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1 Introduction

Let Θ : C × C −→ R be a bifunction, ϕ : C −→ R be a real-valued function,
and B : C −→ E∗ be a nonlinear mapping. The generalized mixed equilibrium
problem, is to find x ∈ C such that

Θ(x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions to (1.1) is denoted by Ω, i.e.,

Ω = {x ∈ C : Θ(x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C}. (1.2)

If B = 0, the problem (1.1) reduce into the mixed equilibrium problem for Θ,
denoted by MEP (Θ, ϕ), is to find x ∈ C such that

Θ(x, y) + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1.3)

If Θ ≡ 0, the problem (1.1) reduce into the mixed variational inequality of Browder
type, denoted by MV I(C, B, ϕ), is to find x ∈ C such that

〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1.4)

If B = 0 and ϕ = 0 the problem (1.1) reduce into the equilibrium problem for Θ,
denoted by EP (Θ), is to find x ∈ C such that

Θ(x, y) ≥ 0, ∀y ∈ C. (1.5)

The above formulation (1.5) was shown in [1] to cover monotone inclusion
problems, saddle point problems, variational inequality problems, minimization
problems, optimization problems, variational inequality problems, vector equilib-
rium problems, Nash equilibria in noncooperative games. In addition, there are
several other problems, for example, the complementarity problem, fixed point
problem and optimization problem, which can also be written in the form of an
EP (Θ). In other words, the EP (Θ) is an unifying model for several problems aris-
ing in physics, engineering, science, optimization, economics, etc. In the last two
decades, many papers have appeared in the literature on the existence of solutions
of EP (Θ); see, for example [1–4] and references therein. Some solution methods
have been proposed to solve the EP (Θ); see, for example, [3–7] and references
therein. In 2005, Combettes and Hirstoaga [5] introduced an iterative scheme of
finding the best approximation to the initial data when EP (Θ) is nonempty and
they also proved a strong convergence theorem.

Let E be a Banach space with norm ‖ · ‖, C be a nonempty closed convex
subset of E and let E∗ denote the dual of E. Let B be a monotone operator of C
into E∗. The variational inequality problem is to find a point x ∈ C such that

〈Bx, y − x〉 ≥ 0, for all y ∈ C. (1.6)

The set of solutions of the variational inequality problem is denoted by V I(C, B).
Such a problem is connected with the convex minimization problem, the comple-
mentarity problem, the problem of finding a point u ∈ E satisfying 0 = Bu and so
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on. An operator B of C into E∗ is said to be inverse-strongly monotone, if there
exists a positive real number α such that

〈x − y, Bx − By〉 ≥ α‖Bx − By‖2 (1.7)

for all x, y ∈ C. In such a case, B is said to be α-inverse-strongly monotone. If
an operator B of C into E∗ is α-inverse-strongly monotone, then B is Lipschitz
continuous, that is ‖Bx − By‖ ≤ 1

α
‖x − y‖ for all x, y ∈ C.

In Hilbert space H , Iiduka et al. [8] proved that the sequence {xn} defined
by: x1 = x ∈ C and

xn+1 = PC(xn − λnBxn), (1.8)

where PC is the metric projection of H onto C and {λn} is a sequence of positive
real numbers, converges weakly to some element of V I(C, B).

In 2008, Iiduka and Takahashi [9] introduced the following iterative scheme
for finding a solution of the variational inequality problem for an inverse-strongly
monotone operator B in a Banach space: x1 = x ∈ C and

xn+1 = ΠCJ−1(Jxn − λnBxn) (1.9)

for every n = 1, 2, 3, . . ., where ΠC is the generalized metric projection from E onto
C, J is the duality mapping from E into E∗ and {λn} is a sequence of positive
real numbers. They proved that the sequence {xn} generated by (1.9) converges
weakly to some element of V I(C, B).

Consider the problem of finding:

v ∈ E such that 0 ∈ A(v), (1.10)

where A is an operator from E into E∗. Such v ∈ E is called a zero point of A.
When A is a maximal monotone operator, a well-know methods for solving (1.10)
in a Hilbert space H is the proximal point algorithm: x1 = x ∈ H and,

xn+1 = Jrn
xn, n = 1, 2, 3, . . . , (1.11)

where {rn} ⊂ (0,∞) and Jrn
= (I + rnA)−1, then Rockafellar [10] proved that the

sequence {xn} converges weakly to an element of A−1(0).
In 2008, Li and Song [11] proved a strong convergence theorem in a Banach

space, by the following algorithm: x1 = x ∈ E and

yn = J−1(βnJ(xn) + (1 − βn)J(Jrn
xn)),

xn+1 = J−1(αnJx1 + (1 − αn)J(yn)),
(1.12)

with the coefficient sequences {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfying
limn−→∞ αn = 0,

∑∞

n=1 αn = ∞, lim n−→∞βn = 0, and lim n−→∞rn = ∞, where
J is the duality mapping from E into E∗ and Jr = (I +rT )−1J . Then they proved
that the sequence {xn} converges strongly to ΠCx, where ΠC is the generalized
projection from E onto C.
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Recall, a mapping S : C → C is said to be nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖

for all x, y ∈ C. We denote by F (S) the set of fixed points of S. If C is bounded
closed convex and S is a nonexpansive mapping of C into itself, then F (S) is
nonempty (see [12]). A mapping S is said to be quasi-nonexpansive if F (S) 6= ∅
and ‖Sx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F (S). It is easy to see that if S
is nonexpansive with F (S) 6= ∅, then it is quasi-nonexpansive. We write xn −→ x
(xn ⇀ x, resp.) if {xn} converges (weakly, resp.) to x. Let E be a real Banach
space with norm ‖ · ‖ and let J be the normalized duality mapping from E into
2E∗

given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality
pairing between E and E∗. It is well known that if E∗ is uniformly convex, then
J is uniformly continuous on bounded subsets of E.

Let C be a closed convex subset of E, and let S be a mapping from C into
itself. A point p in C is said to be an asymptotic fixed point of S [13] if C contains
a sequence {xn} which converges weakly to p such that limn→∞ ‖xn − Sxn‖ = 0.

The set of asymptotic fixed points of S will be denoted by F̃ (S). A mapping S

from C into itself is said to be relatively nonexpansive [14–16] if F̃ (S) = F (S)
and φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F (S). The asymptotic behavior
of a relatively nonexpansive mapping was studied in [17, 18]. S is said to be φ-
nonexpansive, if φ(Sx, Sy) ≤ φ(x, y) for x, y ∈ C. S is said to be relatively quasi-
nonexpansive if F (S) 6= ∅ and φ(p, Sx) ≤ φ(p, x) for x ∈ C and p ∈ F (S). Recall
that an operator S in a Banach space is call closed, if xn −→ x and Sxn −→ y,
then Sx = y.

In 2008, Takahashi and Zembayashi [19] introduced the following shrinking
projection method of closed relatively nonexpansive mappings as follow:























x0 = x ∈ C, C0 = C,
yn = J−1(αnJ(xn) + (1 − αn)JS(xn)),
un ∈ C such that Θ(un, y) + 1

rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x

(1.13)

for every n ∈ N∪{0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies
lim infn−→∞ αn(1−αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, they proved
that the sequence {xn} converges strongly to ΠF (S)∩EP (Θ)x. Qin and Su [20]
proved the following iteration for relatively nonexpansive mappings T in a Banach
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space E:






























x0 ∈ C, chosen arbitrarily,
yn = J−1(αnJxn + (1 − αn)JTzn),
zn = J−1(βnJxn + (1 − βn)JTxn),
Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1 − αn)φ(v, zn)},
Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},
xn+1 = ΠCn∩Qn

x0,

(1.14)

the sequence {xn} generated by (1.14) converges strongly to ΠF (T )x0. In 2009,
Cholamjiak [21], proved the following iteration























zn = ΠCJ−1(Jxn − λnAxn),
yn = J−1(αnJxn + βnJTxn + γnJSzn),
un ∈ C such that Θ(un, y) + 1

rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn),
xn+1 = ΠCn+1

x0,

(1.15)

where J is the duality mapping on E. Assume that αn, βn and γn are sequence
in [0, 1]. Then {xn} converges strongly to q = ΠF x0, where F := F (T ) ∩ F (S) ∩
EP (Θ) ∩ V I(A, C). Moreover, Saewan et al. [22] proved the strong convergence
for two relatively quasi-nonexpansive mappings in a Banach space under certain
appropriate conditions. In 2009, Ceng et al. [23] proved the following strong
convergence theorem for finding a common element of the set of solutions for an
equilibrium and the set of a zero point for a maximal monotone operator T in a
Banach space E,















yn = J−1(αnJ(x0) + (1 − αn)(βnJxn + (1 − βn)JJrn
(xn))),

Hn = {z ∈ C : φ(z, Trn
yn) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn

x0.

(1.16)

Then, the sequence {xn} converges strongly to ΠT−10∩EP (Θ)x0, where ΠT−10∩EP (Θ)

is the generalized projection of E onto A−10 ∩ EP (Θ).
Recently, Inoue et al. [24] proved the strong convergence for finding a com-

mon fixed point set of relatively nonexpansive mappings and the zero point set of
maximal monotone operators in Banach spaces E: x0 = x ∈ C and















yn = J−1(αnJ(xn) + (1 − αn)JTJrn
(xn))),

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jxn − Jx〉 ≥ 0},
xn+1 = ΠCn∩Qn

x.

(1.17)

Then, the sequence {xn} converges strongly to ΠF (T )∩A−10x0, where ΠF (T )∩A−10

is the generalized projection of E onto F (T ) ∩ A−10.
In this paper, motivated and inspired by Li and Song [11], Iiduka and Taka-

hashi [9], Takahashi and Zembayashi [19], Ceng et al. [23] and Inoue et al. [24],
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we introduce the new hybrid algorithm defined by: x1 = x ∈ C and






































wn = ΠCJ−1(Jxn − λnAxn),
zn = J−1(βnJ(xn) + (1 − βn)JT (Jrn

wn)),
yn = J−1(αnJ(xn) + (1 − αn)JSzn),
un ∈ C such that Θ(un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un)

+ 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)},
xn+1 = ΠCn+1

x, ∀n ≥ 1.

(1.18)

Under appropriate conditions, we will prove that the sequence {xn} generated
by algorithms (1.18) converges strongly to the point ΠF (T )∩F (S)∩V I(C,B)∩A−1(0)∩Ωx.
The results presented in this paper extend and improve the corresponding ones
announced by Li and Song [11], Inoue et al. [24] and many authors in the literature.

2 Preliminaries

A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x 6= y. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of
E. Then the Banach space E is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖

t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is
attained uniformly for x, y ∈ E. The modulus of convexity of E is the function
δ : [0, 2] → [0, 1] defined by

δ(ε) = inf{1 − ‖
x + y

2
‖ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}. (2.1)

A Banach space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let
p be a fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly
convex if there exists a constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see
[25, 26] for more details. Observe that every p-uniform convex is uniformly convex.
One should note that no Banach space is p-uniformly convex for 1 < p < 2. It is
well known that a Hilbert space is 2 -uniformly convex and uniformly smooth. For
each p > 1, the generalized duality mapping Jp : E → 2E∗

is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1} (2.2)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. If E
is a Hilbert space, then J = I, where I is the identity mapping. It is also known
that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on
each bounded subset of E.

We know the following (see [27]):

(1) if E is smooth, then J is single-valued;
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(2) if E is strictly convex, then J is one-to-one and 〈x − y, x∗ − y∗〉 > 0 holds
for all (x, x∗), (y, y∗) ∈ J with x 6= y;

(3) if E is reflexive, then J is surjective;

(4) if E is uniformly convex, then it is reflexive;

(5) if E∗ is uniformly convex, then J is uniformly norm-to-norm continuous on
each bounded subset of E.

The duality J from a smooth Banach space E into E∗ is said to be weakly
sequentially continuous [28] if xn ⇀ x implies Jxn ⇀∗ Jx, where ⇀∗ implies the
weak∗ convergence.

Lemma 2.1 ([29, 30]). If E be a 2-uniformly convex Banach space. Then, for all
x, y ∈ E we have

‖x − y‖ ≤
2

c2
‖Jx − Jy‖,

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1
c

in Lemma is called the 2 -uniformly convex constant of
E; see [25].

Lemma 2.2 ([29, 31]). If E be a p-uniformly convex Banach space and let p be a
given real number with p ≥ 2. Then for all x, y ∈ E, Jx ∈ Jp(x) and Jy ∈ Jp(y)

〈x − y, Jx − Jy〉 ≥
cp

2p−2p
‖x − y‖p,

where Jp is the generalized duality mapping of E and
1

c
is the p-uniformly convexity

constant of E.

Lemma 2.3 (Xu [30]). Let E be a uniformly convex Banach space. Then for
each r > 0, there exists a strictly increasing, continuous and convex function
g : [0,∞) −→ [0,∞) such that g(0) = 0 and

‖λx + (1 − λy)‖2 ≤ λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)g(‖x − y‖) (2.3)

for all x, y ∈ {z ∈ E : ‖z‖ ≤ r} and λ ∈ [0, 1].

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty closed convex subset of E. Throughout this paper, we denote by φ the
function defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, for x, y ∈ E. (2.4)

Following Alber [32], the generalized projection ΠC : E → C is a map that assigns
to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is,
ΠCx = x̄, where x̄ is the solution to the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x) (2.5)
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existence and uniqueness of the operator ΠC follows from the properties of the
functional φ(x, y) and strict monotonicity of the mapping J . It is obvious from
the definition of function φ that (see [32])

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2, ∀x, y ∈ E. (2.6)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2.
If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,

φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0 then
x = y. From (2.6), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2.
From the definition of J, one has Jx = Jy. Therefore, we have x = y; see [27, 33]
for more details.

Lemma 2.4 (Kamimura and Takahashi [34]). Let E be a uniformly convex and
smooth real Banach space and let {xn}, {yn} be two sequences of E. If φ(xn, yn) →
0 and either {xn} or {yn} is bounded, then ‖xn − yn‖ → 0.

Lemma 2.5 (Mutsushita and Takahashi [35]). Let C be a closed convex subset of
a smooth, strictly convex, and reflexive Banach space E and let T be a relatively
quasi-nonexpansive mapping from C into itself. Then F (T ) is closed and convex.

Lemma 2.6 (Alber [32]). Let C be a nonempty closed convex subset of a smooth
Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.7 (Alber [32]). Let E be a reflexive, strictly convex and smooth Banach
space, let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.

Let E be a strictly convex, smooth and reflexive Banach space, let J be the
duality mapping from E into E∗. Then J−1 is also single-valued, one-to-one,
and surjective, and it is the duality mapping from E∗ into E. Define a function
V : E × E∗ −→ R as follows (see [36]):

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.7)

for all x ∈ Ex ∈ E and x∗ ∈ E∗. Then, it is obvious that V (x, x∗) = φ(x, J−1(x∗))
and V (x, J(y)) = φ(x, y).

Lemma 2.8 (Kohsaka and Takahashi [36, Lemma 3.2]). Let E be a strictly convex,
smooth and reflexive Banach space, and let V be as in (2.7). Then

V (x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V (x, x∗ + y∗) (2.8)

for all x ∈ E and x∗, y∗ ∈ E∗.
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Let E be a reflexive, strictly convex and smooth Banach space. Let C be a
closed convex subset of E. Because φ(x, y) is strictly convex and coercive in the
first variable, we know that the minimization problem infy∈C φ(x, y) has a unique
solution. The operator ΠCx := argminy∈C φ(x, y) is said to be the generalized
projection of x on C.

A set-valued mapping A : E −→ E∗ with domain D(A) = {x ∈ E : A(x) 6= ∅}
and range R(A) = {x∗ ∈ E∗ : x∗ ∈ A(x), x ∈ D(A)} is said to be monotone if
〈x − y, x∗ − y∗〉 ≥ 0 for all x∗ ∈ A(x), y∗ ∈ A(y). We denote the set {x ∈ E : 0 ∈
Ax} by A−10. A is maximal monotone if its graph G(A) is not properly contained
in the graph of any other monotone operator. If A is maximal monotone, then the
solution set A−10 is closed and convex.

Let E be a reflexive, strictly convex and smooth Banach space, it is knows
that A is a maximal monotone if and only if R(J + rA) = E∗ for all r > 0.

Define the resolvent of A by Jrx = xr. In other words, Jr = (J + rA)−1J for
all r > 0. Jr is a single-valued mapping from E to D(A). Also, A−1(0) = F (Jr)
for all r > 0, where F (Jr) is the set of all fixed points of Jr. Define, for r > 0, the
Yosida approximation of A by Ar = (J −JJr)/r. We know that Arx ∈ A(Jrx) for
all r > 0 and x ∈ E.

Lemma 2.9 (Kohsaka and Takahashi [36, Lemma 3.1]). Let E be a smooth, strictly
convex and reflexive Banach space, let A ⊂ E×E∗ be a maximal monotone operator
with A−10 6= ∅, let r > 0 and let Jr = (J + rA)−1J . Then

φ(x, Jry) + φ(Jry, y) ≤ φ(x, y)

for all x ∈ A−10 and y ∈ E.

Let B be an inverse-strongly monotone mapping of C into E∗ which is said to
be hemicontinuous if for all x, y ∈ C, the mapping F of [0, 1] into E∗, defined by
F (t) = B(tx + (1 − t)y), is continuous with respect to the weak∗ topology of E∗.
We define by NC(v) the normal cone for C at a point v ∈ C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}. (2.9)

Theorem 2.10 (Rockafellar [10]). Let C be a nonempty, closed convex subset of
a Banach space E and B a monotone, hemicontinuous operator of C into E∗. Let
T ⊂ E × E∗ be an operator defined as follows:

Tv =

{

Bv + NC(v), v ∈ C;
∅, otherwise.

(2.10)

Then T is maximal monotone and T−10 = V I(C, B).

Lemma 2.11 (Tan and Xu [37]). Let {an} and {bn} be two sequence of nonneg-
ative real numbers satisfying the inequality

an+1 ≤ an + bn, for all n ≥ 0.

If
∑∞

n=1 bn < ∞, then limn−→∞ an exists.
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For solving the mixed equilibrium problem, let us assume that the bifunction
Θ : C × C → R and ϕ : C → R is convex and lower semi-continuous satisfies the
following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;

(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim sup
t↓0

Θ(tz + (1 − t)x, y) ≤ Θ(x, y);

(A4) for each x ∈ C, y 7→ Θ(x, y) is convex and lower semi-continuous.

Lemma 2.12 (Blum and Oettli [1]). Let C be a closed convex subset of a uniformly
smooth, strictly convex and reflexive Banach space E and let Θ be a bifunction of
C×C into R satisfying (A1)-(A4). Let r > 0 and x ∈ E. Then, there exists z ∈ C
such that

Θ(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, for all y ∈ C.

Lemma 2.13 (Takahashi and Zembayashi [19]). Let C be a closed convex subset
of a uniformly smooth, strictly convex and reflexive Banach space E and let Θ be
a bifunction from C × C to R satisfying (A1)-(A4). For all r > 0 and x ∈ E,
define a mapping Tr : E −→ C as follows:

Trx = {z ∈ C : Θ(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C} (2.11)

for all x ∈ E. Then, the followings hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

(3) F (Tr) = EP (Θ);

(4) EP (Θ) is closed and convex.

Lemma 2.14 (Takahashi and Zembayashi [19]). Let C be a closed convex subset of
a smooth, strictly convex, and reflexive Banach space E, let Θ be a bifunction from
C × C to R satisfying (A1)-(A4) and let r > 0. Then, for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.15 (Zhang [38]). Let C be a closed convex subset of a smooth, strictly
convex and reflexive Banach space E. Let B : C −→ E∗ be a continuous and
monotone mapping, ϕ : C → R is convex and lower semi-continuous and Θ be a
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bifunction from C×C to R satisfying (A1)-(A4). For r > 0 and x ∈ E, then there
exists u ∈ C such that

Θ(u, y) + 〈Bu, y − u〉 + ϕ(y) − ϕ(u) +
1

r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C.

Define a mapping Kr : C −→ C as follows:

Kr(x) = {u ∈ C : Θ(u, y) + 〈Bu, y − u〉 + ϕ(y) − ϕ(u) +
1

r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C}

(2.12)

for all x ∈ C. Then, the followings hold:

(i) Kr is single-valued;

(ii) Kr is firmly nonexpansive, i.e., for all x, y ∈ E, 〈Krx − Kry, JKrx −
JKry〉 ≤ 〈Krx − Kry, Jx − Jy〉;

(iii) F (Kr) = Ω;

(iv) Ω is closed and convex.

(v) φ(p, Krz) + φ(Krz, z) ≤ φ(p, z) ∀p ∈ F (Kr), z ∈ E.

Remark 2.16 (Zhang [38]). It follows from Lemma 2.13 that the mapping Kr :
C −→ C defined by (2.12) is a relatively nonexpansive mapping. Thus, it is
quasi-φ-nonexpansive.

3 Strong Convergence Theorem

In this section, we prove a strong convergence theorem for finding a common
element of the set of solutions of mixed equilibrium problems, the set of solution
of the variational inequality operators, the zero point of a maximal monotone
operators and the set of fixed piint of two relatively quasi-nonexpansive mappings
in a Banach space by using the shrinking hybrid projection method.

Theorem 3.1. Let E be a 2-uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E. Let Θ be a bifunction from
C×C to R satisfying (A1)-(A4) let ϕ : C −→ R be a proper lower semicontinuous
and convex function and let B : C −→ E∗ be a continuous and monotone map-
pings, let A : E −→ E∗ be a maximal monotone operator satisfying D(A) ⊂ C.
Let Jr = (J + rA)−1J for r > 0 and let W be an α-inverse-strongly monotone
operator of C into E∗. Let T and S are closed relatively quasi-nonexpansive from
C into itself such that F := F (T ) ∩ F (S) ∩ V I(C, W ) ∩ A−1(0) ∩ Ω 6= ∅ and
‖Wy‖ ≤ ‖Wy − Wu‖ for all y ∈ C and u ∈ F . Let {xn} be a sequence generated
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by x0 ∈ E with x1 = ΠC1
x0 and C1 = C,







































wn = ΠCJ−1(Jxn − λnWxn),
zn = J−1(αnJ(xn) + (1 − αn)JT (Jrn

wn)),
yn = J−1(βnJ(xn) + (1 − βn)JSzn),
un ∈ C such that Θ(un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un)

+ 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)φ(z, zn) ≤ φ(z, xn)}
xn+1 = ΠCn+1

x0

(3.1)
for all n ∈ N, where ΠC is the generalized projection from E onto C, J is the
duality mapping on E. The coefficient sequence {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞)
satisfying lim supn−→∞ αn < 1, lim supn−→∞ βn < 1, lim infn−→∞ rn > 0 and

{λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α
2 , 1

c
is the 2-uniformly convexity

constant of E. If T and S are uniformly continuous, then the sequence {xn}
converges strongly to ΠF x0.

Proof. Let H(un, y) = Θ(un, y)+ 〈Bun, y− un〉+ ϕ(y)−ϕ(un), y ∈ C and Krn
=

{u ∈ C : H(un, y) + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0. ∀y ∈ C}. We first show that

{xn} is bounded. Put vn = J−1(Jxn − λnWxn), let p ∈ F := F (T ) ∩ F (S) ∩
V I(C, W ) ∩A−1(0)∩Ω and un = Krn

yn. By (3.1) and Lemma 2.8, the convexity
of the function V in the second variable, we have

φ(p, wn) = φ(p, ΠCvn)

≤ φ(p, vn) = φ(p, J−1(Jxn − λnWxn))

≤ V (p, Jxn − λnWxn + λnWxn) − 2〈J−1(Jxn − λnAxn) − p, λnWxn〉

= V (p, Jxn) − 2λn〈vn − p, Wxn〉

= φ(p, xn) − 2λn〈xn − p, Wxn〉 + 2〈vn − xn,−λnWxn〉. (3.2)

Since p ∈ V I(C, W ) and W is α-inverse-strongly monotone, we have

− 2λn〈xn − p, Wxn〉 = −2λn〈xn − p, Wxn − Wp〉 − 2λn〈xn − p, Wp〉

≤ −2αλn‖Wxn − Wp‖2, (3.3)

and by Lemma 2.1, we obtain

2〈vn − xn,−λnWxn〉 = 2〈J−1(Jxn − λnWxn) − xn,−λnWxn〉

≤ 2‖J−1(Jxn − λnWxn) − xn‖‖λnWxn‖

≤
4

c2
‖Jxn − λnWxn − Jxn‖‖λnWxn‖

=
4

c2
λ2

n‖Wxn‖
2

≤
4

c2
λ2

n‖Wxn − Wp‖2. (3.4)
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Substituting (3.3) and (3.4) into (3.2), we get

φ(p, wn) ≤ φ(p, xn) − 2αλn‖Wxn − Wp‖2 +
4

c2
λ2

n‖Wxn − Wp‖2

≤ φ(p, xn) + 2λn

(

2

c2
λn − α

)

‖Wxn − Wp‖2

≤ φ(p, xn). (3.5)

By Lemma 2.8, Lemma 2.9 and (3.5), we have

φ(p, zn) = φ(p, J−1(αnJ(xn) + (1 − αn)JT (Jrn
wn)))

= V (p, αnJ(xn) + (1 − αn)JT (Jrn
wn))

≤ αnV (p, J(xn)) + (1 − αn)V (p, JT (Jrn
wn))

= αnφ(p, xn) + (1 − αn)φ(p, TJrn
wn)

≤ αnφ(p, xn) + (1 − αn)φ(p, Jrn
wn)

≤ αnφ(p, xn) + (1 − αn)(φ(p, wn) − φ(Jrn
wn, wn)) (3.6)

≤ αnφ(p, xn) + (1 − αn)φ(p, wn)

≤ αnφ(p, xn) + (1 − αn)φ(p, xn)

= φ(p, xn),

it follows that

φ(p, yn) = φ(p, J−1(βnJ(xn) + (1 − βn)JS(zn)))
= V (p, βnJ(xn) + (1 − βn)JS(zn))
≤ βnV (p, J(xn)) + (1 − βn)V (p, JS(zn))
= βnφ(p, xn) + (1 − βn)φ(p, Szn)
≤ βnφ(p, xn) + (1 − βn)φ(p, zn)
≤ βnφ(p, xn) + (1 − βn)φ(p, xn)
≤ φ(p, xn).

(3.7)

From (3.1) and (3.7), we obtain

φ(p, un) = φ(p, Krn
yn) ≤ φ(p, yn) ≤ φ(p, xn). (3.8)

So, we have p ∈ Cn+1. This implies that F ⊂ Cn for all n ∈ N, {xn} is well
defined.

From Lemma 2.6 and xn = ΠCn
x0, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn (3.9)

and
〈xn − p, Jx0 − Jxn〉 ≥ 0, ∀p ∈ F. (3.10)

From Lemma 2.7, one has

φ(xn, x0) = φ(ΠCn
x0, x0) ≤ φ(p, x0) − φ(p, xn) ≤ φ(p, x0)
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for all p ∈ F ⊂ Cn and n ≥ 1. Then, the sequence {φ(xn, x0)} is bounded.
Thus {xn} is bounded and {yn}, {zn}, {wn}, {Jrn

wn} are also bounded. Since
xn = ΠCn

x0 and xn+1 = ΠCn+1
x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ∈ N.

Therefore, {φ(xn, x0)} is nondecreasing. Hence the limit of {φ(xn, x0)} exists. By
the construction of Cn, one has that Cm ⊂ Cn and xm = ΠCm

x0 ∈ Cn for any
positive integer m ≥ n. It follows that

φ(xm, xn) = φ(xm, ΠCn
x0)

≤ φ(xm, x0) − φ(ΠCn
x0, x0)

= φ(xm, x0) − φ(xn, x0).
(3.11)

Letting m, n −→ ∞ in (3.11), we get φ(xm, xn) −→ 0. It follows from Lemma 2.4,
that ‖xm−xn‖ −→ 0 as m, n −→ ∞. That is, {xn} is a Cauchy sequence. Since E
is a Banach space and C is closed and convex, we can assume that xn −→ u ∈ C,
as n −→ ∞. Since

φ(xn+1, xn) = φ(xn+1, ΠCn
x0) ≤ φ(xn+1, x0)−φ(ΠCn

x0, x0) = φ(xn+1, x0)−φ(xn, x0)

for all n ∈ N, we also have limn−→∞φ(xn+1, xn) = 0. Since xn+1 = ΠCn+1
x0 ∈

Cn+1 and by definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn).

Noticing the limn−→∞ φ(xn+1, xn) = 0, we obtain

lim
n−→∞

φ(xn+1, un) = 0.

From again Lemma 2.4, that

lim
n−→∞

‖xn+1 − xn‖ = lim
n−→∞

‖xn+1 − un‖ = 0. (3.12)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖Jxn+1 − Jxn‖ = lim
n−→∞

‖Jxn+1 − Jun‖ = 0. (3.13)

So, by the triangle inequality, we get

lim
n−→∞

‖xn − un‖ = 0. (3.14)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n−→∞

‖Jxn − Jun‖ = 0. (3.15)

On the other hand, we observe that

φ(p, xn) − φ(p, un) = ‖xn‖2 − ‖un‖2 − 2 〈p, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖p‖‖Jxn − Jun‖.
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It follows that
φ(p, xn) − φ(p, un) −→ 0 as n −→ ∞. (3.16)

From (3.1), (3.6), (3.7) and (3.8), we have

φ(p, un) ≤ φ(p, yn)
≤ βnφ(p, xn) + (1 − βn)φ(p, zn)
≤ βnφ(p, xn) + (1 − βn)[αnφ(p, xn) + (1 − αn)(φ(p, wn) − φ(Jrn

wn, wn))]
≤ βnφ(p, xn) + (1 − βn)[αnφ(p, xn) + (1 − αn)(φ(p, xn) − φ(Jrn

wn, wn))]
≤ φ(p, xn) − (1 − αn)(1 − βn)φ(Jrn

wn, wn)

and then
(1 − αn)(1 − βn)φ(Jrn

wn, wn) ≤ φ(p, xn) − φ(p, un). (3.17)

From conditions lim supn−→∞ αn < 1, lim supn−→∞ βn < 1 and (3.16), we obtain

lim
n−→∞

φ(Jrn
wn, wn) = 0.

By again Lemma 2.4, we have

lim
n−→∞

‖Jrn
wn − wn‖ = 0. (3.18)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖J(Jrn
wn) − J(wn)‖ = 0. (3.19)

Now, we claim that u ∈ F . First we show that u ∈ F (T ) ∩ F (S).
From the definition of Cn, we have

βnφ(z, xn) + (1 − βn)φ(z, zn) ≤ φ(z, xn) ⇔ φ(z, zn) ≤ φ(z, xn), ∀z ∈ Cn+1.

Since xn+1 = ΠCn+1
x0 ∈ Cn+1, we obtain

φ(xn+1, zn) ≤ φ(xn+1, xn).

From limn−→∞ φ(xn+1, xn) = 0, we get

lim
n−→∞

φ(xn+1, zn) = 0. (3.20)

From again Lemma 2.4, that

lim
n−→∞

‖xn+1 − zn‖ = 0. (3.21)

By (3.12) and (3.21), we get

lim
n−→∞

‖xn − zn‖ = 0. (3.22)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖Jxn+1 − Jzn‖ = lim
n−→∞

‖Jxn − Jzn‖ = 0. (3.23)
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From (3.1) again

‖Jxn+1 − Jzn‖ = ‖Jxn+1 − αnJxn − (1 − αn)JTJrn
wn‖

= ‖αn(Jxn+1 − Jxn) + (1 − αn)(Jxn+1 − JTJrn
wn)‖

= ‖(1 − αn)(Jxn+1 − JTJrn
wn) − αn(Jxn − Jxn+1)‖

≥ (1 − αn)‖Jxn+1 − JTJrn
wn‖ − αn‖Jxn − Jxn+1‖.

It follows that

‖Jxn+1 − JTJrn
wn‖ ≤

1

1 − αn

(‖Jxn+1 − Jzn‖ + αn‖Jxn − Jxn+1‖).

From conditions lim supn−→∞ αn < 1, (3.13) and (3.23), we have

lim
n−→∞

‖Jxn+1 − JTJrn
wn‖ = 0. (3.24)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖xn+1 − TJrn
wn‖ = 0. (3.25)

limn−→∞ φ(Jrn
xn, wn) = 0.

Apply (3.5) and (3.6), we observe that

φ(p, un) ≤ φ(p, yn)
≤ βnφ(p, xn) + (1 − βn)φ(p, zn)
≤ βnφ(p, xn) + (1 − βn)[αnφ(p, xn) + (1 − αn)φ(p, wn)]
≤ βnφ(p, xn) + (1 − βn)[αnφ(p, xn) + (1 − αn)[(φ(p, xn)

−2λn

(

α − 2
c2 λn

)

‖Wxn − Wp‖2]]
≤ φ(p, xn) − (1 − αn)(1 − βn)2λn

(

α − 2
c2 λn

)

‖Wxn − Wp‖2

and hence

2λn

(

α −
2

c2
λn

)

‖Wxn − Wp‖2 ≤
1

(1 − αn)(1 − βn)
(φ(p, xn) − φ(p, un))

for all n ∈ N. Since 0 < a ≤ λn ≤ b < c2α
2 , lim supn−→∞ αn < 1, lim supn−→∞ βn <

1 and (3.16), we have
lim

n−→∞
‖Wxn − Wp‖ = 0. (3.26)

From Lemma 2.7, Lemma 2.8 and (3.4), we get

φ(xn, wn) = φ(xn, ΠCvn) ≤ φ(xn, vn)
= φ(xn, J−1(Jxn − λnWxn))
= V (xn, Jxn − λnWxn)
≤ V (xn, (Jxn − λnWxn) + λnWxn)

−2〈J−1(Jxn − λnWxn) − xn, λnWxn〉
= φ(xn, xn) + 2〈vn − xn,−λnWxn〉
= 2〈vn − xn,−λnWxn〉

≤
4λ2

n

c2
‖Wxn − Wp‖2.
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From Lemma 2.4 and (3.26), we have

lim
n−→∞

‖xn − wn‖ = 0. (3.27)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖Jxn − Jwn‖ = 0. (3.28)

From (3.18) and (3.27), we obtain

lim
n−→∞

‖Jrn
wn − xn‖ = 0. (3.29)

So, by the triangle inequality, we get

‖Jrn
wn − TJrn

wn‖ ≤ ‖Jrn
wn − xn‖ + ‖xn − xn+1‖ + ‖xn+1 − TJrn

wn‖.

Again by (3.12), (3.25) and (3.29), we also have

lim
n−→∞

‖Jrn
wn − TJrn

wn‖ = 0. (3.30)

From (3.29), (3.30) and T is uniformly continuous, we get

lim
n−→∞

‖xn − Txn‖ = 0.

Since T is closed and xn −→ u, we have u ∈ F (T ).
Applying (3.7), (3.8) and Lemma 2.14, we get

φ(un, yn) = φ(Krn
yn, yn)

≤ φ(p, yn) − φ(p, Krn
yn)

≤ φ(p, xn) − φ(p, un)
= ‖p‖2 − 2〈p, Jxn〉 + ‖xn‖2 − (‖p‖2 − 2〈p, Jun〉 + ‖un‖2)
= ‖xn‖2 − ‖un‖2 − 2〈p, Jxn − Jun〉
≤ ‖xn − un‖(‖xn + un‖) + 2‖p‖‖Jxn − Jun‖.

From (3.14) and (3.15) and Lemma 2.4, we get

lim
n−→∞

‖un − yn‖ = 0. (3.31)

From (3.12) and (3.31), we have

lim
n−→∞

‖xn+1 − yn‖ = 0. (3.32)

By (3.1), we get

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − βnJxn − (1 − βn)JSzn‖
= ‖βn(Jxn+1 − Jxn) + (1 − βn)(Jxn+1 − JSzn)‖
= ‖(1 − βn)(Jxn+1 − JSzn) − βn(Jxn − Jxn+1)‖
≥ (1 − βn)‖Jxn+1 − JSzn‖ − βn‖Jxn − Jxn+1‖.
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It follows that

‖Jxn+1 − JSzn‖ ≤
1

1 − βn

(‖Jxn+1 − Jyn‖ − βn‖Jxn − Jxn+1‖)

By condition lim supn−→∞ βn < 1, (3.13) and (3.32), we have

lim
n−→∞

‖Jxn+1 − JSzn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖xn+1 − Szn‖ = 0. (3.33)

By the triangle inequality, we get

‖zn − Szn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − Szn‖.

By (3.21) and (3.33), we have

lim
n−→∞

‖zn − Szn‖ = 0.

From (3.22), it follow that

lim
n−→∞

‖xn − Sxn‖ = 0.

Thus by the closedness of S and xn −→ u, we get u ∈ F (S). Hence u ∈ F (T ) ∩
F (S).

Next, we show that u ∈ A−10. Indeed, since lim infn−→∞ rn > 0, it follows
from (3.19) that

lim
n−→∞

‖Arn
wn‖ = lim

n−→∞

1

rn

‖Jwn − J(Jrn
wn)‖ = 0. (3.34)

If (z, z∗) ∈ A, then it holds from the monotonicity of A that

〈z − Jrni
wni

, z∗ − Arni
wni

〉 ≥ 0

for all i ∈ N. Letting i −→ ∞, we get 〈z − u, z∗〉 ≥ 0. Then, the maximality of A
implies u ∈ A−10.

Next, we show that u ∈ V I(C, W ). Let Y ⊂ E×E∗ be an operator as follows:

Y v =

{

Wv + NC(v), v ∈ C;
∅, otherwise.

By Theorem 2.10, Y is maximal monotone and Y −10 = V I(C, W ). Let (v, w) ∈
G(Y ). Since w ∈ Y v = Wv + NC(v), we get w − Wv ∈ NC(v). From wn ∈ C, we
have

〈v − wn, w − Wv〉 ≥ 0. (3.35)
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On the other hand, since wn = ΠCJ−1(Jxn − λnWxn). Then by Lemma 2.6, we
have

〈v − wn, Jwn − (Jxn − λnWxn)〉 ≥ 0,

thus

〈v − wn,
Jxn − Jwn

λn

− Wxn〉 ≤ 0. (3.36)

It follows from (3.35) and (3.36) that

〈v − wn, w〉 ≥ 〈v − wn, Wv〉

≥ 〈v − wn, Wv〉 + 〈v − wn,
Jxn − Jwn

λn

− Wxn〉

= 〈v − wn, Wv − Wxn〉 + 〈v − wn,
Jxn − Jwn

λn

〉

= 〈v − wn, Wv − Wwn〉 + 〈v − wn, Wwn − Wxn〉

+〈v − wn,
Jxn − Jwn

λn

〉

≥ −‖v − wn‖
‖wn − xn‖

α
− ‖v − wn‖

‖Jxn − Jwn‖

a

≥ −M(
‖wn − xn‖

α
+

‖Jxn − Jwn‖

a
),

where M = supn≥1{‖v − wn‖}. From (3.27) and (3.28), we obtain 〈v − u, w〉 ≥ 0.
By the maximality of Y , we have u ∈ Y −10 and hence u ∈ V I(C, W ).

Next, we show that u ∈ Ω. From (3.31) and J is uniformly norm-to-norm
continuous on bounded set, we obtain

lim
n−→∞

‖Jun − Jyn‖ = 0. (3.37)

From the assumption rn ≥ a, we get

lim
n→∞

‖Jun − Jyn‖

rn

= 0.

Noticing that un = Krn
yn, we have

H(un, y) +
1

rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C.

Hence,

H(uni
, y) +

1

rni

〈y − uni
, Juni

− Jyni
〉 ≥ 0, ∀y ∈ C.

From the (A2), we note that

‖y − uni
‖
‖Juni

− Jyni
‖

rni

≥
1

rni

〈y − uni
, Juni

− Jyni
〉 ≥ −H(uni

, y) ≥ H(y, uni
),

∀y ∈ C. Taking the limit as n → ∞ in above inequality and from (A4) and
un −→ u, we have H(y, u) ≤ 0, ∀y ∈ C. For 0 < t < 1 and y ∈ C, define
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yt = ty + (1 − t)u. Noticing that y, u ∈ C, we obtains yt ∈ C, which yields that
H(yt, u) ≤ 0. It follows from (A1) that

0 = H(yt, yt) ≤ tH(yt, y) + (1 − t)H(yt, u) ≤ tH(yt, y).

That is, H(yt, y) ≥ 0.
Let t ↓ 0, from (A3), we obtain H(u, y) ≥ 0, ∀y ∈ C. This implies that u ∈ Ω.
Hence u ∈ F := F (T ) ∩ F (S) ∩ V I(C, B) ∩ A−1(0) ∩ Ω.

Finally, we show that u = ΠF x0. Indeed from xn = ΠCn
x0 and Lemma 2.6,

we have

〈Jx0 − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − p〉 ≥ 0, ∀p ∈ F. (3.38)

Taking limit n −→ ∞, we obtain

〈Jx0 − Ju, u − p〉 ≥ 0, ∀p ∈ F.

By again Lemma 2.6, we can conclude that u = ΠF x0. This completes the proof.

Corollary 3.2. Let E be a 2-uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E. Let Θ be a bifunction from
C ×C to R satisfying (A1)-(A4) let ϕ : C −→ R be a proper lower semicontinuous
and convex function and let B : C −→ E∗ be a continuous and monotone map-
pings, let A : E −→ E∗ be a maximal monotone operator satisfying D(A) ⊂ C. Let
Jr = (J +rT )−1J for r > 0 and let W be an α-inverse-strongly monotone operator
of C into E∗. Let T be closed relatively quasi-nonexpansive from C into itself such
that F := F (T ) ∩ V I(C, W ) ∩ A−1(0) ∩ Ω 6= ∅ and ‖Wy‖ ≤ ‖Wy − Wu‖ for all
y ∈ C and u ∈ F . Let {xn} be a sequence generated by x0 ∈ E with x1 = ΠC1

x0

and C1 = C,































wn = ΠCJ−1(Jxn − λnWxn),
zn = J−1(αnJ(xn) + (1 − αn)JT (Jrn

wn)),
un ∈ C such that Θ(un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un)

+ 1
rn

〈y − un, Jun − Jzn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)}
xn+1 = ΠCn+1

x0

(3.39)

for all n ∈ N, where ΠC is the generalized projection from E onto C, J is the
duality mapping on E. The coefficient sequence {αn} ⊂ [0, 1], {rn} ⊂ (0,∞)
satisfying lim supn−→∞ αn < 1, lim infn−→∞ rn > 0 and {λn} ⊂ [a, b] for some

a, b with 0 < a < b < c2α
2 , 1

c
is the 2-uniformly convexity constant of E. If T is

uniformly continuous, then the sequence {xn} converges strongly to ΠF x0.
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Proof. In Theorem 3.1, if S = I and βn = 1 for all n ∈ N∪{0} then (3.1) reduced
to (3.39).

Corollary 3.3. Let E be a 2-uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E. Let Θ be a bifunction
from C × C to R satisfying (A1)-(A4) and let ϕ : C −→ R be a proper lower
semicontinuous and convex function and let B : C −→ E∗ be a continuous and
monotone mappings, let W be an α-inverse-strongly monotone operator of C into
E∗. Let T and S are closed relatively quasi-nonexpansive from C into itself such
that F := F (T ) ∩ F (S) ∩ V I(C, W ) ∩ Ω 6= ∅ and ‖Wy‖ ≤ ‖Wy − Wu‖ for all
y ∈ C and u ∈ F . Let {xn} be a sequence generated by x0 ∈ E with x1 = ΠC1

x0

and C1 = C,







































wn = ΠCJ−1(Jxn − λnWxn),
zn = J−1(αnJ(xn) + (1 − αn)JT (wn)),
yn = J−1(βnJ(xn) + (1 − βn)JS(zn)),
un ∈ C such that Θ(un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un)

+ 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)φ(z, zn) ≤ φ(z, xn)}
xn+1 = ΠCn+1

x0

(3.40)
for all n ∈ N, where ΠC is the generalized projection from E onto C, J is the
duality mapping on E. The coefficient sequence {αn}, {βn} ⊂ [0, 1] satisfying
lim supn−→∞ αn < 1, lim supn−→∞ βn < 1 and {λn} ⊂ [a, b] for some a, b with

0 < a < b < c2α
2 , 1

c
is the 2-uniformly convexity constant of E. If T and S are

uniformly continuous, then the sequence {xn} converges strongly to ΠF x0.

Proof. In Theorem 3.1, set A = ∂iC where iC is the indicator function; that is

iC =

{

0, x ∈ C,
∞, otherwise.

Then, we have that A is a maximal monotone operator and Jr = ΠC for r > 0, in
fact, for any x ∈ E and r > 0, we have from Lemma 2.5 that

z = Jrx ⇔ Jz + r∂iC(z) ∋ Jx
⇔ Jx − Jz ∈ r∂iC(z)
⇔ iC(y) ≥ 〈y − z, Jx−Jz

r
〉 + iC(z), ∀y ∈ E

⇔ 0 ≥ 〈y − z, Jx − Jz〉, ∀y ∈ C
⇔ z = argminy∈C φ(y, x)
⇔ z = ΠCx.

So, we obtain the desired result by using Theorem 3.1.
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4 Application to Complementarity Problems

Let K be a nonempty, closed convex cone in E, W an operator of K into E∗.
We define its polar in E∗ to be the set

K∗ = {y∗ ∈ E∗ : 〈x, y∗〉 ≥ 0, ∀x ∈ K}. (4.1)

Then the element u ∈ K is called a solution of the complementarity problem if

Wu ∈ K∗, 〈u, Wu〉 = 0. (4.2)

The set of solutions of the complementarity problem is denoted by CP (K, W ); see
[27], for more detail.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach
space, let K be a nonempty closed convex subset of E. Let Θ be a bifunction from
K ×K to R satisfying (A1)-(A4) and let ϕ : K −→ R be a proper lower semicon-
tinuous and convex function and let B : K −→ E∗ be a continuous and monotone
mappings, let A : E −→ E∗ be a maximal monotone operator satisfying D(A) ⊂ K.
Let Jr = (J + rT )−1J for r > 0 and let W be an α-inverse-strongly monotone
operator of K into E∗. Let T and S are closed relatively quasi-nonexpansive from
K into itself such that F := F (T ) ∩ F (S) ∩ V I(K, W ) ∩ A−1(0) ∩ Ω 6= ∅ and
‖Wy‖ ≤ ‖Wy − Wu‖ for all y ∈ K and u ∈ F . Let {xn} be a sequence generated
by x0 ∈ E with x1 = ΠC1

x0 and C1 = K,







































wn = ΠKJ−1(Jxn − λnWxn),
zn = J−1(αnJ(xn) + (1 − αn)JT (Jrn

wn)),
yn = J−1(βnJ(xn) + (1 − βn)JS(zn)),
un ∈ K such that Θ(un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un)

+ 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ K,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)φ(z, zn) ≤ φ(z, xn)}
xn+1 = ΠCn+1

x0

(4.3)
for all n ∈ N, where ΠK is the generalized projection from E onto K, J is the
duality mapping on E. The coefficient sequence {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞)
satisfying lim supn−→∞ αn < 1, lim supn−→∞ βn < 1, lim infn−→∞ rn > 0 and

{λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α
2 , 1

c
is the 2-uniformly convexity

constant of E. If T and S are uniformly continuous, then the sequence {xn}
converges strongly to ΠF x0.

Proof. As in the proof Lemma 7.1.1 of Takahashi in [27], we have V I(K, W ) =
CP (K, W ). So, we obtain the desired result.
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