. The zero sequence $(0,0,0,\ldots)$ is denoted by θ and $p = (p_k)$ is a sequence of strictly positive real numbers. Further the sequence (p_k^{-1}) will be represented by (t_k) . The notion of paranormed sequences was introduced by Nakano [6] and Simons [8]. It was further investigated by Maddox [5], Lascarides [4] and many others.

The notion of difference sequence space was introduced by Kizmaz [1] as follows:

$$Z(\Delta) = \left\{ x = (x_k) : (\Delta x_k) \in Z \right\},\$$

for Z = c, c_0 and ℓ_{∞} , where $(\Delta x_k) = (x_k - x_{k+1})$.

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$, as $x \to \infty$. If the convexity of the Orlicz function M is replaced by

$$M(x+y) \le M(x) + M(y),$$

then this function is called modulus function, introduced by Nakano [6] and studied by Ruckle [7] and further investigated by many others.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to construct the sequence space

$$\ell_M = \Big\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0 \Big\}.$$

The space ℓ_M with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

becomes a Banach space, called as an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(x) = |x|^p$ for $1 \le p < \infty$.

An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists a constant K > 0, such that

$$M(2u) \le KM(u), (u \ge 0).$$

The Δ_2 -condition is equivalent to the inequality $M(Lu) \leq KLM(u)$ for all values of u and for L > 1 (see for instance Krasnosleskii and Rutitsky [2]).

2 Definitions and Preliminaries

A sequence space E is said to be *solid* (or normal) if $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$, for all sequence (α_k) of scalars with $|\alpha_k| \leq 1$ for all $k \in N$.

A sequence space E is said to be symmetric if $(x_{\pi(n)}) \in E$, whenever $(x_n) \in E$, where π is a permutation on N.

Let $H = \sup p_k$ and $D = \max(1, 2^{H-1})$, then it is well known that

$$|a_k + b_k|^{p_k} \le D\Big\{|a_k|^{p_k} + |b_k|^{p_k}\Big\}.$$

Remark 1 Let M be an Orlicz function and $0 < \lambda < 1$, then for all x > 0, $M(\lambda x) \leq \lambda M(x)$.

Let M be an Orlicz function, then we have the following known Orlicz sequence spaces:

$$c_0(M,\Delta,p) = \left\{ (x_k) \in w : \left[M\left(\frac{|\Delta x_k|}{\rho}\right) \right]^{p_k} \to 0, \text{ as } k \to \infty, \text{ for some } \rho > 0 \right\}.$$

$$c(M,\Delta,p) = \left\{ (x_k) \in w : \left[M\left(\frac{|\Delta x_k - L|}{\rho}\right) \right]^{p_k} \to 0, \text{ as } k \to \infty, \text{ for some}$$
$$L \in C \text{ and for some } \rho > 0 \right\}.$$

Some Classes of Difference Paranormed Sequence Spaces

$$\ell_{\infty}(M,\Delta,p) = \left\{ (x_k) \in w : \sup_{k} \left[M\left(\frac{|\Delta x_k|}{\rho}\right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}.$$

Let (X, q) be a seminormed space seminormed by q. Now we introduce the following sequence spaces.

$$c_0\{M,\Delta,p,q\} = \left\{ (x_k) \in w : \left[M\left(\frac{q(\Delta x_k)}{\rho}\right) \right]^{p_k} t_k \to 0, \text{ as } k \to \infty, \text{ for some } \rho > 0 \right\}.$$

$$c\{M, \Delta, p, q\} = \left\{ (x_k) \in w : \left[M\left(\frac{q(\Delta x_k - L)}{\rho}\right) \right]^{p_k} t_k \to 0, \text{ as } k \to \infty, \text{ for some } L \in X \text{ and for some } \rho > 0 \right\}.$$

$$\ell_{\infty}\{M, \Delta, p, q\} = \Big\{(x_k) \in w : \sup_k \Big\{ \left[M\left(\frac{q(\Delta x_k)}{\rho}\right) \right]^{p_k} t_k \Big\} < \infty, \text{ for some } \rho > 0 \Big\}.$$

Lascarides [4] has shown that the sequence spaces $c_0\{p\}$ and $\ell_{\infty}\{p\}$ are linear spaces for any positive sequence $p = (p_k)$.

Two sets of sequences E and F are said to be equivalent if there exists a sequence $u = (u_k)$ of strictly positive numbers such that the mapping $u : E \to F$ defined by $(u_k x_k) \in F$, whenever $(x_k) \in E$ is a one to one correspondence. We write $E \cong F(u)$. Clearly $E \cong F(u)$ implies $F \cong E(u^{-1})$, where $u^{-1} = (u_k^{-1})$.

The following results will be used for establishing some results of this article. It were proved in Lascarides [4] :

Lemma 2.1 Let $h = \inf p_k$ and $H = \sup p_k$, then the following are equivalent :

- (i) $H < \infty$ and h > 0.
- (*ii*) $c_0(p) = c_0 \text{ or } \ell_{\infty}(p) = \ell_{\infty}.$
- (*iii*) $\ell_{\infty}\{p\} = \ell_{\infty}(p).$
- (*iv*) $c_0\{p\} = c_0(p)$.
- $(v) \ \ell\{p\} = \ell(p).$

Lemma 2.2 Let p, q be two sequences of strictly positive numbers. Then $c_0\{p\} \cong c_0\{q\}$ if and only if there exists a sequence $u = (u_k)$ of strictly positive numbers such that

$$\lim_{N} \limsup_{k} \frac{\left(u_{k} p_{k}^{p_{k}^{-1}} N^{-(1+\frac{1}{p_{k}})}\right)^{q_{k}}}{q_{k}} = 0$$
(1)

and

$$\lim_{N} \limsup_{k} \frac{(u_k q_k^{q_k^{-1}} N^{-(1+\frac{1}{q_k})})^{p_k}}{p_k} = 0.$$
 (2)

Lemma 2.3 Let the sequence $a = (a_k) = (q_k^{q_k^{-1}} p_k^{-p_k^{-1}})$. Then $c_0\{p\} \cong c_0\{q\}$ if and only if the following conditions hold

$$\lim_{N} \limsup_{k} N^{q_{k}(1+p_{k}^{-1})} = 0$$
(3)

and

$$\lim_{N} \limsup_{k} N^{-p_k(1+q_k^{-1})} = 0.$$
(4)

Lemma 2.4 Let the sequence $a = (a_k) = (q_k^{q_k^{-1}} p_k^{-p_k^{-1}})$. Then $\lim_{k \to \infty} \left(\frac{1}{p_k} - \frac{1}{q_k}\right) = 0 \quad implies \ c_0\{p\} \cong c_0\{q\}.$

Lemma 2.5 Let $f_k = \frac{p_k}{q_k}$ for every $k \in N$. Let (f_k) and (f_k^{-1}) be both in ℓ_{∞} . Then $\ell_{\infty}\{p\} \cong \ell_{\infty}\{q\}(f)$.

Lemma 2.6 Let $q \in \ell_{\infty}$. Then $\ell_{\infty}\{p\} \subseteq \ell_{\infty}\{q\}$ if and only if

$$\liminf_{k} q_k (Np_k)^{-q_k p_k^{-1}} > 0, (5)$$

for every integer N > 1.

Lemma 2.7 Let $q \in \ell_{\infty}$ and $c_0\{p\} \cong c_0\{q\}$, then $c_0(p) \cong c_0(q)$.

3 Main Results

In this section we prove the results of this article.

Theorem 3.1 The classes $c_0\{M, \Delta, p, q\}$, $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are linear spaces, for any sequence $p = (p_k)$ of strictly positive numbers.

Proof. We establish it for the case $c_0\{M, \Delta, p, q\}$ and rest of the cases will follow similarly. Let (x_k) , $(y_k) \in c_0\{M, \Delta, p, q\}$ and α , $\beta \in C$. Then there exists $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\left[M\left(\frac{q(\Delta x_k)}{\rho_1}\right)\right]^{p_k} t_k \to 0, \text{ as } k \to \infty$$
(6)

and

$$\left[M\left(\frac{q(\Delta y_k)}{\rho_2}\right)\right]^{p_k} t_k \to 0, \text{ as } k \to \infty.$$
(7)

Let $\rho = \max\{2|\alpha|\rho_1, 2|\beta|\rho_2\}$. By (6) and (7), we then have

$$\left[M\left(\frac{q(\alpha\Delta x_k + \beta\Delta y_k)}{\rho}\right)\right]^{p_k} t_k \le D\left[M\left(\frac{q(\Delta x_k)}{\rho_1}\right)\right]^{p_k} t_k + D\left[M\left(\frac{q(\Delta y_k)}{\rho_2}\right)\right]^{p_k} t_k \to 0, \text{ as } k \to \infty.$$

Hence $(\alpha x_k + \beta y_k) \in c_0\{M, \Delta, p, q\}$. Therefore $c_0\{M, \Delta, p, q\}$ is a linear space. \Box

Some Classes of Difference Paranormed Sequence Spaces

Theorem 3.2 The space $\ell_{\infty}\{M, \Delta, p, q\}$ is paranormed by

$$g(x) = q(x_1) + \inf\left\{\rho^{\frac{p_k}{J}} : \sup_{k \ge 1} \left\{M\left(\frac{q(\Delta x_k)}{\rho}\right)t_k^{\frac{1}{p_k}}\right\} \le 1, \quad \rho > 0\right\}$$

where $J = \max(1, H)$.

Proof. Clearly $g(\theta) = 0, g(-x) = g(x)$. Next let $x = (x_k), y = (y_k) \in \ell_{\infty}\{M, \Delta, p, q\}$. Then there exists some $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$M(\frac{q(\Delta x_k)}{\rho_1})t_k^{\frac{1}{p_k}} \le 1 \text{ and } M(\frac{q(\Delta y_k)}{\rho_2})t_k^{\frac{1}{p_k}} \le 1.$$

Let $\rho = \rho_1 + \rho_2$. Then we have

$$\sup_{k\geq 1} \left\{ M\left(\frac{q(\Delta x_k + \Delta y_k)}{\rho}\right) t_k^{\frac{1}{p_k}} \right\} \\
\leq \frac{\rho_1}{\rho_1 + \rho_2} \sup_{k\geq 1} \left\{ M\left(\frac{q(\Delta x_k)}{\rho}\right) t_k^{\frac{1}{p_k}} \right\} + \frac{\rho_2}{\rho_1 + \rho_2} \sup_{k\geq 1} \left\{ M\left(\frac{q(\Delta y_k)}{\rho}\right) t_k^{\frac{1}{p_k}} \right\} \\
\leq 1.$$

Now we have

$$g(x+y) = q(x_1+y_1) + \inf\left\{ \left(\rho_1 + \rho_2\right)^{\frac{p_k}{J}} : \sup_{k \ge 1} \left\{ M\left(\frac{q(\Delta x_k + \Delta y_k)}{\rho}\right) \right\} t_k^{\frac{1}{p_k}} \le 1 \right\}$$

$$\le q(x_1) + \inf\left\{ \left(\rho_1\right)^{\frac{p_k}{J}} : \sup_{k \ge 1} \left\{ M\left(\frac{q(\Delta x_k)}{\rho_1}\right) \right\} t_k^{\frac{1}{p_k}} \le 1 \right\}$$

$$+ q(y_1) + \inf\left\{ \left(\rho_2\right)^{\frac{p_k}{J}} : \sup_{k \ge 1} \left\{ M\left(\frac{q(\Delta y_k)}{\rho_2}\right) \right\} t_k^{\frac{1}{p_k}} \le 1 \right\}$$

$$\le q(x) + q(y).$$

Let $\eta \in C$, then the continuity of the product follows from the following equality.

$$g(\eta x) = q(\eta x_1) + \inf \left\{ \rho^{\frac{p_k}{J}} : \sup_{k \ge 1} \left\{ M\left(\frac{q(\eta \Delta x_k)}{\rho}\right) \right\} t_k^{\frac{1}{p_k}} \le 1, \quad \rho > 0 \right\}$$

= $|\eta|q(x_1) + \inf \left\{ (|\eta|r)^{\frac{p_k}{J}} : \sup_{k \ge 1} \left\{ M\left(\frac{q(\Delta x_k)}{r}\right) \right\} t_k^{\frac{1}{p_k}} \le 1, \quad r > 0 \right\},$
are $\frac{1}{r} = \frac{|\eta|}{r}$

where $\frac{1}{r} = \frac{|\eta|}{\rho}$

Theorem 3.3 Let $p \in \ell_{\infty}$, then the spaces $c_0\{M, \Delta, p, q\}$, $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are complete paranormed spaces, paranormed by g.

Proof. We prove it for the case $\ell_{\infty}\{M, \Delta, p, q\}$ and the other cases can be established similarly. Let (x^n) be a Cauchy sequence in $\ell_{\infty}\{M, \Delta, p, q\}$, where $x^n = (x_k^n)_{k=1}^{\infty}$ for all $n \in \mathbb{N}$. Then $g(x^i - x^j) \to 0$, as $i, j \to \infty$.

For a given $\varepsilon > 0$, let r and x_0 be such that $\frac{\varepsilon}{rx_0} > 0$ and $M(\frac{rx_0}{2}) \ge \sup_{k \ge 1} (p_k)^{t_k}$. Now $g(x^i - x^j) \to 0$, as $i, j \to \infty$ implies that there exists $m_0 \in \mathbb{N}$ such that

$$g(x^i - x^j) < \frac{\varepsilon}{rx_0}$$
, for all $i, j \ge m_0$.

Then we obtain $q(x_1^i - x_1^j) < \frac{\varepsilon}{rx_0}$ and

$$\inf\left\{\rho^{\frac{p_k}{J}}: \sup_{k\geq 1}\left\{M\left(\frac{q(\Delta x_k^i - \Delta x_k^j)}{\rho}\right)t_k^{\frac{1}{p_k}}\right\} \le 1, \ \rho > 0\right\} < \frac{\varepsilon}{rx_0}.$$
 (8)

This shows that (x_1^i) is a Cauchy sequence in X. Since X is complete then (x_1^i) is convergent in X.

Let
$$\lim_{i\to\infty} x_1^i = x_1$$
, thus we have $\lim_{j\to\infty} q(x_1^i - x_1^j) < \frac{\varepsilon}{rx_0}$, which imply that $q(x_1^i - x_1) < \frac{\varepsilon}{rx_0}$.

Again from (8), we have

$$M\left(\frac{q(\Delta x_k^i - \Delta x_k^j)}{g(x^i - x^j)}\right) t_k^{\frac{1}{p_k}} \le 1.$$

These implies that

$$M\left(\frac{q(\Delta x_k^i - \Delta x_k^j)}{g(x^i - x^j)}\right) \le (p_k)^{t_k} \le M\left(\frac{rx_0}{2}\right).$$

Thus we obtain

$$q(\Delta x_k^i - \Delta x_k^j) < \frac{rx_0}{2} \cdot \frac{\varepsilon}{rx_0} < \frac{\varepsilon}{2}.$$

Therefore, (Δx_k^i) is a Cauchy sequence in X for all $k \in \mathbb{N}$.

Hence (Δx_k^i) converges in X. Let $\lim_{i\to\infty} \Delta x_k^i = y_k$ for all $k \in \mathbb{N}$. Thus we have $\lim_{i\to\infty} \Delta x_2^i = y_1 - x_1$. Proceeding in this way, $\lim_{i\to\infty} \Delta x_{k+1}^i = y_k - x_k$ for all $k \in \mathbb{N}$. Next we have by continuity of M,

$$\lim_{j \to \infty} \sup_{k \ge 1} M\left(\frac{q(\Delta x_k^i - \Delta x_k^j)}{\rho}\right) t_k^{\frac{1}{p_k}} \le 1,$$

which implies that

$$\sup_{k\geq 1} M\left(\frac{q(\Delta x_k^i - \Delta x_k)}{\rho}\right) t_k^{\frac{1}{p_k}} \le 1.$$

Let $i \ge m_0$, then taking infimum of such ρ 's we have $g(x^i - x) < \varepsilon$.

Thus $(x^i - x) \in \ell_{\infty}\{M, \Delta, p, q\}$. Hence $x = x^i - (x^i - x) \in \ell_{\infty}\{M, \Delta, p, q\}$, since $\ell_{\infty}\{M, \Delta, p, q\}$ is a linear space. Therefore $\ell_{\infty}\{M, \Delta, p, q\}$ is complete. \Box

Using the technique applied in establishing the above result, one can prove the following result.

Proposition 3.4 The spaces $c_0\{M, \Delta, p, q\}$, $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are *K*-spaces.

Since the inclusions $c_0\{M, \Delta, p, q\} \subset \ell_{\infty}\{M, \Delta, p, q\}$ and $c\{M, \Delta, p, q\} \subset \ell_{\infty}\{M, \Delta, p, q\}$ are proper, in view of Theorem 3.3 we have the following result.

Proposition 3.5 The spaces $c_0\{M, \Delta, p, q\}$ and $c\{M, \Delta, p, q\}$ are nowhere dense subsets of $\ell_{\infty}\{M, \Delta, p, q\}$.

Theorem 3.6 The spaces $c_0\{M, \Delta, p, q\}$, $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not solid in general.

The spaces $c_0\{M, \Delta, p, q\}$, $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not solid follow from the following examples.

Example 3.1 Let X = c, M(x) = x and $p_k = 1$ for all $k \in \mathbb{N}$. Let the sequence (x_k) be defined by $x_k = (x_k^i)$ where $x_k^i = (1, 1, 1, ...)$ for all $k \in \mathbb{N}$ which is in $c_0\{M, \Delta, p, q\}$. Now consider the sequence (α_k) defined by $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Then $(\alpha_k x_k)$ does not belong to $c_0\{M, \Delta, p, q\}$. Hence the space $c_0\{M, \Delta, p, q\}$ is not solid in general.

Example 3.2 Let X = c, M(x) = x and $p_k = 1$ for all $k \in \mathbb{N}$. Let the sequence (x_k) be defined by $x_k = (x_k^i)$ where $x_k^i = (k, k+1, k+2, ...)$ for all $k \in \mathbb{N}$. Then the sequence (x_k) is in $c\{M, \Delta, p, q\}$ as well as in $\ell_{\infty}\{M, \Delta, p, q\}$. Now consider the sequence (α_k) defined by $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Then $(\alpha_k x_k)$ belong to neither $\ell_{\infty}\{M, \Delta, p, q\}$ nor $c\{M, \Delta, p, q\}$. Hence the spaces $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not solid in general.

Theorem 3.7 The spaces $c_0\{M, \Delta, p, q\}$, $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not symmetric in general.

To show that the spaces are not symmetric in general, consider the following example.

Example 3.3 Let X = c, M(x) = x and $p_k = 2$ for all $k \in \mathbb{N}$. Let the sequence (x_k) be defined by $x_k = (x_k^i)$ where $x_k^i = (k, k+1, k+2, ...)$ for all $k \in \mathbb{N}$. Then the sequence (x_k) is in $c\{M, \Delta, p, q\}$ as well as in $\ell_{\infty}\{M, \Delta, p, q\}$. Now consider the rearrangement (y_k) of (x_k) defined as

 $(y_k) = (x_1^i, x_4^i, x_2^i, x_9^i, x_3^i, x_{16}^i, x_5^i, \ldots)$

Then (y_k) neither belongs to $c\{M, \Delta, p, q\}$ nor to $\ell_{\infty}\{M, \Delta, p, q\}$.

Theorem 3.8 Let M_1 and M_2 be two Orlicz functions satisfying the Δ_2 -condition then

- (i) if $(p_k) \in \ell_{\infty}$ then $Z\{M_1, \Delta, p, q\} \subseteq Z\{M_2 \circ M_1, \Delta, p, q\}$ for $Z = c, c_0$ and ℓ_{∞} .
- (ii) $Z\{M_1, \Delta, p, q\} \cap Z\{M_2, \Delta, p, q\} \subseteq Z\{M_1 + M_2, \Delta, p, q\}$ for Z = c, c_0 and ℓ_{∞} .

Proof. (i) Let $(x_k) \in c_0\{M, \Delta, p, q\}$. Then from the definition we have, there exists $\rho > 0$ such that

$$\left\{ \left[M_1\left(\frac{q(\Delta x_k)}{\rho}\right) \right]^{p_k} t_k \right\} \to 0, \text{ as } k \to \infty.$$

Let $y_k = M_1\left(\frac{q(\Delta x_k)}{\rho}\right)$ for all $k \in \mathbb{N}$. Let $0 < \delta < 1$ be chosen. For $y_k \ge \delta$ we have

$$y_k < \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta}.$$

Since M_2 satisfies Δ_2 -condition, therefore there exists a $K \ge 1$ such that

$$M_2(y_k) < \frac{Ky_k}{2\delta} M_2(2) + \frac{Ky_k}{2\delta} M_2(2) = KM_2(2)\frac{y_k}{\delta}.$$

Then we have

$$\left[(M_2 \circ M_1) \left(\frac{q(\Delta x_k)}{\rho} \right) \right]^{p_k} t_k = \left[M_2 \left\{ M_1(\frac{q(\Delta x_k)}{\rho}) \right\} \right]^{p_k} t_k$$
$$= \left[M_2(y_k) \right]^{p_k} t_k$$
$$\leq \max \left\{ \sup_k ([M_2(1)]^{p_k}), \ \sup_k ([KM_2(2)\delta^{-1}]^{p_k}) \right\} [y_k]^{p_k} t_k$$
$$\to 0, \ \text{as } k \to \infty.$$

The other cases can be proved following the above technique.

(ii) Let $(x_k) \in c_0\{M_1, \Delta, p, q\} \cap c_0\{M_2, \Delta, p, q\}$, then there exists $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\left\{ \left[M_1\left(\frac{q(\Delta x_k)}{\rho_1}\right) \right]^{p_k} t_k \right\} \to 0, \text{ as } k \to \infty$$

and

$$\left\{ \left[M_2\left(\frac{q(\Delta x_k)}{\rho_2}\right) \right]^{p_k} t_k \right\} \to 0, \text{ as } k \to \infty$$

Let $\rho = \max\{\rho_1, \rho_2\}$. The rest follows from the following inequality.

$$\left\{ \left[(M_1 + M_2) \left(\frac{q(\Delta x_k)}{\rho} \right) \right]^{p_k} t_k \right\} \le D \left\{ \left[M_1 \left(\frac{q(\Delta x_k)}{\rho_1} \right) \right]^{p_k} t_k + \left[M_2 \left(\frac{q(\Delta x_k)}{\rho_2} \right) \right]^{p_k} t_k \right\}.$$

Thus $c_0\{M_1, \Delta, p, q\} \cap c_0\{M_2, \Delta, p, q\} \subset c_0\{M_1+M_2, \Delta, p, q\}$. The cases $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ can be proved in a similar way. \Box

It can be easily shown that:

Some Classes of Difference Paranormed Sequence Spaces

Proposition 3.9 $Z\{M, p, q\} \subseteq Z\{M, \Delta, p, q\}$ for Z = c, c_0 and ℓ_{∞} .

The following results can be obtained from the lemmas listed in section 2.

Proposition 3.10 Let $h = \inf p_k$ and $H = \sup p_k$ then the following are equivalent

- (i) $H < \infty$ and h > 0,
- (*ii*) $c_0\{M, \Delta, p, q\} = c_0(M, \Delta, p, q)$
- (*iii*) $\ell_{\infty}\{M, \Delta, p, q\} = \ell_{\infty}(M, \Delta, p, q).$

Proposition 3.11 Let p, s be two sequences of strictly positive numbers. Then $c_0\{M, \Delta, p, q\} \cong c_0\{M, \Delta, s, q\}$ if and only if there exists a sequence $u = (u_k)$ of strictly positive numbers such that eq.(1) and eq.(2) hold.

Proposition 3.12 Let the sequence $a = (a_k) = (s_k^{s_k^{-1}} p_k^{-p_k^{-1}})$. Then $c_0\{M, \Delta, p, q\} \cong c_0\{M, \Delta, s, q\}$ if and only if eq.(3) and eq.(4) hold.

Proposition 3.13 Let the sequence $a = (a_k) = (s_k^{s_k^{-1}} p_k^{-p_k^{-1}})$. Then

$$\lim_{k \to \infty} \left(\frac{1}{p_k} - \frac{1}{s_k} \right) = 0 \quad implies \quad c_0\{M, \Delta, p, q\} \cong c_0\{M, \Delta, s, q\}.$$

Proposition 3.14 Let $f_k = \frac{p_k}{s_k}$ for every $k \in \mathbb{N}$. Let (f_k) and (f_k^{-1}) both be in ℓ_{∞} . Then $\ell_{\infty}\{M, \Delta, p, q\} \cong \ell_{\infty}\{M, \Delta, s, q\}(f)$.

Proposition 3.15 Let $s = (s_k) \in \ell_{\infty}$. Then $\ell_{\infty}\{M, \Delta, p, q\} \subseteq \ell_{\infty}\{M, \Delta, s, q\}$ if and only if eq.(5) holds.

Proposition 3.16 Let $s = (s_k) \in \ell_{\infty}$ and $c_0\{M, \Delta, p, q\} \cong c_0\{M, \Delta, s, q\}$ then $c_0(M, \Delta, p) \cong c_0(M, \Delta, q)$.

References

- H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24(1981), 169-176.
- [2] M. A. Krasnoselkii and Y. B. Rutitsky, Convex Functions and Orlicz Spaces, Groningen, Netherlands, 1961.
- [3] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [4] C. G. Lascarides, On the equivalence of certain sets of sequences, *Indian Jour. Math.*, 25(1)(1983), 41-52.

- [5] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, *Proc. Camb. Phil. Soc.*, 64(1968), 335-345.
- [6] H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27(1951), 508-512.
- [7] W. H. Ruckle, FK- spaces in which the sequences of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
- [8] S. Simons, The spaces $\ell(p_{\nu})$ and $m(p_{\nu})$, Proc. London Math Soc., 15(1965), 422-436.
- [9] B. C. Tripathy, On some classes of difference paranormed sequence spaces associated with multiplier sequences, *Internet J. Math. Sci.*, 2(1) (2003), 159-166.

(Received 25 August 2005)

Binod Chandra Tripathy¹ and Bipul Sarma² Mathematical Sciences Division Institute of Advanced Study in Science and Technology Paschim Boragaon; Garchuk Guwahati - 781 035; India. e-mail : ¹tripathybc@yahoo.com, tripathybc@rediffmail.com, ²sarmabipul01@yahoo.co.in.