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Abstract : In this paper, we introduce and study a new type of generalized mixed

vector variational-like inequalities and a new type of system of generalized mixed
vector variational-like inequalities in reflexive Banach spaces. Firstly, we introduce
the new concept of pseudo-monotonicity for vector multi-valued mappings, and
prove an existence theorem of solution for generalized mixed vector variational-
like inequalities by using the Fan-KKM theorem. Secondly, we introduce a new
type of system of generalized mixed vector variational-like inequalities and by using
the Kakutani-Fan-Glicksberg fixed point theorem, some new existence results of
solution for system of generalized mixed vector variational-like inequalities are
obtained under some suitable conditions.
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1 Introduction

Vector variational inequality (VVI) was first introduced by Giannessi [1] in
finite dimensional Euclidean space in 1980. Later on, Chen and Cheng [2] proposed
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the vector variational inequality in infinite-dimensional spaces and applied it to
the vector optimization problem. Since then, a lot of applications have been
found. It has shown to be a powerful tool in the mathematical investigation
of optimization topics. For the past years, vector variational inequalities and
their generalizations have been studied and applied in various directions. (see
[3-10]). It is worth noting that vector variational-like inequalities are important
generalization of vector variational inequalities related to the class of n-connected
sets which is much more general than the class of convex sets (see [11, 12]).

It is well known that one of the most frequently used hypotheses in the theory
of the variational inequality problems is the monotonicity of a nonlinear mapping.
There are many kinds of generalizations of the monotonicity in the literature of
recent years, such as pseudo-monotonicity, quasi-monotonicity, semi-monotonicity
relaxed 7 — a-semi-monotonicity, etc. (see [3-5]).

On the other hand, some critical and attractive problems related to variational
inequalities and complementarity problems were considered in recent papers. In
2003, Huang and Fang [13] introduced systems of order complementarity problems
and established some existence results by fixed point theory. In [14] Kassy and
Kolumbn introduced systems of variational inequalities and proved the existence
theorem by using the Ky Fan lemma. Later on, Kassay et al. [15], introduced and
studied Minty and Stampacchia variational inequality systems by the Kakutani-
Fan-Glicksberg fixed point theorem. Recently, in [10], Zhao and Xia introduced
and studied systems of vector variational-like inequalities by the same fixed point
theorem.

Motivated and inspired by the research going on in this direction, in this paper,
we introduce and study a new type of generalized mixed vector variational-like
inequalities and a new type of system of generalized mixed vector variational-like
inequalities in reflexive Banach spaces. Firstly, we introduce the new concept
of pseudo-monotonicity for vector multi-valued mappings, and prove an existence
theorem of solution for generalized mixed vector variational-like inequality problem
by using the Fan-KKM theorem. Secondly, we introduce a new type of system
of generalized mixed vector variational-like inequality problem and prove some
existence theorems of solution for system of generalized mixed vector variational-
like inequality problem by using the Kakutani-Fan-Glicksberg fixed point theorem.

2 Preliminaries

Let X and Y be two real Banach spaces, L(X,Y") be the family of all linear
bounded operators from X to Y, and K be a nonempty closed and convex subset
of X. Recall that a subset C' of Y is said to be a closed convex cone if C' is closed
and C+C C C, A\C C C for A > 0. In addition, if C' # Y, then C is called a
proper closed convex cone. A closed convex cone is pointed if C'N (—C) = {0}.
A mapping C : K — 2Y is said to be a cone mapping if C(z) is a proper closed
convex pointed cone and int C(x) # @ for each z € K.

Let S,7 : K x K — 2LXY) o K — 2L(XY) he three vector set-valued
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mappings and let g : K x K — Y and n : K x K — K are two bi-mappings.
In this paper, we consider the following two kinds of generalized mixed vector
variational-like inequalities:

(i) generalized mized vector variational-like inequality problem (for short, the
(GMVVLIP)): Find 29 € K such that for each y € K, there exists ¢ € F(x)
such that

(¢, n(y, o)) + g(y, wo) ¢ -int C(xo) (2.1)

(ii) system of generalized mized vector variational-like inequality problem (for
short, the (SGMVVLIP)): Find (x,y0) € K x K such that for each z € K,
there exist & € S(xo,yo) and ¢ € T'(xo, yo) satisfying

{ (€,n(z20)) + g(2,20) ¢ -int C(ao)

(¢:n(z,90)) + 9(2,90) ¢ -int C(yo) 22)

For our main results, we need the following definitions and lemmas.

Let C : K — 2Y be a set-valued maping such that for each z € K, C(z) is a
closed convex pointed cone with intC'(z) # 0. The following notations will be used
in the sequel:

C_=()Cl)

reK

Definition 2.1 ([7, 16]). Let X, Y be Banach spaces, K be nonempty subset of
X. Let T : K — 2(XY) be a set-valued mapping.

(i) T is monotone on K if for any z,y € K, it holds that
—my—z)eC., VEeT(z), neT(y).

(ii) T is Cy-pseudomonotone on K if for every pair of points z € K, y € K and
for all £ € T(x), ¢ € T(y), we have

&,y —z) ¢ -int C(z) implies ((,y —x) ¢ -int C(x).

(iil) T is generalized C-pseudomonotone on K if for every pair of points x € K,
y € K, there exists £ € T'(z) such that

(§y—x) ¢-int C(x)
implies that there exists ¢ € T'(y) such that
Gy —x) ¢ -int C(a).

Definition 2.2 ([4]). A vector set-valued mapping T : K x K — 25(XY) g gaid
to be a vector set-valued semi-monotone mapping on K if it satisfies the following
conditions:
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(1) for each u € K, the mapping T'(u,-) : K — 2L(XY) is a vector set-valued
monotone mapping in the sense of Definition 2.1;

(2) for each v € K, the mapping T'(-,v) : K — 2(X:Y) is lower semi-continuous
on K, where K is equipped with the weak topology, and L(X,Y") is equipped
with the uniform convergence topology of operators.

For more details see, for instances, [4].
Now, we introduce some new definitions that we will use in our results.

Definition 2.3. Let X, Y be Banach spaces, K be nonempty subset of X. Let
n:KxK—Kandg: KxK —Y be two bi-mappings. Let T : K — 2(XY)
be a vector set-valued mapping.

(i) T is n-pseudomonotone with respect to g on K if for every pair of points
z € K,ye K and for all £ € T(x), ¢ € T(y), we have

(& ny,x)) +g(y,x) ¢ -int C(x) implies ((,n(y,x)) + g(y,x) ¢ -int C(z).

(ii) T is weakly n-pseudomonotone with respect to g on K if for every pair of
points x € K, y € K, there exists £ € T(x) such that

implies that there exists ( € T'(y) such that

(¢, n(y, =) + g(y,z) & -int C(x).

Remark 2.4.

(i) If T is n-pseudomonotone with respect to g on K, then T is weakly n-
pseudomonotone with respect to g on K.

(i) If g(y,x) =0 for all x, y € K then the concept of weakly n-pseudomonotone
with respect to g reduces to n-pseudomonotone introduced in [17].

(i) If n(y,x) =y —x and g(y,x) = 0 for all x, y € K then the concept of n-
pseudomonotone with respect to g reduces to C,-pseudomonotone introduced
in [16] and the concept of weakly n-pseudomonotone with respect to g reduces
to generalized C-pseudomonotone introduced in [7].

Definition 2.5. A vector set-valued mapping T : K x K — 2E(5Y) ig said to
be semi-n-pseudomonotone with respect to g on K if it satisfies the following
conditions:

(1) for each u € K, the mapping T'(u,-) : K — 2L(X.Y) g p-pseudomonotone
with respect to g on K in the sense of Definition 2.3;

(2) for each v € K, the mapping T'(-,v) : K — 2(X:Y) is lower semi-continuous
on K, where K is equipped with the weak topology, and L(X,Y") is equipped
with the uniform convergence topology of operators.
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Definition 2.6 ([17]). Let n : K x K — K be a bi-mapping. Then a mapping
T : K — 2(5Y) is said to be V-hemicontinuous on K if for every z, y € K ,a > 0
and to € T(xz+ay), there exists to € T'(x) such that for any z € X, (ta, 2) — (to, 2)
as a — 0T,

Lemma 2.7. Let X, Y be Banach spaces and K be a nonempty convex subset of
X and let C : K — 2V be a cone mapping. Letn: KxK — K andg: KxK —Y
be two continuous and affine mappings such that n(z,z) = 0 = g(z,z), Vo € K.
Let T : K — 2L(5Y) be g vector set-valued mapping and we consider the following
problms:

(1) xo € K such that for each y € K, there exists &€ € T(xg) such that
(&, ny, z0)) + 9(y, wo) ¢ —int C(xo);
(II) zo € K such that for each y € K, there exists £ € T(y), such that
(& ny, z0)) + 9(y, wo) ¢ —int C(xo);
(ITIT) xy € K such that for each y € K and for each & € T(y), it holds that
(€ n(y, o)) + 9(y, x0) ¢ —int C(xo).

Then,
(i) Problem (III) implies Problem (1I);
(ii) Problem (II) implies Problem (1) if T is V -hemicontinuous;

(i1i) Problem (I) implies Problem (III) if T is n-pseudomonotone with respect
to g on K and implies Problem (II) if T is weakly n-pseudomonotone with
respect to g on K.

Proof. (i) It is clear from the definition.
(ii) Suppose that T is V-hemicontinuous on K and let x9 € K be a solution
of Problem (II). Then for each y € K, there exists & € T'(y), such that

(& ny, o)) + g(y, o) ¢ —int C(xo)

Now, for each y € K and a € (0,1), we let 2, = ay + (1 — a)zo. By the convexity
of K, we have z, € K, Va € (0,1). It implies that for any a € (0, 1), there exists
€a € T(ay + (1 — a)xo), such that

(€asn(Ta, x0)) + 9(Ta, 0) ¢ —int C(x0),

since n and g are affine and n(z,z) = 0 = g(x, x), we obtain that

a({€a, (Y, w0)) + 9(y,0)) ¢ —int C(x0).
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Since —int C(zg) is a convex cone, we get

(€as (Y, 0)) + g(y, w0) ¢ —int C(xp).

By V- hemicontinuity of T, there exists & € T(zg) such that

(€0sn(y; 0)) + g(y, w0) ¢ —int C(xo).

Consequently, for each g € K, there exists £ € T(x() such that

(€0sn(y; 0)) + g(y, w0) ¢ —int C(xo).

(iii) The result follow from the definition of n-pseudomonotone with respect
to g and weakly n-pseudomonotone with respect to g, respectively. O

Definition 2.8 (KKM mapping [18]). Let K be a nonempty subset of a topological
vector space E. A multivalued mapping G : K — 2F is said to be a KKM mapping
if for any finite subset {y1, y2, ..., yn} of K, we have

Co{ylu Y2, -eey yn} C U?:lG(yl)
where co{y1,y2, ..., yn} denotes the convex hull of {y1,y2, ..., yn}

Lemma 2.9 (Fan-KKM Theorem [18]). Let K be a nonempty convex subset of a
Hausdorff topological vector space E and let G : K — 2F be a KKM mapping with
closed values. If there exists a point yo € K such that G(yo) is a compact subset

of K, then NyerxG(y) # 0.

Lemma 2.10 (Kakutani-Fan-Glicksberg [19]). Suppose that X is a Hausdorff

locally convex space and K is a nonempty conver compact subset of X. If T : K —
2K is an upper semi-continuous mapping with nonempty convex closed values, then

T has a fived point in K, i.e., there exists xg € K such that xo € T(xo).

Lemma 2.11 ([4]). Let X, Y be two Banach spaces, K C X. Suppose that
the set-valued mapping T : K — 2Y is upper semi-continuous at xo with T (z¢)
compact. If v, € K, n=1,2,... with x,, — xo, and y, € T(x,), then there exists
Yo € T(xo) and a subsequence {yn, } of {yn} such that y,, — yo.

Definition 2.12. A multivalued mapping T : K — 2V is called concave if for any
z,y € K, a€(0,1),

aT(xz)+ (1 —a)T(y) C T(az+ (1 — a)y).
Definition 2.13. Let W : X — 2Y. The graph of W, denoted by G(W), is

GW)={(z,y) e X xY |z e X, yeW(x)}.
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3 Existence results for generalized mixed
variational-like inequalities

In this section, we will prove the existence theorem of solutions for generalized
mixed variational-like inequalities with weakly n-pseudomonotone with respect to
g on K by using the Fan-KKM theorem.

Theorem 3.1. Let X be a reflexive Banach space and Y a Banach space. Let
K be a nonempty closed bounded convex subset of X. Let C : K — 2Y be a
multivalued mapping such that for every x € K, C(x) is proper closed convex cone
with intC(z) # 0, and W : K — 2Y be defined by W(z) = Y\{—int C(z)} such
that the graph G(W) of W is weakly closed in X XY and W is concave. Let
n: KxK — Kandg: KxK — Y be two continuous and affine mappings
satisfy n(z,z) =0 = g(z,z), Vo € K. Suppose that T : K — 25C5Y) s nonempty
compact valued, weakly n-pseudomonotone with respect to g and V -hemicontinuous

on K. Then (GMVVLIP) is solvable.
Proof. Let G, H : K — 2X be two multivalued mapping defined by

G(y) = {x € K : 3¢ € T'(x) such that (£, n(y,z)) + g(y,z) ¢ —int C(z)},

H(y) ={z € K:3¢ € T(y) such that {(¢,n(y,z)) + g(y,x) &€ —int C(x)},

for all y € K. Since y € G(y) and y € H(y), we get that G(y) and H(y) are
nonempty. Next, we divided the proof of the theorem in to the following five
steps.

Step 1: We prove that G is a KKM mapping on K. Assume that G is not
KKM mapping. Then there exists a finite set {x1,x2,...,x,} C K and ¢; > 0,7 =
1,2,...,n with 37" | ; = 1 such that © = Y " | t;z; ¢ UG (x;). It follows from
the definition of G that for all £ € T'(z),

<§,’I](I“$)> +g(xz,x) € —int C(I)a 1= 1725 ey T

Since —int C(z) is a convex cone and ¢; > 0,4 = 1,2,...,n with > /" ¢, = 1, we
have

> till€ (@i, 2)) + g(as, )] € —int C(a).
i=1
Since 1 and g are affine, we get that
0 (& n(x, z)) + 9(z,z)

= (¢ n(z tiTi, T)) + Q(Z ti%;, T)

= Y tien(zi ) + Y tiglai,z)
=1 i=1
= Zti[<§,n(xi,x)> +g(xi, x)] € —int C(x),

i=1



226 Thai J. Math. 9 (2011)/ S. Plubtieng and W. Sriprad

where 6 denotes the zero vector in Y. Thus 6 € —int C'(z). This is a contradiction
with C(z) is proper. Hence G is a KKM mapping on K.

Step 2: We prove that G(y) C H(y) for all y € K and H is a KKM mapping
on K. Since T is weakly n-pseudomonotone with respect to g, we derive that
G(y) C H(y) for all y € K. Thus H is also a KKM mapping since G is a KKM

mapping.

Step 3: We prove that for each y € K, H(y) is closed. For any y € K, let
{zn} be a sequence in H(y) such that z, — z* € K. Since z, € H(y), for all
n € N, there exists ¢, € T'(y) such that

(Cns (Y, 2n)) + 9(y, 2n) & —int C(an),

(Cns (Y, Tn)) + 9y, 2n) € W(xp).

Since T'(y) is compact, without lost of generality, we assume that there exists
¢o € T(y) such that ¢, — (o. Since W is concave, we have that the graph G(W)
of W is convex. Thus we obtain that graph G(W) of W is closed in X x Y since
it is convex and weakly closed. Now, since 7(-,-), (-,-) and g are continuous, W
has a closed graph in X x Y and (,, — (o, x, — ¥, we have

(Cnsn(ys zn)) + 9(y, n) — (Co,n(y, ")) + g(y, z*) € W(z").

Consequently, we have

(Co,n(y, z")) + gy, =%) & —int C(z").
Hence z* € H(y) and therefore H(y) is closed.

Step 4: For any y € K, we prove that H(y) is convex. Let 21, x2 € H(y)
and a1, az > 0 such that a; + as = 1. Then there exist ( € T(y) such that

(€ ny,21)) + g(y, 1) ¢ —int C(1) (3.1)
and
(Cnly,22)) + gy, 2) ¢ —int C(x2). (32)
Multiplying (3.1) and (3.2) by a; and as respectively and combining, we get that
a1[(¢n(y, z1)) + gy, x1)] + a2[(C n(y, 22)) + g(y, 22)] € 1 W (21) + 02 W (22).

Since n and g are affine and W is concave, we have

(Cn(y, crry + azxa)) + g(y, cqxy + apws)

= a1[((,n(y, z1)) + g(y, 21)] + a2[(C, n(y, ¥2)) + g(y, 72)]
S 041W({E1) + OéQW(ZZ?Q) - W(Oq:l?l + OAQZEQ).
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That is
(¢, n(y, a1m1 4+ agx2)) + gy, 1 + o) ¢ —intCa1r1 + azrs).

Hence ay1 + agze € H(y) and so H(y) is convex.

Step 5: We prove that the generalized mixed vector variational-like inequality
(GMVVLIP) is solvable. Firstly, we prove that ﬂyeK H(y) # 0. Now, we equip X
with the weak topology. Then K is weakly compact since X is a reflexive Banach
space and K is a closed bounded convex subset of X. Also, since H(y) is closed
convex subset of a reflexive Banach space, we get that H(y) is weakly closed.
Since K is weakly compact and H(y) C K, it follows directly that H(y) is weakly
compact. Then by KKM-Fan Theorem Lemma 2.9, we have

() H(y) # 0.

yeK

Next, we claim that (¢ G(y) = ,cx H(y). Fromstep 2, we get that (), c G(y)
Nyex H(y) and from Lemma 2.7, we have (), <, G(y) 2 (,cx H(y), so we ob-
tain that Nyex GW) =Nyex H(y). Thus ﬂyeK G(y) # (. Therefore, there exists
xo € K such that for each y € K, there exists £ € T'(zo) such that

<§7 77(97 :EO)> + g(yu (EO) ¢ —int C(.’I]Q)
This complete the proof. O

Now, if we setting g(y,z) = 0 for all y, € K in Theorem 3.1 then we get the
following Corollary.

Corollary 3.2 ([17]). Let X be a reflexive Banach space and 'Y a Banach space.
Let K be a nonempty closed bounded convex subset of X. Let C : K — 2 be a mul-
tiwalued mapping such that for every x € K, C(x) is proper closed pointed convex
cone with intC(z) # 0, and W : K — 2Y be defined by W (x) = Y\{—int C(z)}
such that W s upper semicontinuous concave. Let n: K x K — K be continuous
and affine mappings such that n(xz,z) = 0, Vo € K. Suppose that T : K —
2LXY) s nonempty compact valued, n-pseudomonotone and V -hemicontinuous
on K. Then, there exists xg € K such that for each y € K, there exists £ € T'(z)
such that

(€, ny, o)) ¢ —int C(zo).

4 Existence results for systems of generalized
mixed vector variational-like inequalities

In this section, by using the Kakutani-Fan-Glicksberg fixed point theorem,
we prove some existence theorems of solutions for systems of generalized mixed
vector variational-like inequality problems (SGMVVLIP). We first consider a (SG-
MVVLIP) defined on a bounded closed convex subset of a real reflexive Banach

<
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space and finally, we also consider a (SGMVVLIP) defined on an unbounded closed
convex set.

Theorem 4.1. Let X be a real reflexive Banach space, Y a Banach space, K
a nonempty bounded closed convex subset of X. Suppose that the mapping C :
K — 2Y is a cone mapping and the mapping, and W : K — 2V be defined
by W(x) = Y\{—int C(z)} such that the graph G(W) of W is weakly closed
in X XY and W is concave. Letn : K x K — K and g : K x K — Y be
two continuous and affine mappings satisfy n(x,z) =0 = g(x,z) Ve € K. Let
S, T: K x K — 2MXY) with nonempty convex compact values and satisfies the
following conditions:

(i) For each z € K, S(-,2) : K — 2LXY) and T(z,.) : K — 21X gre
n-pseudomonotone with respect to g on K;
(ii) for each z € K, S(z,-) : K — 2EXY) and T(-,2) : K — 285Y) gre lower
semicontinuous on K, where K equipped with the weak topology and L(X,Y)
18 equipped with the uniform convergence topology operator;
(iii) for each z € K, the mappings S(-,z) : K — 2FC5Y) and T(z,.) : K —
2LXY) are continuous on each finite dimensional subspace of X.

Then the (SGMVVLIP) has a solution in K.

Proof. Let M be a finite dimentional subspace of X such that Ky = KN M # 0.
For any (z,y) € K x K, we consider the following problem:

(P)ar Find (0, y0) € Kar x Kpy such that for all z € K there exist & € S(zo, x)
and (o € T'(y, yo) satisfying

(€0,n(z,20)) + g(z,20) ¢ -int C(x0)
(Cosn(z,90)) + g(2,90) & -int C(yo)-

By our assumptions, condition (i) and (iii), we know that S(-,z), T(y,-), n and
g are satisfy the condition of Theorem 3.1. It follows from Theorem 3.1 that the
problem (P)y; is solvable.

Define a multi-valued mapping F : Ky x Ky — 28M*Ex 1y

(4.1)

F(z,y) = {(x0,90) € Kp X Kpr : (0, yo0) solve problem (P)as},
V(x,y) € Ky x Kpr. Next, we will show that this mapping has at least one fixed
point in K.

Step 1: It is clear that F(x,y) is nonempty and bounded for each (z,y) €
KM X KM

Step 2: We show that F(z,y) is convex for each (z,y) € Ky x K. Let
(21,91), (x2,y2) € F(z,y). Then we note that for each z € K there exist & €
S(xi,x), i =1,2and ¢; € T(y,y;), j = 1,2 satisfying

&i,n(z,2)) + g(z,2;) € -int C(z;), i=1,2
(Cisn(z,95)) +9(2,y5) ¢ -int Cly;), j=1,2.
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By lemma 2.7, for each z € K/, £ € S(z,2) and for each ¢ € T(y, z), we have

& n(z,x)) + 9(z,2;) ¢ -int C(x;), i=1,2
<C777(Zvyj)> +g(zayj) ¢ -int C(yj)v Jj= 1,2.

Since n and ¢ are affine and W is concave, we get that for each A € [0, 1], we have

(€ n(z, (Az1 + (1 = N)z2))) + 9(2, Az1 + (1 = N)a2))
= A& (2, 21)) + g(2, 21)] + (L = N)[{§, n(2, 22)) + g(2, 22)]
e MW (z1)+ (1 — NW(x2)
CW(Az1 + (1= N)z2)
=Y\ —int C(Az1 + (1 — Nz2)

and

(Cnz, Ay (1 = Ny2))) + 9(z, Ayr + (1 = Nye))
= MG n(z,91)) + 9(z, y1)] + (1 = NCn(z,92)) + 9(2, y2)]
€AW (y1) + (1 = \)W(y2)
C WAy + (1= Ny2)
=Y\ —int CAy1 + (1 — Nya).

By using Lemma 2.7 again, we get that for z € Ky, there exist e Sr +(1—
Nze,z) and ¢ € T(y, Ady1 + (1 — A)y2) such that

<§:,77(z, Ax1 + (1= XNzx2))) + g9(z, Az1 + (1 — Nx2)) € -int C(Axy + (1 — X))
(Cnz, (Ayn + (1= Ny2))) +9(z, (Ay1 + (1 = Nyz2)) € -int C(Ayr + (1 — Nya).

This mean that A(z1,y1) + (1 — A)(z2,y2) € F(z,y). Consequently F(z,y) is
convex.

Step 3: We show that F(z,y) is closed for each (x,y) € Ky x Ky Let
{(zn,yn)} be a sequence in F(x,y) such that (zn,yn) — (20,¥0). Then it follows
from the definition of F(x,y) that for each z € K)s there exist &, € S(z,,x) and
Cn € T(yY, yn) such that

(&nsn(z,m0)) + g(z,25) & -int C(x,)
<§nu 77(27 yn)> + g(z, yn) ¢ -int C(yn)

for all n € N. According to Lemma 2.11, there exist £ € S(xo,x), (o € T(y,y0)
and subsequences {&,, } of {{,}, {Cn,; } of {Ca} such that &,, — & and (,; — (o.
Thus letting &k — oo and j — oo, we get that (&, n(z,z0)) + g(z,x0) & -int C(zo)
and (o, n(z,90)) + 9(2,y0) ¢ -int C(yp) since n(-,-), (-,-) and g are continuous, W
has a closed graph in X xY, £, — &, Cu; — Co, Tn — To and y, — yo. Hence
(x0,y0) € F(z,y) and F(z,y) is closed.
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Step 4: We show that the mapping F : Ky x Ky :— 2KM>XKwm s upper semi-
continuous. Since Kj; X K is compact, we only need to show that the mapping
F: Ky x Ky — 280> Ear g closed. Suppose that (z,,,y,) € Kar x Ky for all
n=1,2,3, ... with (z,,yn) — (z0,y0) and (un,v,) € F(xy,yn) with (un,v,) —
(ug,vo). We will show that (ug,vo) € F(zo,yo). By the definition of F(z,y), we
have, for each z € K there exist &, € S(un,xy) and , € T (yn, vn) such that

{ (Ens (2, un)) + 9(2,un) ¢ -int C(uy)
<§m 77(2, vn)> + g(z, vn) ¢ -int C(vn)

for all n = 1,2,3,.... Thus for all ¢,, € S(z,2,) and ¢, € T(yn,2), we have

{ (@ns 0z un)) + gz, 1) & -int C(uy,)
(pnsn(z,0n)) + g(z,vp) ¢ -int C(vy,)

for all n = 1,2,3,.... Since S(z,-) and T(-, z) are lower semi-continuous, for each
v € S(z,x0) and ¢ € T(yo, 2), there exist ¢, € S(z,2,) and ¢, € T (yn, z) such
that ¢, — ¢ and ¢, — ¢. Now, letting n — oo, since W is closed and 7n(,-), {-,-)
and g(-,-) are continuous, we get that

<<Pa 77(25 u0>> + g(Z, UO) ¢ -int O(’UJO)
(¢,1(z,v0)) + 9(2,v0) ¢ -int C(uvo).

By Lemma 2.7, there exist £ € S(u,, xg) and (o € T'(yo,vo) such that

(€0, n(z,u0)) + g(z,u0) ¢ -int C(up)
{Co,n(z,v0)) + g(z,v0) € -int C(vp).

Thus (ug,v0) € F(xo,yo). Therefore F' is upper semi-continuous. By the Kakutani-
Fan-Glicksberg fixed point theorem, there exist (xg,y0) € K x Kjs such that
(x0,y0) € F(zo,y0). That is for each z € Ky, there exist £ € S(xg,y0) and
¢ € T(xo,y0) such that

(€,m(2,20)) + g(z,70) ¢ -int C(x0)
(¢, n(2,90)) + g(2,90) ¢ -int C(yo).

Now, we generalize this result to the whole space. Let

I'={N: N is a finite dimennsional subspace of X with Ky = K NN # ()}

*

*) e K x K such

and Ay be the solution set of the following problem: Find (z
* such that

that for each z € K there exist £ € S(z*,y*) and ¢ € T(z*,y

{ (€ n(za%) + g(z,2%) ¢ -int C(a”)

Y
°)

—~

Cn(z,y)) +9(z,y%) ¢ -int C(y*).
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From the previous discussion, we know that Ay is nonempty and bounded for all
N eT. Let Ay denote the weak closure of Ay. Obviously, we have

Agn n, € (AN, € ) Ay,

=1 i=1

Since X is reflexive, we have Z?\J, is weakly compact for all N € I Thus {qu\), :
N € T'} has the finite intersection property. It implies that [y Ay # ¢. Let

(xo,y0) € ﬂNeFZ?\J,. Then for each z € Ky, there exist £ € S(zo,yo) and
¢ € T(xo0,y0) such that

<§a 77(25 I0>> + g(Z, IO) ¢ -int O('IO)
(¢:n(z,90)) + 9(z,90) & -int C(yo).

Next, for any given 2z € K, choose N € I' such that z,z0,y0 € Ky. Since
(z0,10) € Ay, there exists (z,,,yn) € Ay such that (z,,y,) converse weakly to
(z0,y0). Therefore for each z € Ky and all &, € S(z,y,), ¢ € T(xy,2), we have

<§m 77(2, In» + g(z,xn) ¢ -int C(xn)
(Cnsn(z,yn)) + 9(2,yn) & -int C(yn).

Since S(z,-) and T'(-,z) are lower semi-continuous, for each £ € S(z,y0) and ¢ €
T(x0, z) there exist &, € S(z,y,) and ¢, € T(x,, z) such that &, — & and (, — (.
Letting n — oo and as W is weakly closed and n and ¢ are continuous, we have

<§a 77(25 I0>> + g(Z, IO) ¢ -int O('IO)
(¢, n(2,90)) + 9(2,y0) & -int C(yo).

By Lemma 2.7, there exist & € S(yo,zo) and (o € T'(zo,yo) such that

(€0, n(z,20)) + g(2,20) ¢ -int C(z)
(€0, (2, 90)) + 9(2, y0) ¢ -int C(yo).

This complete the proof. O

Next, we consider the system of generalized mixed vector variational-like
inequality problem in which K is an unbounded. We have the following result.

Theorem 4.2. Let X be a real reflexive Banach space, Y a Banach space, K a
nonempty unbounded closed convex subset of X. Suppose that the mapping C :
K — 2Y is a cone mapping and the mapping, and W : K — 2Y be defined by
W(z) = Y\{—int C(x)} such that the graph G(W) is weakly closed in X x Y and
W is concave. Letn: KxK — K and g : KxK — Y be two continuous and affine
mappings satisfy n(z,z) = 0 = g(z,z), Yo € K. Let S, T : K x K — 2L(XY)
with nonempty convexr compact values and satisfies the following conditions:



232 Thai J. Math. 9 (2011)/ S. Plubtieng and W. Sriprad

(i) For each z € K, S(-,2) : K — 2K&Y) and T(z,) + K — 28X5Y) gre
n-pseudomonotone with respect to g on K;

(ii) for each z € K, S(z,-) : K — 2EXY) and T(-,2) : K — 2F5Y) gre lower
semicontinuous on K, where K equipped with the weak topology and L(X,Y)
is equipped with the uniform convergence topology operator;

(iii) for each z € K, the mappings S(-,z) : K — 2FC5Y) and T(z,.) : K —
2LXY) are continuous on each finite dimensional subspace of X ;

(iv) there exists ug € K such that if (xn,yn) € K X K with (Tn,yn) — 00 as
n — oo, then for each n large enough it holds that 3¢, € S(uo,yn) and
Cn € T(xn,up) satisfying

<§7l7 77(”07 xn)) + g(uo, .’L'n) € -int C(,CC")
(Cns (w0, yn)) + g(uo, yn) € -int C(yn)

Then the (SGMVVLIP) has a solution in K.

Proof. For each n € N, let K,, = K N B(6,n), where B(f,n) is the closed ball
with center at # and radius n. Hence, from Theorem 4.2, we get that there exists
(Tn,yn) € K, x K, such that for each z € K,, there exists &, € S(zn,yn) and
Cn € T(xn, yn) satisfying

<§n777(27xn)> + Q(Za xn) ¢ -int C(xn)
(Cnsn(2,yn)) + 9(2,Yn) & -int C(yn).

By Lemma 2.7, for all ¢, € S(z,yy) and ¢, € T(z,,z), we have

(on,n(z,20)) + g(2, ) ¢ -int C(2y,)
(Pnsn(z,9n)) + 9(2,yn) & -int C(yn).

By condition (4), we know that {(z,,yn)} is bounded. If not, without loss of
generality, we assume that (z,,y,) — oco. Thus for z = ug, ¢, € S(ug,yn) and
¢n € T(xp,up), we have

(@n,n(u0, )Y + g(uo, ,) ¢ -int C(z,)
(@n, (o, yn)) + g(uo, yn) ¢ -int C(yn).

This is a contradiction according to condition (4). Thus {(xn,yn)} is bounded.
Without loss of generality, we assume that (,,y,) =" (2o, y0). We shall show
that (xg,yo0) is the solution of the (SGMVVLIP). Consider, for each z € K and
each £ € S(z,y0) and ¢, € T(xo,2), it follow from the lower semi-continuity of
S(z,-) and T'(-, z) that there exist &, € S(z,yn) and ¢ € T'(zp, z) such that &, — ¢
and ¢, — ( satisfying

<§n777(27xn)> + Q(Za xn) ¢ -int C(xn)
(Cnsn(2,9n)) + 9(2,Yn) & -int C(yn).
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Now, letting n — oo, by the continuity of 7(-,-), {-,-) and g(-,-), we can show that

<€n; W(Za In» + g(za :En) —Y <€07 77(2'7 $0)> + g(zv xo)

and
(Cns (2 yn)) + 9(259n) =" (G0, (25 %0)) + 9(2 v0)-

Since W is weakly closed, we obtain that

(€0, n(2,20)) + g(2z,0) ¢ -int C(x)

and
(Cosm(2,90)) + 9(2,90) & -int C(yo)-

Using Lemma 2.7 again, we have that for each z € K, there exist & € S(zo, yo)
and (o € T(xo,yo) satisfying

(€0, n(z,20)) + g(2,x0) ¢ -int C(z)
(Cos (2, 90)) + 9(2,y0) & -int C(yo).

This completes the proof. [l

Next, we consider the generalized mixed vector variational-like inequalities
with set-valued semi-n-pseudomonotone with respect to g on K.

Corollary 4.3. Let X be a real reflexive Banach space, Y a Banach space, K
a nonempty bounded closed convexr subset of X. Suppose that the mapping C :
K — 2Y is a cone mapping and the mapping, and W : K — 2Y be defined by
W(z) = Y\{—int C(x)} such that the graph G(W) of W is weakly closed in X xY
and W is concave. Letn: K x K — K and g: K X K — 'Y be two continuous and
affine mappings satisfy n(x,x) =0 = g(x,z) Vo € K. Let T : K x K — 2L(XY)
with nonempty convexr compact values and satisfies the following conditions:

(i) T is a set valued semi-n-pseudomonotone with respect to g on K;

(iii) for each z € K, the mappings T(z,-) : K — 2FC5Y) are continuous on each
finite dimensional subspace of X.

Then there exists xg € K such that for each z € K, there exists & € T(xq,xo)
satisfying
(€0, 1(2,20)) + g(z,0) ¢ -int C(xp).

Proof. Define a set-valued mapping S : K x K — 2L(X5Y) by S(u,v) = T'(v,v) for
all u,v € K. We observe that S(-, z) is n-pseudomonotone with respect to g and
S(z,-) is lower semicontinuous for all z € K. Moreover, S(-, z) continuous on each
finite dimensional subspace of X. Hence, by Theorem 4.1, there exists zg € K
such that for each z € K, there exists £ € T'(zg, zg) satisfying

(€0, n(z,20)) + g(z,x0) & -int C(xy).
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If we set n(y,z) =y — z and g(y,x) = 0 for all y,z € K, then the concept of
n-pseudomonotone with respect to g reduces to C,-pseudomonotone introduced in
[16] and we also known from Proposition 2.1 of [16] that every set-valued monotone
is Cz-pseudomonotone. Therefore, the following result follow directly from Corol-
lary 4.3.

Corollary 4.4 ([4]). Let X be a real reflexive Banach space, Y a Banach space,
K a nonempty bounded closed convexr subset of X. Suppose that the mapping
C: K — 2Y is a cone mapping and the mapping, and W : K — 2Y be defined
by W(z) = Y\{—int C(x)} such that the graph G(W) of W is weakly closed in
X XY and W is concave. Let T : K x K — 2L with nonempty convexr compact
values and satisfies the following conditions:

(i) T is a set valued semi-monotone mapping on K ;

(iii) for each z € K, the mappings T(z,-) : K — 25X5Y) are continuous on each
finite dimensional subspace of X.

Then there exists xg € K such that for each z € K, there exists & € T(xo,x0)
satisfying
(€0, 2 — x0) & -int C(x0).
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