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Abstract : In this paper, we introduce and study a new type of generalized mixed
vector variational-like inequalities and a new type of system of generalized mixed
vector variational-like inequalities in reflexive Banach spaces. Firstly, we introduce
the new concept of pseudo-monotonicity for vector multi-valued mappings, and
prove an existence theorem of solution for generalized mixed vector variational-
like inequalities by using the Fan-KKM theorem. Secondly, we introduce a new
type of system of generalized mixed vector variational-like inequalities and by using
the Kakutani-Fan-Glicksberg fixed point theorem, some new existence results of
solution for system of generalized mixed vector variational-like inequalities are
obtained under some suitable conditions.
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1 Introduction

Vector variational inequality (VVI) was first introduced by Giannessi [1] in
finite dimensional Euclidean space in 1980. Later on, Chen and Cheng [2] proposed
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the vector variational inequality in infinite-dimensional spaces and applied it to
the vector optimization problem. Since then, a lot of applications have been
found. It has shown to be a powerful tool in the mathematical investigation
of optimization topics. For the past years, vector variational inequalities and
their generalizations have been studied and applied in various directions. (see
[3–10]). It is worth noting that vector variational-like inequalities are important
generalization of vector variational inequalities related to the class of η-connected
sets which is much more general than the class of convex sets (see [11, 12]).

It is well known that one of the most frequently used hypotheses in the theory
of the variational inequality problems is the monotonicity of a nonlinear mapping.
There are many kinds of generalizations of the monotonicity in the literature of
recent years, such as pseudo-monotonicity, quasi-monotonicity, semi-monotonicity
relaxed η − α-semi-monotonicity, etc. (see [3–5]).

On the other hand, some critical and attractive problems related to variational
inequalities and complementarity problems were considered in recent papers. In
2003, Huang and Fang [13] introduced systems of order complementarity problems
and established some existence results by fixed point theory. In [14] Kassy and
Kolumbn introduced systems of variational inequalities and proved the existence
theorem by using the Ky Fan lemma. Later on, Kassay et al. [15], introduced and
studied Minty and Stampacchia variational inequality systems by the Kakutani-
Fan-Glicksberg fixed point theorem. Recently, in [10], Zhao and Xia introduced
and studied systems of vector variational-like inequalities by the same fixed point
theorem.

Motivated and inspired by the research going on in this direction, in this paper,
we introduce and study a new type of generalized mixed vector variational-like
inequalities and a new type of system of generalized mixed vector variational-like
inequalities in reflexive Banach spaces. Firstly, we introduce the new concept
of pseudo-monotonicity for vector multi-valued mappings, and prove an existence
theorem of solution for generalized mixed vector variational-like inequality problem
by using the Fan-KKM theorem. Secondly, we introduce a new type of system
of generalized mixed vector variational-like inequality problem and prove some
existence theorems of solution for system of generalized mixed vector variational-
like inequality problem by using the Kakutani-Fan-Glicksberg fixed point theorem.

2 Preliminaries

Let X and Y be two real Banach spaces, L(X, Y ) be the family of all linear
bounded operators from X to Y , and K be a nonempty closed and convex subset
of X . Recall that a subset C of Y is said to be a closed convex cone if C is closed
and C + C ⊂ C, λC ⊂ C for λ > 0. In addition, if C 6= Y , then C is called a
proper closed convex cone. A closed convex cone is pointed if C ∩ (−C) = {0}.
A mapping C : K → 2Y is said to be a cone mapping if C(x) is a proper closed
convex pointed cone and int C(x) 6= ∅ for each x ∈ K.

Let S, T : K × K → 2L(X,Y ), F : K → 2L(X,Y ) be three vector set-valued
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mappings and let g : K × K → Y and η : K × K → K are two bi-mappings.
In this paper, we consider the following two kinds of generalized mixed vector
variational-like inequalities:

(i) generalized mixed vector variational-like inequality problem (for short, the
(GMVVLIP)): Find x0 ∈ K such that for each y ∈ K, there exists ζ ∈ F (x0)
such that

〈ζ, η(y, x0)〉 + g(y, x0) /∈ -int C(x0) (2.1)

(ii) system of generalized mixed vector variational-like inequality problem (for
short, the (SGMVVLIP)): Find (x0, y0) ∈ K ×K such that for each z ∈ K,
there exist ξ ∈ S(x0, y0) and ζ ∈ T (x0, y0) satisfying

{

〈ξ, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

〈ζ, η(z, y0)〉 + g(z, y0) /∈ -int C(y0)
(2.2)

For our main results, we need the following definitions and lemmas.
Let C : K → 2Y be a set-valued maping such that for each x ∈ K, C(x) is a

closed convex pointed cone with intC(x) 6= ∅. The following notations will be used
in the sequel:

C− =
⋂

x∈K

C(x)

Definition 2.1 ([7, 16]). Let X, Y be Banach spaces, K be nonempty subset of
X . Let T : K → 2L(X,Y ) be a set-valued mapping.

(i) T is monotone on K if for any x, y ∈ K, it holds that

〈ξ − η, y − x〉 ∈ C−, ∀ ξ ∈ T (x), η ∈ T (y).

(ii) T is Cx-pseudomonotone on K if for every pair of points x ∈ K, y ∈ K and
for all ξ ∈ T (x), ζ ∈ T (y), we have

〈ξ, y − x〉 /∈ -int C(x) implies 〈ζ, y − x〉 /∈ -int C(x).

(iii) T is generalized C-pseudomonotone on K if for every pair of points x ∈ K,
y ∈ K, there exists ξ ∈ T (x) such that

〈ξ, y − x〉 /∈ -int C(x)

implies that there exists ζ ∈ T (y) such that

〈ζ, y − x〉 /∈ -int C(x).

Definition 2.2 ([4]). A vector set-valued mapping T : K × K → 2L(X,Y ) is said
to be a vector set-valued semi-monotone mapping on K if it satisfies the following
conditions:
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(1) for each u ∈ K, the mapping T (u, ·) : K → 2L(X,Y ) is a vector set-valued
monotone mapping in the sense of Definition 2.1;

(2) for each v ∈ K, the mapping T (·, v) : K → 2L(X,Y ) is lower semi-continuous
on K, where K is equipped with the weak topology, and L(X, Y ) is equipped
with the uniform convergence topology of operators.

For more details see, for instances, [4].

Now, we introduce some new definitions that we will use in our results.

Definition 2.3. Let X, Y be Banach spaces, K be nonempty subset of X . Let
η : K × K → K and g : K × K → Y be two bi-mappings. Let T : K → 2L(X,Y )

be a vector set-valued mapping.

(i) T is η-pseudomonotone with respect to g on K if for every pair of points
x ∈ K, y ∈ K and for all ξ ∈ T (x), ζ ∈ T (y), we have

〈ξ, η(y, x)〉 + g(y, x) /∈ -int C(x) implies 〈ζ, η(y, x)〉 + g(y, x) /∈ -int C(x).

(ii) T is weakly η-pseudomonotone with respect to g on K if for every pair of
points x ∈ K, y ∈ K, there exists ξ ∈ T (x) such that

〈ξ, η(y, x)〉 + g(y, x) /∈ -int C(x)

implies that there exists ζ ∈ T (y) such that

〈ζ, η(y, x)〉 + g(y, x) /∈ -int C(x).

Remark 2.4.

(i) If T is η-pseudomonotone with respect to g on K, then T is weakly η-
pseudomonotone with respect to g on K.

(ii) If g(y, x) = 0 for all x, y ∈ K then the concept of weakly η-pseudomonotone
with respect to g reduces to η-pseudomonotone introduced in [17].

(iii) If η(y, x) = y − x and g(y, x) = 0 for all x, y ∈ K then the concept of η-
pseudomonotone with respect to g reduces to Cx-pseudomonotone introduced
in [16] and the concept of weakly η-pseudomonotone with respect to g reduces
to generalized C-pseudomonotone introduced in [7].

Definition 2.5. A vector set-valued mapping T : K × K → 2L(X,Y ) is said to
be semi-η-pseudomonotone with respect to g on K if it satisfies the following
conditions:

(1) for each u ∈ K, the mapping T (u, ·) : K → 2L(X,Y ) is η-pseudomonotone
with respect to g on K in the sense of Definition 2.3;

(2) for each v ∈ K, the mapping T (·, v) : K → 2L(X,Y ) is lower semi-continuous
on K, where K is equipped with the weak topology, and L(X, Y ) is equipped
with the uniform convergence topology of operators.
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Definition 2.6 ([17]). Let η : K × K → K be a bi-mapping. Then a mapping
T : K → 2(X,Y ) is said to be V -hemicontinuous on K if for every x, y ∈ K , α > 0
and tα ∈ T (x+αy), there exists t0 ∈ T (x) such that for any z ∈ X , 〈tα, z〉 → 〈t0, z〉
as α → 0+.

Lemma 2.7. Let X, Y be Banach spaces and K be a nonempty convex subset of
X and let C : K → 2Y be a cone mapping. Let η : K×K → K and g : K×K → Y
be two continuous and affine mappings such that η(x, x) = 0 = g(x, x), ∀x ∈ K.
Let T : K → 2L(X,Y ) be a vector set-valued mapping and we consider the following
problms:

(I) x0 ∈ K such that for each y ∈ K, there exists ξ ∈ T (x0) such that

〈ξ, η(y, x0)〉 + g(y, x0) /∈ −int C(x0);

(II) x0 ∈ K such that for each y ∈ K, there exists ξ ∈ T (y), such that

〈ξ, η(y, x0)〉 + g(y, x0) /∈ −int C(x0);

(III) x0 ∈ K such that for each y ∈ K and for each ξ ∈ T (y), it holds that

〈ξ, η(y, x0)〉 + g(y, x0) /∈ −int C(x0).

Then,

(i) Problem (III) implies Problem (II);

(ii) Problem (II) implies Problem (I) if T is V -hemicontinuous;

(iii) Problem (I) implies Problem (III) if T is η-pseudomonotone with respect
to g on K and implies Problem (II) if T is weakly η-pseudomonotone with
respect to g on K.

Proof. (i) It is clear from the definition.
(ii) Suppose that T is V -hemicontinuous on K and let x0 ∈ K be a solution

of Problem (II). Then for each y ∈ K, there exists ξ ∈ T (y), such that

〈ξ, η(y, x0)〉 + g(y, x0) /∈ −int C(x0)

Now, for each y ∈ K and α ∈ (0, 1), we let xα = αy + (1−α)x0. By the convexity
of K, we have xα ∈ K, ∀α ∈ (0, 1). It implies that for any α ∈ (0, 1), there exists
ξα ∈ T (αy + (1 − α)x0), such that

〈ξα, η(xα, x0)〉 + g(xα, x0) /∈ −int C(x0),

since η and g are affine and η(x, x) = 0 = g(x, x), we obtain that

α(〈ξα, η(y, x0)〉 + g(y, x0)) /∈ −int C(x0).
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Since −int C(x0) is a convex cone, we get

〈ξα, η(y, x0)〉 + g(y, x0) /∈ −int C(x0).

By V - hemicontinuity of T , there exists ξ0 ∈ T (x0) such that

〈ξ0, η(y, x0)〉 + g(y, x0) /∈ −int C(x0).

Consequently, for each x0 ∈ K, there exists ξ ∈ T (x0) such that

〈ξ0, η(y, x0)〉 + g(y, x0) /∈ −int C(x0).

(iii) The result follow from the definition of η-pseudomonotone with respect
to g and weakly η-pseudomonotone with respect to g, respectively.

Definition 2.8 (KKM mapping [18]). Let K be a nonempty subset of a topological
vector space E. A multivalued mapping G : K → 2E is said to be a KKM mapping
if for any finite subset {y1, y2, ..., yn} of K, we have

co{y1, y2, ..., yn} ⊂ ∪n
i=1G(yi)

where co{y1, y2, ..., yn} denotes the convex hull of {y1, y2, ..., yn}.

Lemma 2.9 (Fan-KKM Theorem [18]). Let K be a nonempty convex subset of a
Hausdorff topological vector space E and let G : K → 2E be a KKM mapping with
closed values. If there exists a point y0 ∈ K such that G(y0) is a compact subset
of K, then ∩y∈KG(y) 6= ∅.

Lemma 2.10 (Kakutani-Fan-Glicksberg [19]). Suppose that X is a Hausdorff
locally convex space and K is a nonempty convex compact subset of X. If T : K →
2K is an upper semi-continuous mapping with nonempty convex closed values, then
T has a fixed point in K, i.e., there exists x0 ∈ K such that x0 ∈ T (x0).

Lemma 2.11 ([4]). Let X, Y be two Banach spaces, K ⊂ X. Suppose that
the set-valued mapping T : K → 2Y is upper semi-continuous at x0 with T (x0)
compact. If xn ∈ K, n = 1, 2, ... with xn → x0, and yn ∈ T (xn), then there exists
y0 ∈ T (x0) and a subsequence {ynk

} of {yn} such that ynk
→ y0.

Definition 2.12. A multivalued mapping T : K → 2Y is called concave if for any
x, y ∈ K, α ∈ (0, 1),

αT (x) + (1 − α)T (y) ⊆ T (αx + (1 − α)y).

Definition 2.13. Let W : X → 2Y . The graph of W , denoted by G(W ), is

G(W ) = {(x, y) ∈ X × Y | x ∈ X, y ∈ W (x)}.
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3 Existence results for generalized mixed

variational-like inequalities

In this section, we will prove the existence theorem of solutions for generalized
mixed variational-like inequalities with weakly η-pseudomonotone with respect to
g on K by using the Fan-KKM theorem.

Theorem 3.1. Let X be a reflexive Banach space and Y a Banach space. Let
K be a nonempty closed bounded convex subset of X. Let C : K → 2Y be a
multivalued mapping such that for every x ∈ K, C(x) is proper closed convex cone
with intC(x) 6= ∅, and W : K → 2Y be defined by W (x) = Y \{−int C(x)} such
that the graph G(W ) of W is weakly closed in X × Y and W is concave. Let
η : K × K → K and g : K × K → Y be two continuous and affine mappings
satisfy η(x, x) = 0 = g(x, x), ∀x ∈ K. Suppose that T : K → 2L(X,Y ) is nonempty
compact valued, weakly η-pseudomonotone with respect to g and V -hemicontinuous
on K. Then (GMVVLIP) is solvable.

Proof. Let G, H : K → 2K be two multivalued mapping defined by

G(y) = {x ∈ K : ∃ξ ∈ T (x) such that 〈ξ, η(y, x)〉 + g(y, x) /∈ −int C(x)},

H(y) = {x ∈ K : ∃ζ ∈ T (y) such that 〈ζ, η(y, x)〉 + g(y, x) /∈ −int C(x)},

for all y ∈ K. Since y ∈ G(y) and y ∈ H(y), we get that G(y) and H(y) are
nonempty. Next, we divided the proof of the theorem in to the following five
steps.

Step 1: We prove that G is a KKM mapping on K. Assume that G is not
KKM mapping. Then there exists a finite set {x1, x2, ..., xn} ⊂ K and ti ≥ 0, i =
1, 2, ..., n with

∑n

i=1 ti = 1 such that x =
∑n

i=1 tixi /∈ ∪n
i=1G(xi). It follows from

the definition of G that for all ξ ∈ T (x),

〈ξ, η(xi, x)〉 + g(xi, x) ∈ −int C(x), i = 1, 2, ..., n.

Since −int C(x) is a convex cone and ti ≥ 0, i = 1, 2, ..., n with
∑n

i=1 ti = 1, we
have

n
∑

i=1

ti[〈ξ, η(xi, x)〉 + g(xi, x)] ∈ −int C(x).

Since η and g are affine, we get that

θ = 〈ξ, η(x, x)〉 + g(x, x)

= 〈ξ, η(
n

∑

i=1

tixi, x)〉 + g(
n

∑

i=1

tixi, x)

=

n
∑

i=1

ti〈ξ, η(xi, x)〉 +

n
∑

i=1

tig(xi, x)

=

n
∑

i=1

ti[〈ξ, η(xi, x)〉 + g(xi, x)] ∈ −int C(x),
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where θ denotes the zero vector in Y . Thus θ ∈ −int C(x). This is a contradiction
with C(x) is proper. Hence G is a KKM mapping on K.

Step 2: We prove that G(y) ⊂ H(y) for all y ∈ K and H is a KKM mapping
on K. Since T is weakly η-pseudomonotone with respect to g, we derive that
G(y) ⊂ H(y) for all y ∈ K. Thus H is also a KKM mapping since G is a KKM
mapping.

Step 3: We prove that for each y ∈ K, H(y) is closed. For any y ∈ K, let
{xn} be a sequence in H(y) such that xn → x∗ ∈ K. Since xn ∈ H(y), for all
n ∈ N, there exists ζn ∈ T (y) such that

〈ζn, η(y, xn)〉 + g(y, xn) /∈ −int C(xn),

or

〈ζn, η(y, xn)〉 + g(y, xn) ∈ W (xn).

Since T (y) is compact, without lost of generality, we assume that there exists
ζ0 ∈ T (y) such that ζn → ζ0. Since W is concave, we have that the graph G(W )
of W is convex. Thus we obtain that graph G(W ) of W is closed in X × Y since
it is convex and weakly closed. Now, since η(·, ·), 〈·, ·〉 and g are continuous, W
has a closed graph in X × Y and ζn → ζ0, xn → x∗, we have

〈ζn, η(y, xn)〉 + g(y, xn) → 〈ζ0, η(y, x∗)〉 + g(y, x∗) ∈ W (x∗).

Consequently, we have

〈ζ0, η(y, x∗)〉 + g(y, x∗) /∈ −int C(x∗).

Hence x∗ ∈ H(y) and therefore H(y) is closed.

Step 4: For any y ∈ K, we prove that H(y) is convex. Let x1, x2 ∈ H(y)
and α1, α2 ≥ 0 such that α1 + α2 = 1. Then there exist ζ ∈ T (y) such that

〈ζ, η(y, x1)〉 + g(y, x1) /∈ −int C(x1) (3.1)

and

〈ζ, η(y, x2)〉 + g(y, x2) /∈ −int C(x2). (3.2)

Multiplying (3.1) and (3.2) by α1 and α2 respectively and combining, we get that

α1[〈ζ, η(y, x1)〉 + g(y, x1)] + α2[〈ζ, η(y, x2)〉 + g(y, x2)] ∈ α1W (x1) + α2W (x2).

Since η and g are affine and W is concave, we have

〈ζ, η(y, α1x1 + α2x2)〉 + g(y, α1x1 + α2x2)

= α1[〈ζ, η(y, x1)〉 + g(y, x1)] + α2[〈ζ, η(y, x2)〉 + g(y, x2)]

∈ α1W (x1) + α2W (x2) ⊆ W (α1x1 + α2x2).
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That is

〈ζ, η(y, α1x1 + α2x2)〉 + g(y, α1x1 + α2x2) /∈ −intC(α1x1 + α2x2).

Hence α1x1 + α2x2 ∈ H(y) and so H(y) is convex.

Step 5: We prove that the generalized mixed vector variational-like inequality
(GMVVLIP) is solvable. Firstly, we prove that

⋂

y∈K H(y) 6= ∅. Now, we equip X
with the weak topology. Then K is weakly compact since X is a reflexive Banach
space and K is a closed bounded convex subset of X . Also, since H(y) is closed
convex subset of a reflexive Banach space, we get that H(y) is weakly closed.
Since K is weakly compact and H(y) ⊆ K, it follows directly that H(y) is weakly
compact. Then by KKM-Fan Theorem Lemma 2.9, we have

⋂

y∈K

H(y) 6= ∅.

Next, we claim that
⋂

y∈K G(y) =
⋂

y∈K H(y). From step 2, we get that
⋂

y∈K G(y) ⊆
⋂

y∈K H(y) and from Lemma 2.7, we have
⋂

y∈K G(y) ⊇
⋂

y∈K H(y), so we ob-
tain that

⋂

y∈K G(y) =
⋂

y∈K H(y). Thus
⋂

y∈K G(y) 6= ∅. Therefore, there exists
x0 ∈ K such that for each y ∈ K, there exists ξ ∈ T (x0) such that

〈ξ, η(y, x0)〉 + g(y, x0) /∈ −int C(x0).

This complete the proof.

Now, if we setting g(y, x) = 0 for all y, x ∈ K in Theorem 3.1 then we get the
following Corollary.

Corollary 3.2 ([17]). Let X be a reflexive Banach space and Y a Banach space.
Let K be a nonempty closed bounded convex subset of X. Let C : K → 2Y be a mul-
tivalued mapping such that for every x ∈ K, C(x) is proper closed pointed convex
cone with intC(x) 6= ∅, and W : K → 2Y be defined by W (x) = Y \{−int C(x)}
such that W is upper semicontinuous concave. Let η : K × K → K be continuous
and affine mappings such that η(x, x) = 0, ∀x ∈ K. Suppose that T : K →
2L(X,Y ) is nonempty compact valued, η-pseudomonotone and V -hemicontinuous
on K. Then, there exists x0 ∈ K such that for each y ∈ K, there exists ξ ∈ T (x0)
such that

〈ξ, η(y, x0)〉 /∈ −int C(x0).

4 Existence results for systems of generalized

mixed vector variational-like inequalities

In this section, by using the Kakutani-Fan-Glicksberg fixed point theorem,
we prove some existence theorems of solutions for systems of generalized mixed
vector variational-like inequality problems (SGMVVLIP). We first consider a (SG-
MVVLIP) defined on a bounded closed convex subset of a real reflexive Banach
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space and finally, we also consider a (SGMVVLIP) defined on an unbounded closed
convex set.

Theorem 4.1. Let X be a real reflexive Banach space, Y a Banach space, K
a nonempty bounded closed convex subset of X. Suppose that the mapping C :
K → 2Y is a cone mapping and the mapping, and W : K → 2Y be defined
by W (x) = Y \{−int C(x)} such that the graph G(W ) of W is weakly closed
in X × Y and W is concave. Let η : K × K → K and g : K × K → Y be
two continuous and affine mappings satisfy η(x, x) = 0 = g(x, x) , ∀x ∈ K. Let
S, T : K × K → 2L(X,Y ) with nonempty convex compact values and satisfies the
following conditions:

(i) For each z ∈ K, S(·, z) : K → 2L(X,Y ) and T (z, ·) : K → 2L(X,Y ) are
η-pseudomonotone with respect to g on K;

(ii) for each z ∈ K, S(z, ·) : K → 2L(X,Y ) and T (·, z) : K → 2L(X,Y ) are lower
semicontinuous on K, where K equipped with the weak topology and L(X, Y )
is equipped with the uniform convergence topology operator;

(iii) for each z ∈ K, the mappings S(·, z) : K → 2L(X,Y ) and T (z, ·) : K →
2L(X,Y ) are continuous on each finite dimensional subspace of X.

Then the (SGMVVLIP) has a solution in K.

Proof. Let M be a finite dimentional subspace of X such that KM = K ∩M 6= ∅.
For any (x, y) ∈ K × K, we consider the following problem:
(P )M Find (x0, y0) ∈ KM ×KM such that for all z ∈ KM there exist ξ0 ∈ S(x0, x)
and ζ0 ∈ T (y, y0) satisfying

{

〈ξ0, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

〈ζ0, η(z, y0)〉 + g(z, y0) /∈ -int C(y0).
(4.1)

By our assumptions, condition (i) and (iii), we know that S(·, x), T (y, ·), η and
g are satisfy the condition of Theorem 3.1. It follows from Theorem 3.1 that the
problem (P )M is solvable.

Define a multi-valued mapping F : KM × KM → 2KM×KM by

F (x, y) = {(x0, y0) ∈ KM × KM : (x0, y0) solve problem (P )M},

∀(x, y) ∈ KM × KM . Next, we will show that this mapping has at least one fixed
point in KM .

Step 1: It is clear that F (x, y) is nonempty and bounded for each (x, y) ∈
KM × KM .

Step 2: We show that F (x, y) is convex for each (x, y) ∈ KM × KM . Let
(x1, y1), (x2, y2) ∈ F (x, y). Then we note that for each z ∈ KM there exist ξi ∈
S(xi, x), i = 1, 2 and ζj ∈ T (y, yj), j = 1, 2 satisfying

{

〈ξi, η(z, xi)〉 + g(z, xi) /∈ -int C(xi), i = 1, 2

〈ζj , η(z, yj)〉 + g(z, yj) /∈ -int C(yj), j = 1, 2.
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By lemma 2.7, for each z ∈ KM , ξ ∈ S(z, x) and for each ζ ∈ T (y, z), we have

{

〈ξ, η(z, xi)〉 + g(z, xi) /∈ -int C(xi), i = 1, 2

〈ζ, η(z, yj)〉 + g(z, yj) /∈ -int C(yj), j = 1, 2.

Since η and g are affine and W is concave, we get that for each λ ∈ [0, 1], we have

〈ξ, η(z, (λx1 + (1 − λ)x2))〉 + g(z, (λx1 + (1 − λ)x2))

= λ[〈ξ, η(z, x1)〉 + g(z, x1)] + (1 − λ)[〈ξ, η(z, x2)〉 + g(z, x2)]

∈ λW (x1) + (1 − λ)W (x2)

⊂ W (λx1 + (1 − λ)x2)

= Y \ − int C(λx1 + (1 − λ)x2)

and

〈ζ, η(z, (λy+(1 − λ)y2))〉 + g(z, (λy1 + (1 − λ)y2))

= λ[〈ζ, η(z, y1)〉 + g(z, y1)] + (1 − λ)[〈ζ, η(z, y2)〉 + g(z, y2)]

∈ λW (y1) + (1 − λ)W (y2)

⊂ W (λy1 + (1 − λ)y2)

= Y \ − int C(λy1 + (1 − λ)y2).

By using Lemma 2.7 again, we get that for z ∈ KM , there exist ξ̄ ∈ S(λx1 + (1 −
λ)x2, x) and ζ̄ ∈ T (y, λy1 + (1 − λ)y2) such that

{

〈ξ̄, η(z, (λx1 + (1 − λ)x2))〉 + g(z, (λx1 + (1 − λ)x2)) /∈ -int C(λx1 + (1 − λ)x2)

〈ζ̄ , η(z, (λy1 + (1 − λ)y2))〉 + g(z, (λy1 + (1 − λ)y2)) /∈ -int C(λy1 + (1 − λ)y2).

This mean that λ(x1, y1) + (1 − λ)(x2, y2) ∈ F (x, y). Consequently F (x, y) is
convex.

Step 3: We show that F (x, y) is closed for each (x, y) ∈ KM × KM . Let
{(xn, yn)} be a sequence in F (x, y) such that (xn, yn) → (x0, y0). Then it follows
from the definition of F (x, y) that for each z ∈ KM there exist ξn ∈ S(xn, x) and
ζn ∈ T (y, yn) such that

{

〈ξn, η(z, xn)〉 + g(z, xn) /∈ -int C(xn)

〈ξn, η(z, yn)〉 + g(z, yn) /∈ -int C(yn)

for all n ∈ N. According to Lemma 2.11, there exist ξ0 ∈ S(x0, x), ζ0 ∈ T (y, y0)
and subsequences {ξnk

} of {ξn}, {ζnj
} of {ζn} such that ξnk

→ ξ0 and ζnj
→ ζ0.

Thus letting k → ∞ and j → ∞, we get that 〈ξ0, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)
and 〈ζ0, η(z, y0)〉+ g(z, y0) /∈ -int C(y0) since η(·, ·), 〈·, ·〉 and g are continuous, W
has a closed graph in X × Y , ξnk

→ ξ0, ζnj
→ ζ0, xn → x0 and yn → y0. Hence

(x0, y0) ∈ F (x, y) and F (x, y) is closed.
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Step 4: We show that the mapping F : KM ×KM :→ 2KM×KM is upper semi-
continuous. Since KM × KM is compact, we only need to show that the mapping
F : KM × KM :→ 2KM×KM is closed. Suppose that (xn, yn) ∈ KM × KM for all
n = 1, 2, 3, ... with (xn, yn) → (x0, y0) and (un, vn) ∈ F (xn, yn) with (un, vn) →
(u0, v0). We will show that (u0, v0) ∈ F (x0, y0). By the definition of F (x, y), we
have, for each z ∈ KM there exist ξn ∈ S(un, xn) and ζn ∈ T (yn, vn) such that

{

〈ξn, η(z, un)〉 + g(z, un) /∈ -int C(un)

〈ξn, η(z, vn)〉 + g(z, vn) /∈ -int C(vn)

for all n = 1, 2, 3, .... Thus for all ϕn ∈ S(z, xn) and φn ∈ T (yn, z), we have

{

〈ϕn, η(z, un)〉 + g(z, un) /∈ -int C(un)

〈φn, η(z, vn)〉 + g(z, vn) /∈ -int C(vn)

for all n = 1, 2, 3, .... Since S(z, ·) and T (·, z) are lower semi-continuous, for each
ϕ ∈ S(z, x0) and φ ∈ T (y0, z), there exist ϕn ∈ S(z, xn) and φn ∈ T (yn, z) such
that ϕn → ϕ and φn → φ. Now, letting n → ∞, since W is closed and η(·, ·), 〈·, ·〉
and g(·, ·) are continuous, we get that

{

〈ϕ, η(z, u0)〉 + g(z, u0) /∈ -int C(u0)

〈φ, η(z, v0)〉 + g(z, v0) /∈ -int C(v0).

By Lemma 2.7, there exist ξ0 ∈ S(uo, x0) and ζ0 ∈ T (y0, v0) such that

{

〈ξ0, η(z, u0)〉 + g(z, u0) /∈ -int C(u0)

〈ζ0, η(z, v0)〉 + g(z, v0) /∈ -int C(v0).

Thus (u0, v0) ∈ F (x0, y0). Therefore F is upper semi-continuous. By the Kakutani-
Fan-Glicksberg fixed point theorem, there exist (x0, y0) ∈ KM × KM such that
(x0, y0) ∈ F (x0, y0). That is for each z ∈ KM , there exist ξ ∈ S(x0, y0) and
ζ ∈ T (x0, y0) such that

{

〈ξ, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

〈ζ, η(z, y0)〉 + g(z, y0) /∈ -int C(y0).

Now, we generalize this result to the whole space. Let

Γ = {N : N is a finite dimennsional subspace of X with KN = K ∩ N 6= ∅}

and AN be the solution set of the following problem: Find (x∗, y∗) ∈ K ×K such
that for each z ∈ KN there exist ξ ∈ S(x∗, y∗) and ζ ∈ T (x∗, y∗) such that

{

〈ξ, η(z, x∗)〉 + g(z, x∗) /∈ -int C(x∗)

〈ζ, η(z, y∗)〉 + g(z, y∗) /∈ -int C(y∗).
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From the previous discussion, we know that AN is nonempty and bounded for all
N ∈ Γ. Let A

w

N denote the weak closure of AN . Obviously, we have

ASn
i=1

Ni
⊂

n
⋂

i=1

ANi
⊂

n
⋂

i=1

A
w

Ni
.

Since X is reflexive, we have A
w

N is weakly compact for all N ∈ Γ. Thus {A
w

N :
N ∈ Γ} has the finite intersection property. It implies that

⋂

N∈Γ A
w

N 6= φ. Let

(x0, y0) ∈
⋂

N∈Γ A
w

N . Then for each z ∈ KN , there exist ξ ∈ S(x0, y0) and
ζ ∈ T (x0, y0) such that

{

〈ξ, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

〈ζ, η(z, y0)〉 + g(z, y0) /∈ -int C(y0).

Next, for any given z ∈ K, choose N ∈ Γ such that z, x0, y0 ∈ KN . Since
(x0, y0) ∈ A

w

N , there exists (xn, yn) ∈ AN such that (xn, yn) converse weakly to
(x0, y0). Therefore for each z ∈ KN and all ξn ∈ S(z, yn), ζ ∈ T (xn, z), we have

{

〈ξn, η(z, xn)〉 + g(z, xn) /∈ -int C(xn)

〈ζn, η(z, yn)〉 + g(z, yn) /∈ -int C(yn).

Since S(z, ·) and T (·, z) are lower semi-continuous, for each ξ ∈ S(z, y0) and ζ ∈
T (x0, z) there exist ξn ∈ S(z, yn) and ζn ∈ T (xn, z) such that ξn → ξ and ζn → ζ.
Letting n → ∞ and as W is weakly closed and η and g are continuous, we have

{

〈ξ, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

〈ζ, η(z, y0)〉 + g(z, y0) /∈ -int C(y0).

By Lemma 2.7, there exist ξ0 ∈ S(y0, x0) and ζ0 ∈ T (x0, y0) such that

{

〈ξ0, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

〈ζ0, η(z, y0)〉 + g(z, y0) /∈ -int C(y0).

This complete the proof.

Next, we consider the system of generalized mixed vector variational-like
inequality problem in which K is an unbounded. We have the following result.

Theorem 4.2. Let X be a real reflexive Banach space, Y a Banach space, K a
nonempty unbounded closed convex subset of X. Suppose that the mapping C :
K → 2Y is a cone mapping and the mapping, and W : K → 2Y be defined by
W (x) = Y \{−int C(x)} such that the graph G(W ) is weakly closed in X × Y and
W is concave. Let η : K×K → K and g : K×K → Y be two continuous and affine
mappings satisfy η(x, x) = 0 = g(x, x), ∀x ∈ K. Let S, T : K × K → 2L(X,Y )

with nonempty convex compact values and satisfies the following conditions:
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(i) For each z ∈ K, S(·, z) : K → 2L(X,Y ) and T (z, ·) : K → 2L(X,Y ) are
η-pseudomonotone with respect to g on K;

(ii) for each z ∈ K, S(z, ·) : K → 2L(X,Y ) and T (·, z) : K → 2L(X,Y ) are lower
semicontinuous on K, where K equipped with the weak topology and L(X, Y )
is equipped with the uniform convergence topology operator;

(iii) for each z ∈ K, the mappings S(·, z) : K → 2L(X,Y ) and T (z, ·) : K →
2L(X,Y ) are continuous on each finite dimensional subspace of X;

(iv) there exists u0 ∈ K such that if (xn, yn) ∈ K × K with (xn, yn) → ∞ as
n → ∞, then for each n large enough it holds that ∃ξn ∈ S(u0, yn) and
ζn ∈ T (xn, u0) satisfying

{

〈ξn, η(u0, xn)〉 + g(u0, xn) ∈ -int C(xn)

〈ζn, η(u0, yn)〉 + g(u0, yn) ∈ -int C(yn)

Then the (SGMVVLIP) has a solution in K.

Proof. For each n ∈ N, let Kn = K ∩ B(θ, n), where B(θ, n) is the closed ball
with center at θ and radius n. Hence, from Theorem 4.2, we get that there exists
(xn, yn) ∈ Kn × Kn such that for each z ∈ Kn there exists ξn ∈ S(xn, yn) and
ζn ∈ T (xn, yn) satisfying

{

〈ξn, η(z, xn)〉 + g(z, xn) /∈ -int C(xn)

〈ζn, η(z, yn)〉 + g(z, yn) /∈ -int C(yn).

By Lemma 2.7, for all ϕn ∈ S(z, yn) and φn ∈ T (xn, z), we have
{

〈ϕn, η(z, xn)〉 + g(z, xn) /∈ -int C(xn)

〈φn, η(z, yn)〉 + g(z, yn) /∈ -int C(yn).

By condition (4), we know that {(xn, yn)} is bounded. If not, without loss of
generality, we assume that (xn, yn) → ∞. Thus for z = u0, ϕn ∈ S(u0, yn) and
φn ∈ T (xn, u0), we have

{

〈ϕn, η(u0, xn)〉 + g(u0, xn) /∈ -int C(xn)

〈φn, η(u0, yn)〉 + g(u0, yn) /∈ -int C(yn).

This is a contradiction according to condition (4). Thus {(xn, yn)} is bounded.
Without loss of generality, we assume that (xn, yn) →w (x0, y0). We shall show
that (x0, y0) is the solution of the (SGMVVLIP). Consider, for each z ∈ K and
each ξ ∈ S(z, y0) and ζn ∈ T (x0, z), it follow from the lower semi-continuity of
S(z, ·) and T (·, z) that there exist ξn ∈ S(z, yn) and ζ ∈ T (xn, z) such that ξn → ξ
and ζn → ζ satisfying

{

〈ξn, η(z, xn)〉 + g(z, xn) /∈ -int C(xn)

〈ζn, η(z, yn)〉 + g(z, yn) /∈ -int C(yn).



Existence of Solutions for New Systems of Generalized Mixed Vector ... 233

Now, letting n → ∞, by the continuity of η(·, ·), 〈·, ·〉 and g(·, ·), we can show that

〈ξn, η(z, xn)〉 + g(z, xn) →w 〈ξ0, η(z, x0)〉 + g(z, x0)

and
〈ζn, η(z, yn)〉 + g(z, yn) →w 〈ζ0, η(z, y0)〉 + g(z, y0).

Since W is weakly closed, we obtain that

〈ξ0, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

and
〈ζ0, η(z, y0)〉 + g(z, y0) /∈ -int C(y0).

Using Lemma 2.7 again, we have that for each z ∈ K, there exist ξ0 ∈ S(x0, y0)
and ζ0 ∈ T (x0, y0) satisfying

{

〈ξ0, η(z, x0)〉 + g(z, x0) /∈ -int C(x0)

〈ζ0, η(z, y0)〉 + g(z, y0) /∈ -int C(y0).

This completes the proof.

Next, we consider the generalized mixed vector variational-like inequalities
with set-valued semi-η-pseudomonotone with respect to g on K.

Corollary 4.3. Let X be a real reflexive Banach space, Y a Banach space, K
a nonempty bounded closed convex subset of X. Suppose that the mapping C :
K → 2Y is a cone mapping and the mapping, and W : K → 2Y be defined by
W (x) = Y \{−int C(x)} such that the graph G(W ) of W is weakly closed in X×Y
and W is concave. Let η : K ×K → K and g : K×K → Y be two continuous and
affine mappings satisfy η(x, x) = 0 = g(x, x) , ∀x ∈ K. Let T : K × K → 2L(X,Y )

with nonempty convex compact values and satisfies the following conditions:

(i) T is a set valued semi-η-pseudomonotone with respect to g on K;

(iii) for each z ∈ K, the mappings T (z, ·) : K → 2L(X,Y ) are continuous on each
finite dimensional subspace of X.

Then there exists x0 ∈ K such that for each z ∈ K, there exists ξ ∈ T (x0, x0)
satisfying

〈ξ0, η(z, x0)〉 + g(z, x0) /∈ -int C(x0).

Proof. Define a set-valued mapping S : K ×K → 2L(X,Y ) by S(u, v) = T (v, v) for
all u, v ∈ K. We observe that S(·, z) is η-pseudomonotone with respect to g and
S(z, ·) is lower semicontinuous for all z ∈ K. Moreover, S(·, z) continuous on each
finite dimensional subspace of X . Hence, by Theorem 4.1, there exists x0 ∈ K
such that for each z ∈ K, there exists ξ ∈ T (x0, x0) satisfying

〈ξ0, η(z, x0)〉 + g(z, x0) /∈ -int C(x0).
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If we set η(y, x) = y − x and g(y, x) = 0 for all y, x ∈ K, then the concept of
η-pseudomonotone with respect to g reduces to Cx-pseudomonotone introduced in
[16] and we also known from Proposition 2.1 of [16] that every set-valued monotone
is Cx-pseudomonotone. Therefore, the following result follow directly from Corol-
lary 4.3.

Corollary 4.4 ([4]). Let X be a real reflexive Banach space, Y a Banach space,
K a nonempty bounded closed convex subset of X. Suppose that the mapping
C : K → 2Y is a cone mapping and the mapping, and W : K → 2Y be defined
by W (x) = Y \{−int C(x)} such that the graph G(W ) of W is weakly closed in
X×Y and W is concave. Let T : K×K → 2L(X,Y ) with nonempty convex compact
values and satisfies the following conditions:

(i) T is a set valued semi-monotone mapping on K;

(iii) for each z ∈ K, the mappings T (z, ·) : K → 2L(X,Y ) are continuous on each
finite dimensional subspace of X.

Then there exists x0 ∈ K such that for each z ∈ K, there exists ξ ∈ T (x0, x0)
satisfying

〈ξ0, z − x0〉 /∈ -int C(x0).
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