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Abstract : In this article we introduce the difference paranormed sequence spaces
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1 Introduction

Throughout the article w, c, c0 and `∞ denote the spaces of all convergent, null
and bounded sequences, respectively. The zero sequence (0,0,0,. . . ) is denoted
by θ and p = (pk) is a sequence of strictly positive real numbers. Further the
sequence (p−1

k ) will be represented by (tk). The notion of paranormed sequences
was introduced by Nakano [6] and Simons [8]. It was further investigated by
Maddox [5], Lascarides [4] and many others.

The notion of difference sequence space was introduced by Kizmaz [1] as fol-
lows:

Z(∆) =
{

x = (xk) : (∆xk) ∈ Z
}

,

for Z = c, c0 and `∞, where (∆xk) = (xk − xk+1).
An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,

non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →∞,
as x →∞. If the convexity of the Orlicz function M is replaced by

M(x + y) ≤ M(x) + M(y),

then this function is called modulus function, introduced by Nakano [6] and studied
by Ruckle [7] and further investigated by many others.
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Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to construct the
sequence space

`M =
{

x ∈ w :
∞∑

k=1

M

(
|xk|
ρ

)
< ∞ for some ρ > 0

}
.

The space `M with the norm

||x|| = inf
{

ρ > 0 :
∞∑

k=1

M

(
|xk|
ρ

)
≤ 1
}

.

becomes a Banach space, called as an Orlicz sequence space. The space `M is
closely related to the space `p which is an Orlicz sequence space with M(x) = |x|p
for 1 ≤ p < ∞.

An Orlicz function M is said to satisfy ∆2-condition for all values of u, if there
exists a constant K > 0, such that

M(2u) ≤ KM(u), (u ≥ 0).

The ∆2-condition is equivalent to the inequality M(Lu) ≤ KLM(u) for all values
of u and for L > 1 (see for instance Krasnosleskii and Rutitsky [2]).

2 Definitions and Preliminaries

A sequence space E is said to be solid (or normal ) if (αkxk) ∈ E, whenever
(xk) ∈ E, for all sequence (αk) of scalars with |αk| ≤ 1 for all k ∈ N.

A sequence space E is said to be symmetric if (xπ(n)) ∈ E, whenever (xn) ∈ E,
where π is a permutation on N .

Let H = sup pk and D = max(1, 2H−1), then it is well known that

|ak + bk|pk ≤ D
{
|ak|pk + |bk|pk

}
.

Remark 1 Let M be an Orlicz function and 0 < λ < 1, then for all x > 0,
M(λx) ≤ λM(x).

Let M be an Orlicz function, then we have the following known Orlicz sequence
spaces:

c0(M,∆, p) =
{

(xk) ∈ w :
[
M

(
|∆xk|

ρ

)]pk

→ 0, as k →∞, for some ρ > 0
}

.

c(M,∆, p) =
{

(xk) ∈ w :
[
M

(
|∆xk − L|

ρ

)]pk

→ 0, as k →∞, for some

L ∈ C and for some ρ > 0
}

.
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`∞(M,∆, p) =
{

(xk) ∈ w : sup
k

[
M

(
|∆xk|

ρ

)]pk

< ∞, for some ρ > 0
}

.

Let (X, q) be a seminormed space seminormed by q. Now we introduce the
following sequence spaces.

c0{M,∆, p, q} =
{

(xk) ∈ w :
[
M

(
q(∆xk)

ρ

)]pk

tk → 0, as k →∞, for some ρ > 0
}

.

c{M,∆, p, q} =
{

(xk) ∈ w :
[
M

(
q(∆xk − L)

ρ

)]pk

tk → 0, as k →∞, for some

L ∈ X and for some ρ > 0
}

.

`∞{M,∆, p, q} =
{

(xk) ∈ w : sup
k

{[
M

(
q(∆xk)

ρ

)]pk

tk

}
< ∞, for some ρ > 0

}
.

Lascarides [4] has shown that the sequence spaces c0{p} and `∞{p} are linear
spaces for any positive sequence p = (pk).

Two sets of sequences E and F are said to be equivalent if there exists a
sequence u = (uk) of strictly positive numbers such that the mapping u : E → F
defined by (ukxk) ∈ F, whenever (xk) ∈ E is a one to one correspondence. We
write E ∼= F (u). Clearly E ∼= F (u) implies F ∼= E(u−1), where u−1 = (u−1

k ).
The following results will be used for establishing some results of this article.

It were proved in Lascarides [4] :

Lemma 2.1 Let h = inf pk and H = sup pk, then the following are equivalent :

(i) H < ∞ and h > 0.

(ii) c0(p) = c0 or `∞(p) = `∞.

(iii) `∞{p} = `∞(p).

(iv) c0{p} = c0(p).

(v) `{p} = `(p).

Lemma 2.2 Let p, q be two sequences of strictly positive numbers. Then c0{p} ∼=
c0{q} if and only if there exists a sequence u = (uk) of strictly positive numbers
such that

lim
N

lim sup
k

(ukp
p−1

k

k N
−(1+ 1

pk
))qk

qk
= 0 (1)

and

lim
N

lim sup
k

(ukq
q−1

k

k N
−(1+ 1

qk
))pk

pk
= 0. (2)
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Lemma 2.3 Let the sequence a = (ak) = (qq−1
k

k p
−p−1

k

k ). Then c0{p} ∼= c0{q} if
and only if the following conditions hold

lim
N

lim sup
k

Nqk(1+p−1
k ) = 0 (3)

and
lim
N

lim sup
k

N−pk(1+q−1
k ) = 0. (4)

Lemma 2.4 Let the sequence a = (ak) = (qq−1
k

k p
−p−1

k

k ). Then

lim
k→∞

(
1
pk
− 1

qk

)
= 0 implies c0{p} ∼= c0{q}.

Lemma 2.5 Let fk = pk

qk
for every k ∈ N. Let (fk) and (f−1

k ) be both in `∞.

Then `∞{p} ∼= `∞{q}(f).

Lemma 2.6 Let q ∈ `∞. Then `∞{p} ⊆ `∞{q} if and only if

lim inf
k

qk(Npk)−qkp−1
k > 0, (5)

for every integer N > 1.

Lemma 2.7 Let q ∈ `∞ and c0{p} ∼= c0{q}, then c0(p) ∼= c0(q).

3 Main Results

In this section we prove the results of this article.

Theorem 3.1 The classes c0{M,∆, p, q}, c{M,∆, p, q} and `∞{M,∆, p, q} are
linear spaces, for any sequence p = (pk) of strictly positive numbers.

Proof. We establish it for the case c0{M,∆, p, q} and rest of the cases will follow
similarly. Let (xk), (yk) ∈ c0{M,∆, p, q} and α, β ∈ C. Then there exists ρ1 > 0
and ρ2 > 0 such that [

M

(
q(∆xk)

ρ1

)]pk

tk → 0, as k →∞ (6)

and [
M

(
q(∆yk)

ρ2

)]pk

tk → 0, as k →∞. (7)

Let ρ = max{2|α|ρ1, 2|β|ρ2}. By (6) and (7), we then have[
M

(
q(α∆xk + β∆yk)

ρ

)]pk

tk ≤ D

[
M

(
q(∆xk)

ρ1

)]pk

tk + D

[
M

(
q(∆yk)

ρ2

)]pk

tk

→ 0, as k →∞.

Hence (αxk + βyk) ∈ c0{M,∆, p, q}. Therefore c0{M,∆, p, q} is a linear space. �
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Theorem 3.2 The space `∞{M,∆, p, q} is paranormed by

g(x) = q(x1) + inf
{

ρ
pk
J : sup

k≥1

{
M

(
q(∆xk)

ρ

)
t

1
pk

k

}
≤ 1, ρ > 0

}
where J = max(1,H).

Proof. Clearly g(θ) = 0, g(−x) = g(x). Next let x = (xk), y = (yk) ∈ `∞{M,∆, p, q}.
Then there exists some ρ1 > 0 and ρ2 > 0 such that

M(
q(∆xk)

ρ1
)t

1
pk

k ≤ 1 and M(
q(∆yk)

ρ2
)t

1
pk

k ≤ 1.

Let ρ = ρ1 + ρ2. Then we have

sup
k≥1

{
M

(
q(∆xk + ∆yk)

ρ

)
t

1
pk

k

}
≤ ρ1

ρ1 + ρ2
sup
k≥1

{
M

(
q(∆xk)

ρ

)
t

1
pk

k

}
+

ρ2

ρ1 + ρ2
sup
k≥1

{
M

(
q(∆yk)

ρ

)
t

1
pk

k

}
≤ 1.

Now we have

g(x + y) = q(x1 + y1) + inf
{

(ρ1 + ρ2)
pk
J : sup

k≥1

{
M

(
q(∆xk + ∆yk)

ρ

)}
t

1
pk

k ≤ 1
}

≤ q(x1) + inf
{

(ρ1)
pk
J : sup

k≥1

{
M

(
q(∆xk)

ρ1

)}
t

1
pk

k ≤ 1
}

+ q(y1) + inf
{

(ρ2)
pk
J : sup

k≥1

{
M

(
q(∆yk)

ρ2

)}
t

1
pk

k ≤ 1
}

≤ g(x) + g(y).

Let η ∈ C, then the continuity of the product follows from the following equality.

g(ηx) = q(ηx1) + inf
{

ρ
pk
J : sup

k≥1

{
M

(
q(η∆xk)

ρ

)}
t

1
pk

k ≤ 1, ρ > 0
}

= |η|q(x1) + inf
{

(|η|r)
pk
J : sup

k≥1

{
M

(
q(∆xk)

r

)}
t

1
pk

k ≤ 1, r > 0
}

,

where 1
r = |η|

ρ �

Theorem 3.3 Let p ∈ `∞, then the spaces c0{M,∆, p, q}, c{M,∆, p, q} and
`∞{M,∆, p, q} are complete paranormed spaces, paranormed by g.

Proof. We prove it for the case `∞{M,∆, p, q} and the other cases can be
established similarly. Let (xn) be a Cauchy sequence in `∞{M,∆, p, q}, where
xn = (xn

k )∞k=1 for all n ∈ N. Then g(xi − xj) → 0, as i, j →∞.
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For a given ε > 0, let r and x0 be such that ε
rx0

> 0 and M( rx0
2 ) ≥ sup

k≥1
(pk)tk .

Now g(xi − xj) → 0, as i, j →∞ implies that there exists m0 ∈ N such that

g(xi − xj) <
ε

rx0
, for all i, j ≥ m0.

Then we obtain q(xi
1 − xj

1) < ε
rx0

and

inf
{

ρ
pk
J : sup

k≥1

{
M

(
q(∆xi

k −∆xj
k)

ρ

)
t

1
pk

k

}
≤ 1, ρ > 0

}
<

ε

rx0
. (8)

This shows that (xi
1) is a Cauchy sequence in X. Since X is complete then

(xi
1) is convergent in X.

Let lim
i→∞

xi
1 = x1, thus we have lim

j→∞
q(xi

1 − xj
1) <

ε

rx0
,which imply that

q(xi
1 − x1) <

ε

rx0
.

Again from (8), we have

M

(
q(∆xi

k −∆xj
k)

g(xi − xj)

)
t

1
pk

k ≤ 1.

These implies that

M

(
q(∆xi

k −∆xj
k)

g(xi − xj)

)
≤ (pk)tk ≤ M

(rx0

2

)
.

Thus we obtain
q(∆xi

k −∆xj
k) <

rx0

2
.

ε

rx0
<

ε

2
.

Therefore, (∆xi
k) is a Cauchy sequence in X for all k ∈ N.

Hence (∆xi
k) converges in X. Let lim

i→∞
∆xi

k = yk for all k ∈ N. Thus we have

lim
i→∞

∆xi
2 = y1 − x1. Proceeding in this way, lim

i→∞
∆xi

k+1 = yk − xk for all k ∈ N.

Next we have by continuity of M ,

lim
j→∞

sup
k≥1

M

(
q(∆xi

k −∆xj
k)

ρ

)
t

1
pk

k ≤ 1,

which implies that

sup
k≥1

M

(
q(∆xi

k −∆xk)
ρ

)
t

1
pk

k ≤ 1.

Let i ≥ m0, then taking infimum of such ρ’s we have g(xi − x) < ε.
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Thus (xi − x) ∈ `∞{M,∆, p, q}. Hence x = xi − (xi − x) ∈ `∞{M,∆, p, q},
since `∞{M,∆, p, q} is a linear space. Therefore `∞{M,∆, p, q} is complete. �

Using the technique applied in establishing the above result, one can prove the
following result.

Proposition 3.4 The spaces c0{M,∆, p, q}, c{M,∆, p, q} and `∞{M,∆, p, q} are
K-spaces.

Since the inclusions c0{M,∆, p, q} ⊂ `∞{M,∆, p, q} and c{M,∆, p, q} ⊂ `∞{M,∆, p, q}
are proper, in view of Theorem 3.3 we have the following result.

Proposition 3.5 The spaces c0{M,∆, p, q} and c{M,∆, p, q} are nowhere dense
subsets of `∞{M,∆, p, q}.

Theorem 3.6 The spaces c0{M,∆, p, q}, c{M,∆, p, q} and `∞{M,∆, p, q} are
not solid in general.

The spaces c0{M,∆, p, q}, c{M,∆, p, q} and `∞{M,∆, p, q} are not solid follow
from the following examples.

Example 3.1 Let X = c,M(x) = x and pk = 1 for all k ∈ N. Let the sequence
(xk) be defined by xk = (xi

k) where xi
k = (1, 1, 1, . . .) for all k ∈ N which is

in c0{M,∆, p, q}. Now consider the sequence (αk) defined by αk = (−1)k for
all k ∈ N. Then (αkxk) does not belong to c0{M,∆, p, q}. Hence the space
c0{M,∆, p, q} is not solid in general.

Example 3.2 Let X = c, M(x) = x and pk = 1 for all k ∈ N. Let the sequence
(xk) be defined by xk = (xi

k) where xi
k = (k, k + 1, k + 2, . . .) for all k ∈ N. Then

the sequence (xk) is in c{M,∆, p, q} as well as in `∞{M,∆, p, q}. Now consider
the sequence (αk) defined by αk = (−1)k for all k ∈ N. Then (αkxk) belong
to neither `∞{M,∆, p, q} nor c{M,∆, p, q}. Hence the spaces c{M,∆, p, q} and
`∞{M,∆, p, q} are not solid in general.

Theorem 3.7 The spaces c0{M,∆, p, q}, c{M,∆, p, q} and `∞{M,∆, p, q} are
not symmetric in general.

To show that the spaces are not symmetric in general, consider the following
example.

Example 3.3 Let X = c, M(x) = x and pk = 2 for all k ∈ N. Let the sequence
(xk) be defined by xk = (xi

k) where xi
k = (k, k + 1, k + 2, . . .) for all k ∈ N. Then

the sequence (xk) is in c{M,∆, p, q} as well as in `∞{M,∆, p, q}. Now consider
the rearrangement (yk) of (xk) defined as

(yk) = (xi
1, x

i
4, x

i
2, x

i
9, x

i
3, x

i
16, x

i
5, . . .)

Then (yk) neither belongs to c{M,∆, p, q} nor to `∞{M,∆, p, q}.
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Theorem 3.8 Let M1 and M2 be two Orlicz functions satisfying the ∆2-condition
then

(i) if (pk) ∈ `∞ then Z{M1,∆, p, q} ⊆ Z{M2◦M1,∆, p, q} for Z = c, c0 and `∞.

(ii) Z{M1,∆, p, q}∩Z{M2,∆, p, q} ⊆ Z{M1+M2,∆, p, q} for Z = c, c0 and `∞.

Proof. (i) Let (xk) ∈ c0{M,∆, p, q}. Then from the definition we have, there
exists ρ > 0 such that{[

M1

(
q(∆xk)

ρ

)]pk

tk

}
→ 0, as k →∞.

Let yk = M1

(
q(∆xk)

ρ

)
for all k ∈ N. Let 0 < δ < 1 be chosen. For yk ≥ δ we

have
yk <

yk

δ
< 1 +

yk

δ
.

Since M2 satisfies ∆2-condition, therefore there exists a K ≥ 1 such that

M2(yk) <
Kyk

2δ
M2(2) +

Kyk

2δ
M2(2) = KM2(2)

yk

δ
.

Then we have[
(M2 ◦M1)

(
q(∆xk)

ρ

)]pk

tk =
[
M2

{
M1(

q(∆xk)
ρ

)
}]pk

tk

= [M2(yk)]pk tk

≤ max
{

sup
k

([M2(1)]pk), sup
k

([KM2(2)δ−1]pk)
}

[yk]pktk

→ 0, as k →∞.

The other cases can be proved following the above technique.

(ii) Let (xk) ∈ c0{M1,∆, p, q} ∩ c0{M2,∆, p, q}, then there exists ρ1 > 0 and
ρ2 > 0 such that {[

M1

(
q(∆xk)

ρ1

)]pk

tk

}
→ 0, as k →∞

and {[
M2

(
q(∆xk)

ρ2

)]pk

tk

}
→ 0, as k →∞.

Let ρ = max{ρ1, ρ2}. The rest follows from the following inequality.{[
(M1 + M2)

(
q(∆xk)

ρ

)]pk

tk

}
≤ D

{[
M1

(
q(∆xk)

ρ1

)]pk

tk +
[
M2

(
q(∆xk)

ρ2

)]pk

tk

}
.

Thus c0{M1,∆, p, q}∩c0{M2,∆, p, q} ⊂ c0{M1+M2,∆, p, q}. The cases c{M,∆, p, q}
and `∞{M,∆, p, q} can be proved in a similar way. �

It can be easily shown that:
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Proposition 3.9 Z{M,p, q} ⊆ Z{M,∆, p, q} for Z = c, c0 and `∞.

The following results can be obtained from the lemmas listed in section 2.

Proposition 3.10 Let h = inf pk and H = sup pk then the following are equiva-
lent

(i) H < ∞ and h > 0,

(ii) c0{M,∆, p, q} = c0(M,∆, p, q)

(iii) `∞{M,∆, p, q} = `∞(M,∆, p, q).

Proposition 3.11 Let p, s be two sequences of strictly positive numbers. Then
c0{M,∆, p, q} ∼= c0{M,∆, s, q} if and only if there exists a sequence u = (uk) of
strictly positive numbers such that eq.(1) and eq.(2) hold.

Proposition 3.12 Let the sequence a = (ak) = (ss−1
k

k p
−p−1

k

k ). Then c0{M,∆, p, q} ∼=
c0{M,∆, s, q} if and only if eq.(3) and eq.(4) hold.

Proposition 3.13 Let the sequence a = (ak) = (ss−1
k

k p
−p−1

k

k ). Then

lim
k→∞

(
1
pk
− 1

sk

)
= 0 implies c0{M,∆, p, q} ∼= c0{M,∆, s, q}.

Proposition 3.14 Let fk = pk

sk
for every k ∈ N. Let (fk) and (f−1

k ) both be in
`∞. Then `∞{M,∆, p, q} ∼= `∞{M,∆, s, q}(f).

Proposition 3.15 Let s = (sk) ∈ `∞. Then `∞{M,∆, p, q} ⊆ `∞{M,∆, s, q} if
and only if eq.(5) holds.

Proposition 3.16 Let s = (sk) ∈ `∞ and c0{M,∆, p, q} ∼= c0{M,∆, s, q} then
c0(M,∆, p) ∼= c0(M,∆, q).
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