Some Classes of Difference Paranormed Sequence Spaces Defined by Orlicz Functions

B. C. Tripathy and B. Sarma

Abstract

In this article we introduce the difference paranormed sequence spaces $c_{0}\{M, \Delta, p, q\}, c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ defined by Orlicz functions. We study its different properties like solidness, symmetricity, completeness etc. and prove some inclusion results.

Keywords : Orlicz sequence space, paranorm, solid space, symmetric space, completeness, difference sequence space.
2000 Mathematics Subject Classification : 40A05, 46A45, 46E30.

1 Introduction

Throughout the article w, c, c_{0} and ℓ_{∞} denote the spaces of all convergent, null and bounded sequences, respectively. The zero sequence $(0,0,0, \ldots)$ is denoted by θ and $p=\left(p_{k}\right)$ is a sequence of strictly positive real numbers. Further the sequence (p_{k}^{-1}) will be represented by $\left(t_{k}\right)$. The notion of paranormed sequences was introduced by Nakano [6] and Simons [8]. It was further investigated by Maddox [5], Lascarides [4] and many others.

The notion of difference sequence space was introduced by Kizmaz [1] as follows:

$$
Z(\Delta)=\left\{x=\left(x_{k}\right):\left(\Delta x_{k}\right) \in Z\right\},
$$

for $Z=c, c_{0}$ and ℓ_{∞}, where $\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$.
An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$, which is continuous, non-decreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$. If the convexity of the Orlicz function M is replaced by

$$
M(x+y) \leq M(x)+M(y),
$$

then this function is called modulus function, introduced by Nakano [6] and studied by Ruckle [7] and further investigated by many others.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to construct the sequence space

$$
\ell_{M}=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0\right\}
$$

The space ℓ_{M} with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\} .
$$

becomes a Banach space, called as an Orlicz sequence space. The space ℓ_{M} is closely related to the space ℓ_{p} which is an Orlicz sequence space with $M(x)=|x|^{p}$ for $1 \leq p<\infty$.

An Orlicz function M is said to satisfy Δ_{2}-condition for all values of u, if there exists a constant $K>0$, such that

$$
M(2 u) \leq K M(u),(u \geq 0)
$$

The Δ_{2}-condition is equivalent to the inequality $M(L u) \leq K L M(u)$ for all values of u and for $L>1$ (see for instance Krasnosleskii and Rutitsky [2]).

2 Definitions and Preliminaries

A sequence space E is said to be solid (or normal) if $\left(\alpha_{k} x_{k}\right) \in E$, whenever $\left(x_{k}\right) \in E$, for all sequence (α_{k}) of scalars with $\left|\alpha_{k}\right| \leq 1$ for all $k \in N$.

A sequence space E is said to be symmetric if $\left(x_{\pi(n)}\right) \in E$, whenever $\left(x_{n}\right) \in E$, where π is a permutation on N.

Let $H=\sup p_{k}$ and $D=\max \left(1,2^{H-1}\right)$, then it is well known that

$$
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right\} .
$$

Remark 1 Let M be an Orlicz function and $0<\lambda<1$, then for all $x>0$, $M(\lambda x) \leq \lambda M(x)$.

Let M be an Orlicz function, then we have the following known Orlicz sequence spaces:

$$
\begin{aligned}
c_{0}(M, \Delta, p)= & \left\{\left(x_{k}\right) \in w:\left[M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)\right]^{p_{k}} \rightarrow 0, \text { as } k \rightarrow \infty, \text { for some } \rho>0\right\} . \\
c(M, \Delta, p)= & \left\{\left(x_{k}\right) \in w:\left[M\left(\frac{\left|\Delta x_{k}-L\right|}{\rho}\right)\right]^{p_{k}} \rightarrow 0, \text { as } k \rightarrow \infty,\right. \text { for some } \\
& L \in C \text { and for some } \rho>0\} .
\end{aligned}
$$

$$
\ell_{\infty}(M, \Delta, p)=\left\{\left(x_{k}\right) \in w: \sup _{k}\left[M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)\right]^{p_{k}}<\infty, \text { for some } \rho>0\right\} .
$$

Let (X, q) be a seminormed space seminormed by q. Now we introduce the following sequence spaces.

$$
\begin{aligned}
c_{0}\{M, \Delta, p, q\}= & \left\{\left(x_{k}\right) \in w:\left[M\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right)\right]^{p_{k}} t_{k} \rightarrow 0, \text { as } k \rightarrow \infty, \text { for some } \rho>0\right\} . \\
c\{M, \Delta, p, q\}= & \left\{\left(x_{k}\right) \in w:\left[M\left(\frac{q\left(\Delta x_{k}-L\right)}{\rho}\right)\right]^{p_{k}} t_{k} \rightarrow 0, \text { as } k \rightarrow \infty,\right. \text { for some } \\
& L \in X \text { and for some } \rho>0\} . \\
\ell_{\infty}\{M, \Delta, p, q\}= & \left\{\left(x_{k}\right) \in w: \sup _{k}\left\{\left[M\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right)\right]^{p_{k}} t_{k}\right\}<\infty, \text { for some } \rho>0\right\} .
\end{aligned}
$$

Lascarides [4] has shown that the sequence spaces $c_{0}\{p\}$ and $\ell_{\infty}\{p\}$ are linear spaces for any positive sequence $p=\left(p_{k}\right)$.

Two sets of sequences E and F are said to be equivalent if there exists a sequence $u=\left(u_{k}\right)$ of strictly positive numbers such that the mapping $u: E \rightarrow F$ defined by $\left(u_{k} x_{k}\right) \in F$, whenever $\left(x_{k}\right) \in E$ is a one to one correspondence. We write $E \cong F(u)$. Clearly $E \cong F(u)$ implies $F \cong E\left(u^{-1}\right)$, where $u^{-1}=\left(u_{k}^{-1}\right)$.

The following results will be used for establishing some results of this article. It were proved in Lascarides [4]:

Lemma 2.1 Let $h=\inf p_{k}$ and $H=\sup p_{k}$, then the following are equivalent:
(i) $H<\infty$ and $h>0$.
(ii) $c_{0}(p)=c_{0}$ or $\ell_{\infty}(p)=\ell_{\infty}$.
(iii) $\ell_{\infty}\{p\}=\ell_{\infty}(p)$.
(iv) $c_{0}\{p\}=c_{0}(p)$.
(v) $\ell\{p\}=\ell(p)$.

Lemma 2.2 Let p, q be two sequences of strictly positive numbers. Then $c_{0}\{p\} \cong$ $c_{0}\{q\}$ if and only if there exists a sequence $u=\left(u_{k}\right)$ of strictly positive numbers such that

$$
\begin{equation*}
\lim _{N} \limsup _{k} \frac{\left(u_{k} p_{k}^{p_{k}^{-1}} N^{-\left(1+\frac{1}{p_{k}}\right)}\right)^{q_{k}}}{q_{k}}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N} \limsup _{k} \frac{\left(u_{k} q_{k}^{q_{k}^{-1}} N^{-\left(1+\frac{1}{q_{k}}\right)}\right)^{p_{k}}}{p_{k}}=0 . \tag{2}
\end{equation*}
$$

Lemma 2.3 Let the sequence $a=\left(a_{k}\right)=\left(q_{k}^{q_{k}^{-1}} p_{k}^{-p_{k}^{-1}}\right)$. Then $c_{0}\{p\} \cong c_{0}\{q\}$ if and only if the following conditions hold

$$
\begin{equation*}
\lim _{N} \limsup _{k} N^{q_{k}\left(1+p_{k}^{-1}\right)}=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N} \limsup _{k} N^{-p_{k}\left(1+q_{k}^{-1}\right)}=0 \tag{4}
\end{equation*}
$$

Lemma 2.4 Let the sequence $a=\left(a_{k}\right)=\left(q_{k}^{q_{k}^{-1}} p_{k}^{-p_{k}^{-1}}\right)$. Then

$$
\lim _{\mathrm{k} \rightarrow \infty}\left(\frac{1}{p_{k}}-\frac{1}{q_{k}}\right)=0 \quad \text { implies } \quad c_{0}\{p\} \cong c_{0}\{q\}
$$

Lemma 2.5 Let $f_{k}=\frac{p_{k}}{q_{k}}$ for every $k \in N$. Let $\left(f_{k}\right)$ and $\left(f_{k}^{-1}\right)$ be both in ℓ_{∞}. Then $\ell_{\infty}\{p\} \cong \ell_{\infty}\{q\}(f)$.

Lemma 2.6 Let $q \in \ell_{\infty}$. Then $\ell_{\infty}\{p\} \subseteq \ell_{\infty}\{q\}$ if and only if

$$
\begin{equation*}
\liminf _{k} q_{k}\left(N p_{k}\right)^{-q_{k} p_{k}^{-1}}>0 \tag{5}
\end{equation*}
$$

for every integer $N>1$.
Lemma 2.7 Let $q \in \ell_{\infty}$ and $c_{0}\{p\} \cong c_{0}\{q\}$, then $c_{0}(p) \cong c_{0}(q)$.

3 Main Results

In this section we prove the results of this article.
Theorem 3.1 The classes $c_{0}\{M, \Delta, p, q\}, c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are linear spaces, for any sequence $p=\left(p_{k}\right)$ of strictly positive numbers.
Proof. We establish it for the case $c_{0}\{M, \Delta, p, q\}$ and rest of the cases will follow similarly. Let $\left(x_{k}\right),\left(y_{k}\right) \in c_{0}\{M, \Delta, p, q\}$ and $\alpha, \beta \in C$. Then there exists $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\begin{equation*}
\left[M\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}} t_{k} \rightarrow 0, \text { as } k \rightarrow \infty \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[M\left(\frac{q\left(\Delta y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}} t_{k} \rightarrow 0, \text { as } k \rightarrow \infty \tag{7}
\end{equation*}
$$

Let $\rho=\max \left\{2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right\}$. By (6) and (7), we then have

$$
\begin{aligned}
{\left[M\left(\frac{q\left(\alpha \Delta x_{k}+\beta \Delta y_{k}\right)}{\rho}\right)\right]^{p_{k}} t_{k} } & \leq D\left[M\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}} t_{k}+D\left[M\left(\frac{q\left(\Delta y_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}} t_{k} \\
& \rightarrow 0, \text { as } k \rightarrow \infty
\end{aligned}
$$

Hence $\left(\alpha x_{k}+\beta y_{k}\right) \in c_{0}\{M, \Delta, p, q\}$. Therefore $c_{0}\{M, \Delta, p, q\}$ is a linear space.

Theorem 3.2 The space $\ell_{\infty}\{M, \Delta, p, q\}$ is paranormed by

$$
g(x)=q\left(x_{1}\right)+\inf \left\{\rho^{\frac{p_{k}}{J}}: \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right) t^{\frac{1}{p_{k}}}\right\} \leq 1, \quad \rho>0\right\}
$$

where $J=\max (1, H)$.
Proof. Clearly $g(\theta)=0, g(-x)=g(x)$. Next let $x=\left(x_{k}\right), y=\left(y_{k}\right) \in \ell_{\infty}\{M, \Delta, p, q\}$. Then there exists some $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
M\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{1}}\right) t_{k}^{\frac{1}{p_{k}}} \leq 1 \text { and } M\left(\frac{q\left(\Delta y_{k}\right)}{\rho_{2}}\right) t_{k}^{\frac{1}{p_{k}}} \leq 1
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then we have

$$
\begin{aligned}
& \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta x_{k}+\Delta y_{k}\right)}{\rho}\right) t_{k}^{\frac{1}{p_{k}}}\right\} \\
& \quad \leq \frac{\rho_{1}}{\rho_{1}+\rho_{2}} \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right) t_{k}^{\frac{1}{p_{k}}}\right\}+\frac{\rho_{2}}{\rho_{1}+\rho_{2}} \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta y_{k}\right)}{\rho}\right) t_{k}^{\frac{1}{p_{k}}}\right\} \\
& \quad \leq 1
\end{aligned}
$$

Now we have

$$
\begin{aligned}
g(x+y)= & q\left(x_{1}+y_{1}\right)+\inf \left\{\left(\rho_{1}+\rho_{2}\right)^{\frac{p_{k}}{J}}: \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta x_{k}+\Delta y_{k}\right)}{\rho}\right)\right\} t_{k}^{\frac{1}{p_{k}}} \leq 1\right\} \\
\leq & q\left(x_{1}\right)+\inf \left\{\left(\rho_{1}\right)^{\frac{p_{k}}{J}}: \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{1}}\right)\right\} t_{k}^{\frac{1}{p_{k}}} \leq 1\right\} \\
& +q\left(y_{1}\right)+\inf \left\{\left(\rho_{2}\right)^{\frac{p_{k}}{J}}: \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta y_{k}\right)}{\rho_{2}}\right)\right\} t^{\frac{1}{p_{k}}} \leq 1\right\} \\
\leq & g(x)+g(y) .
\end{aligned}
$$

Let $\eta \in C$, then the continuity of the product follows from the following equality.

$$
\begin{aligned}
g(\eta x) & =q\left(\eta x_{1}\right)+\inf \left\{\rho^{\frac{p_{k}}{J}}: \sup _{k \geq 1}\left\{M\left(\frac{q\left(\eta \Delta x_{k}\right)}{\rho}\right)\right\} t_{k}^{\frac{1}{p_{k}}} \leq 1, \quad \rho>0\right\} \\
& =|\eta| q\left(x_{1}\right)+\inf \left\{(|\eta| r)^{\frac{p_{k}}{J}}: \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta x_{k}\right)}{r}\right)\right\} t_{k}^{\frac{1}{p_{k}}} \leq 1, \quad r>0\right\},
\end{aligned}
$$

where $\frac{1}{r}=\frac{|\eta|}{\rho}$
Theorem 3.3 Let $p \in \ell_{\infty}$, then the spaces $c_{0}\{M, \Delta, p, q\}, c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are complete paranormed spaces, paranormed by g.

Proof. We prove it for the case $\ell_{\infty}\{M, \Delta, p, q\}$ and the other cases can be established similarly. Let $\left(x^{n}\right)$ be a Cauchy sequence in $\ell_{\infty}\{M, \Delta, p, q\}$, where $x^{n}=\left(x_{k}^{n}\right)_{k=1}^{\infty}$ for all $n \in \mathbb{N}$. Then $g\left(x^{i}-x^{j}\right) \rightarrow 0$, as $i, j \rightarrow \infty$.

For a given $\varepsilon>0$, let r and x_{0} be such that $\frac{\varepsilon}{r x_{0}}>0$ and $M\left(\frac{r x_{0}}{2}\right) \geq \sup _{k \geq 1}\left(p_{k}\right)^{t_{k}}$. Now $g\left(x^{i}-x^{j}\right) \rightarrow 0$, as $i, j \rightarrow \infty$ implies that there exists $m_{0} \in \mathbb{N}$ such that

$$
g\left(x^{i}-x^{j}\right)<\frac{\varepsilon}{r x_{0}}, \text { for all } i, j \geq m_{0}
$$

Then we obtain $q\left(x_{1}^{i}-x_{1}^{j}\right)<\frac{\varepsilon}{r x_{0}}$ and

$$
\begin{equation*}
\inf \left\{\rho^{\frac{p_{k}}{J}}: \sup _{k \geq 1}\left\{M\left(\frac{q\left(\Delta x_{k}^{i}-\Delta x_{k}^{j}\right)}{\rho}\right) t_{k}^{\frac{1}{p_{k}}}\right\} \leq 1, \quad \rho>0\right\}<\frac{\varepsilon}{r x_{0}} \tag{8}
\end{equation*}
$$

This shows that $\left(x_{1}^{i}\right)$ is a Cauchy sequence in X. Since X is complete then $\left(x_{1}^{i}\right)$ is convergent in X.

Let $\lim _{i \rightarrow \infty} x_{1}^{i}=x_{1}$, thus we have $\lim _{j \rightarrow \infty} q\left(x_{1}^{i}-x_{1}^{j}\right)<\frac{\varepsilon}{r x_{0}}$, which imply that

$$
q\left(x_{1}^{i}-x_{1}\right)<\frac{\varepsilon}{r x_{0}}
$$

Again from (8), we have

$$
M\left(\frac{q\left(\Delta x_{k}^{i}-\Delta x_{k}^{j}\right)}{g\left(x^{i}-x^{j}\right)}\right) t_{k}^{\frac{1}{p_{k}}} \leq 1
$$

These implies that

$$
M\left(\frac{q\left(\Delta x_{k}^{i}-\Delta x_{k}^{j}\right)}{g\left(x^{i}-x^{j}\right)}\right) \leq\left(p_{k}\right)^{t_{k}} \leq M\left(\frac{r x_{0}}{2}\right)
$$

Thus we obtain

$$
q\left(\Delta x_{k}^{i}-\Delta x_{k}^{j}\right)<\frac{r x_{0}}{2} \cdot \frac{\varepsilon}{r x_{0}}<\frac{\varepsilon}{2}
$$

Therefore, $\left(\Delta x_{k}^{i}\right)$ is a Cauchy sequence in X for all $k \in \mathbb{N}$.
Hence $\left(\Delta x_{k}^{i}\right)$ converges in X. Let $\lim _{i \rightarrow \infty} \Delta x_{k}^{i}=y_{k}$ for all $k \in \mathbb{N}$. Thus we have $\lim _{i \rightarrow \infty} \Delta x_{2}^{i}=y_{1}-x_{1}$. Proceeding in this way, $\lim _{i \rightarrow \infty} \Delta x_{k+1}^{i}=y_{k}-x_{k}$ for all $k \in \mathbb{N}$.

Next we have by continuity of M,

$$
\lim _{j \rightarrow \infty} \sup _{k \geq 1} M\left(\frac{q\left(\Delta x_{k}^{i}-\Delta x_{k}^{j}\right)}{\rho}\right) t_{k}^{\frac{1}{p_{k}}} \leq 1
$$

which implies that

$$
\sup _{k \geq 1} M\left(\frac{q\left(\Delta x_{k}^{i}-\Delta x_{k}\right)}{\rho}\right) t_{k}^{\frac{1}{p_{k}}} \leq 1
$$

Let $i \geq m_{0}$, then taking infimum of such ρ 's we have $g\left(x^{i}-x\right)<\varepsilon$.

Thus $\left(x^{i}-x\right) \in \ell_{\infty}\{M, \Delta, p, q\}$. Hence $x=x^{i}-\left(x^{i}-x\right) \in \ell_{\infty}\{M, \Delta, p, q\}$, since $\ell_{\infty}\{M, \Delta, p, q\}$ is a linear space. Therefore $\ell_{\infty}\{M, \Delta, p, q\}$ is complete.

Using the technique applied in establishing the above result, one can prove the following result.

Proposition 3.4 The spaces $c_{0}\{M, \Delta, p, q\}, c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are K-spaces.

Since the inclusions $c_{0}\{M, \Delta, p, q\} \subset \ell_{\infty}\{M, \Delta, p, q\}$ and $c\{M, \Delta, p, q\} \subset \ell_{\infty}\{M, \Delta, p, q\}$ are proper, in view of Theorem 3.3 we have the following result.

Proposition 3.5 The spaces $c_{0}\{M, \Delta, p, q\}$ and $c\{M, \Delta, p, q\}$ are nowhere dense subsets of $\ell_{\infty}\{M, \Delta, p, q\}$.

Theorem 3.6 The spaces $c_{0}\{M, \Delta, p, q\}, c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not solid in general.

The spaces $c_{0}\{M, \Delta, p, q\}, c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not solid follow from the following examples.

Example 3.1 Let $X=c, M(x)=x$ and $p_{k}=1$ for all $k \in \mathbb{N}$. Let the sequence $\left(x_{k}\right)$ be defined by $x_{k}=\left(x_{k}^{i}\right)$ where $x_{k}^{i}=(1,1,1, \ldots)$ for all $k \in \mathbb{N}$ which is in $c_{0}\{M, \Delta, p, q\}$. Now consider the sequence $\left(\alpha_{k}\right)$ defined by $\alpha_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$. Then $\left(\alpha_{k} x_{k}\right)$ does not belong to $c_{0}\{M, \Delta, p, q\}$. Hence the space $c_{0}\{M, \Delta, p, q\}$ is not solid in general.

Example 3.2 Let $X=c, M(x)=x$ and $p_{k}=1$ for all $k \in \mathbb{N}$. Let the sequence $\left(x_{k}\right)$ be defined by $x_{k}=\left(x_{k}^{i}\right)$ where $x_{k}^{i}=(k, k+1, k+2, \ldots)$ for all $k \in \mathbb{N}$. Then the sequence $\left(x_{k}\right)$ is in $c\{M, \Delta, p, q\}$ as well as in $\ell_{\infty}\{M, \Delta, p, q\}$. Now consider the sequence $\left(\alpha_{k}\right)$ defined by $\alpha_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$. Then $\left(\alpha_{k} x_{k}\right)$ belong to neither $\ell_{\infty}\{M, \Delta, p, q\}$ nor $c\{M, \Delta, p, q\}$. Hence the spaces $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not solid in general.

Theorem 3.7 The spaces $c_{0}\{M, \Delta, p, q\}, c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ are not symmetric in general.

To show that the spaces are not symmetric in general, consider the following example.

Example 3.3 Let $X=c, M(x)=x$ and $p_{k}=2$ for all $k \in \mathbb{N}$. Let the sequence $\left(x_{k}\right)$ be defined by $x_{k}=\left(x_{k}^{i}\right)$ where $x_{k}^{i}=(k, k+1, k+2, \ldots)$ for all $k \in \mathbb{N}$. Then the sequence $\left(x_{k}\right)$ is in $c\{M, \Delta, p, q\}$ as well as in $\ell_{\infty}\{M, \Delta, p, q\}$. Now consider the rearrangement $\left(y_{k}\right)$ of $\left(x_{k}\right)$ defined as

$$
\left(y_{k}\right)=\left(x_{1}^{i}, x_{4}^{i}, x_{2}^{i}, x_{9}^{i}, x_{3}^{i}, x_{16}^{i}, x_{5}^{i}, \ldots\right)
$$

Then $\left(y_{k}\right)$ neither belongs to $c\{M, \Delta, p, q\}$ nor to $\ell_{\infty}\{M, \Delta, p, q\}$.

Theorem 3.8 Let M_{1} and M_{2} be two Orlicz functions satisfying the Δ_{2}-condition then
(i) if $\left(p_{k}\right) \in \ell_{\infty}$ then $Z\left\{M_{1}, \Delta, p, q\right\} \subseteq Z\left\{M_{2} \circ M_{1}, \Delta, p, q\right\}$ for $Z=c$, c_{0} and ℓ_{∞}.
(ii) $Z\left\{M_{1}, \Delta, p, q\right\} \cap Z\left\{M_{2}, \Delta, p, q\right\} \subseteq Z\left\{M_{1}+M_{2}, \Delta, p, q\right\}$ for $Z=c, c_{0}$ and ℓ_{∞}.

Proof. (i) Let $\left(x_{k}\right) \in c_{0}\{M, \Delta, p, q\}$. Then from the definition we have, there exists $\rho>0$ such that

$$
\left\{\left[M_{1}\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right)\right]^{p_{k}} t_{k}\right\} \rightarrow 0, \text { as } k \rightarrow \infty
$$

Let $y_{k}=M_{1}\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right)$ for all $k \in \mathbb{N}$. Let $0<\delta<1$ be chosen. For $y_{k} \geq \delta$ we have

$$
y_{k}<\frac{y_{k}}{\delta}<1+\frac{y_{k}}{\delta}
$$

Since M_{2} satisfies Δ_{2}-condition, therefore there exists a $K \geq 1$ such that

$$
M_{2}\left(y_{k}\right)<\frac{K y_{k}}{2 \delta} M_{2}(2)+\frac{K y_{k}}{2 \delta} M_{2}(2)=K M_{2}(2) \frac{y_{k}}{\delta}
$$

Then we have

$$
\begin{aligned}
{\left[\left(M_{2} \circ M_{1}\right)\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right)\right]^{p_{k}} t_{k} } & =\left[M_{2}\left\{M_{1}\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right)\right\}\right]^{p_{k}} t_{k} \\
& =\left[M_{2}\left(y_{k}\right)\right]^{p_{k}} t_{k} \\
& \leq \max \left\{\sup _{k}\left(\left[M_{2}(1)\right]^{p_{k}}\right), \sup _{k}\left(\left[K M_{2}(2) \delta^{-1}\right]^{p_{k}}\right)\right\}\left[y_{k}\right]^{p_{k}} t_{k} \\
& \rightarrow 0, \text { as } k \rightarrow \infty
\end{aligned}
$$

The other cases can be proved following the above technique.
(ii) Let $\left(x_{k}\right) \in c_{0}\left\{M_{1}, \Delta, p, q\right\} \cap c_{0}\left\{M_{2}, \Delta, p, q\right\}$, then there exists $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\left\{\left[M_{1}\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}} t_{k}\right\} \rightarrow 0, \text { as } k \rightarrow \infty
$$

and

$$
\left\{\left[M_{2}\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}} t_{k}\right\} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

Let $\rho=\max \left\{\rho_{1}, \rho_{2}\right\}$. The rest follows from the following inequality.

$$
\left\{\left[\left(M_{1}+M_{2}\right)\left(\frac{q\left(\Delta x_{k}\right)}{\rho}\right)\right]^{p_{k}} t_{k}\right\} \leq D\left\{\left[M_{1}\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{1}}\right)\right]^{p_{k}} t_{k}+\left[M_{2}\left(\frac{q\left(\Delta x_{k}\right)}{\rho_{2}}\right)\right]^{p_{k}} t_{k}\right\} .
$$

Thus $c_{0}\left\{M_{1}, \Delta, p, q\right\} \cap c_{0}\left\{M_{2}, \Delta, p, q\right\} \subset c_{0}\left\{M_{1}+M_{2}, \Delta, p, q\right\}$. The cases $c\{M, \Delta, p, q\}$ and $\ell_{\infty}\{M, \Delta, p, q\}$ can be proved in a similar way.

It can be easily shown that:

Proposition 3.9 $Z\{M, p, q\} \subseteq Z\{M, \Delta, p, q\}$ for $Z=c, c_{0}$ and ℓ_{∞}.
The following results can be obtained from the lemmas listed in section 2 .
Proposition 3.10 Let $h=\inf p_{k}$ and $H=\sup p_{k}$ then the following are equivalent
(i) $H<\infty$ and $h>0$,
(ii) $c_{0}\{M, \Delta, p, q\}=c_{0}(M, \Delta, p, q)$
(iii) $\ell_{\infty}\{M, \Delta, p, q\}=\ell_{\infty}(M, \Delta, p, q)$.

Proposition 3.11 Let p, s be two sequences of strictly positive numbers. Then $c_{0}\{M, \Delta, p, q\} \cong c_{0}\{M, \Delta, s, q\}$ if and only if there exists a sequence $u=\left(u_{k}\right)$ of strictly positive numbers such that eq.(1) and eq.(2) hold.

Proposition 3.12 Let the sequence $a=\left(a_{k}\right)=\left(s_{k}^{s_{k}^{-1}} p_{k}^{-p_{k}^{-1}}\right)$. Then $c_{0}\{M, \Delta, p, q\} \cong$ $c_{0}\{M, \Delta, s, q\}$ if and only if eq.(3) and eq.(4) hold.

Proposition 3.13 Let the sequence $a=\left(a_{k}\right)=\left(s_{k}^{s_{k}^{-1}} p_{k}^{-p_{k}^{-1}}\right)$. Then

$$
\lim _{k \rightarrow \infty}\left(\frac{1}{p_{k}}-\frac{1}{s_{k}}\right)=0 \text { implies } c_{0}\{M, \Delta, p, q\} \cong c_{0}\{M, \Delta, s, q\}
$$

Proposition 3.14 Let $f_{k}=\frac{p_{k}}{s_{k}}$ for every $k \in \mathbb{N}$. Let $\left(f_{k}\right)$ and $\left(f_{k}^{-1}\right)$ both be in ℓ_{∞}. Then $\ell_{\infty}\{M, \Delta, p, q\} \cong \ell_{\infty}\{M, \Delta, s, q\}(f)$.

Proposition 3.15 Let $s=\left(s_{k}\right) \in \ell_{\infty}$. Then $\ell_{\infty}\{M, \Delta, p, q\} \subseteq \ell_{\infty}\{M, \Delta, s, q\}$ if and only if eq.(5) holds.

Proposition 3.16 Let $s=\left(s_{k}\right) \in \ell_{\infty}$ and $c_{0}\{M, \Delta, p, q\} \cong c_{0}\{M, \Delta, s, q\}$ then $c_{0}(M, \Delta, p) \cong c_{0}(M, \Delta, q)$.

References

[1] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24(1981), 169176.
[2] M. A. Krasnoselkii and Y. B. Rutitsky, Convex Functions and Orlicz Spaces, Groningen, Netherlands, 1961.
[3] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
[4] C. G. Lascarides, On the equivalence of certain sets of sequences, Indian Jour. Math., 25(1)(1983), 41-52.
[5] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64(1968), 335-345.
[6] H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27(1951), 508-512.
[7] W. H. Ruckle, FK- spaces in which the sequences of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
[8] S. Simons, The spaces $\ell\left(p_{\nu}\right)$ and $m\left(p_{\nu}\right)$, Proc. London Math Soc., 15(1965), 422-436.
[9] B. C. Tripathy, On some classes of difference paranormed sequence spaces associated with multiplier sequences, Internet J. Math. Sci., 2(1) (2003), 159-166.
(Received 25 August 2005)
Binod Chandra Tripathy ${ }^{1}$ and Bipul Sarma ${ }^{2}$
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Paschim Boragaon; Garchuk
Guwahati - 781 035; India.
e-mail : ${ }^{1}$ tripathybc@yahoo.com, tripathybc@rediffmail.com,
${ }^{2}$ sarmabipul01@yahoo.co.in.

