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1 Introduction

There are many situations in mathematics or in other branches of science when
we are forced to deal with large factorials. As a direct computation cannot be made
even by the computer programs, approximation formulas were constructed. Maybe
the most used is the following formula

n! ≈
√

2πn
(n

e

)n

, (1.1)

now known as the Stirling formula, after the Scottish mathematician James Stirling
(1692-1770).

The gamma function Γ defined for x > 0 by

Γ (x) =

∫

∞

0

tx−1e−tdt
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is an extension of the factorial function, since Γ (n + 1) = 1·2 · · ·n, for n = 1, 2, . . . .
Although in applied statistics, or statistical physics the formula (1.1) is sat-

isfactory for large values of n, in pure mathematics more precise approximations
are necessary. One of the first improvement is of type

Γ (n + 1) =
√

2πn
(n

e

)n

eλn , (1.2)

with
1

12n + 1
< λn <

1

12n
, (1.3)

see e.g., [1, 2]. The right-side bound in (1.3) was proved also in [3–6], while suc-

cessively better values for the left-side bound 1/ (12n + 1/4) , or 1/
(

12n + 3
4n+2

)

were obtained in [3, 4].
We refine here (1.3) and all the above bounds proving the following

Theorem 1.1. For every integer n ≥ 1, we have

1

12
(

n + 1
30n

) < λn <
1

12
(

n + 1
30n

− 53
6300n3

) . (1.4)

Nanjundiah [5] obtained the following stronger result

1

12n
−

1

360n3
< λn <

1

12n
, (1.5)

thereafter an even better result was given by Shi, Liu and Hu [7, Rel. 10] by

1

12n
−

1

360n3
< λn <

1

12n
−

1

360n (n + 1) (n + 2)
, n ≥ 1. (1.6)

We improve here (1.5)-(1.6) proving the following

Theorem 1.2. For every integer n ≥ 1, we have

1

12n
−

1

360
(

n + 2
21n

− 47
882n3

)3 < λn <
1

12n
−

1

360
(

n + 2
21n

)3 . (1.7)

2 The Proofs

Proof of Theorem 1.1. Taking into account (1.2), we have to prove

1

12
(

n + 1
30n

) < ln Γ (n + 1)−
(

n +
1

2

)

lnn− ln
√

2π+n <
1

12
(

n + 1
30n

− 53
6300n3

) .

In this sense we define for t ∈
{

0, 53
6300

}

the sequence

x(t)
n = ln Γ (n + 1) −

(

n +
1

2

)

lnn − ln
√

2π + n −
1

12
(

n + 1
30n

− t
n3

) , n ≥ 1,
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and denote x
(t)
n+1 − x

(t)
n = ft (n) , where

ft (x) = ln (x + 1) −
(

x +
3

2

)

ln (x + 1) +

(

x +
1

2

)

lnx + 1

−
1

12
(

x + 1 + 1
30(x+1) −

t

(x+1)3

) +
1

12
(

x + 1
30x

− t
x3

) .

For t = 0 case we have

f ′′

0 (x) = −
P (x)

2x2 (x + 1)
2
(30x2 + 1)

3
(30x2 + 60x + 1)

3 ,

where

P (x) = 29 791 + 172 980x + 3110 580x2 + 42 973 200x3 + 328 881 600x4

+969 894 000x5 + 1324 998 000x6 + 858 600 000x7 + 214 650 000x8.

Now f0 is strictly concave on [1,∞) with f0 (∞) = 0, so f0 (x) < 0, for every

x ∈ [1,∞). As a consequence, x
(0)
n is strictly decreasing, convergent to zero. Thus

x
(0)
n > 0 and the left-hand side of (1.4) is proved.

In t = 53
6300 case, we have

f ′′
53

6300

(x) = Q(x)

2x2(x+1)2(210x2+6300x4−53)3(25 620x+38 010x2+25 200x3+6300x4+6457)3
,

where

Q (x) = 34374032103348000000000x18 + · · · + 40079285253659861

is a 18th degree polynomial with all coefficients positive.
Now f 53

6300

is strictly convex on [1,∞) with f 53

6300

(∞) = 0, so f 53

6300

(x) > 0, for

every x ∈ [1,∞). As a consequence, x
( 53

6300 )
n is strictly increasing, convergent to

zero. Thus x
( 53

6300 )
n < 0 and the right-hand side of (1.4) is proved.

Proof of Theorem 1.2. Taking into account (1.2), we have to prove

1

12n
−

1

360
(

n + 2
21n

− 47
882n3

)3 < ln Γ (n + 1) −
(

n +
1

2

)

lnn − ln
√

2π + n

<
1

12n
−

1

360
(

n + 2
21n

)3 .

In this sense we define for s ∈
{

0, 47
882

}

the sequence

y(s)
n = ln Γ (n + 1)−

(

n +
1

2

)

lnn− ln
√

2π +n−

(

1

12n
−

1

360
(

n + 2
21n

− s
n3

)3

)

,
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and denote y
(s)
n+1 − y

(s)
n = gs (n) , where

gs (x) = ln (x + 1) −
(

x +
3

2

)

ln (x + 1) +

(

x +
1

2

)

lnx + 1

−
1

12 (x + 1)
+

1

12x
+

1

360
(

x + 1 + 2
21(x+1) −

s

(x+1)3

)3 −
1

360
(

x + 2
21x

− s
x3

)3 .

In s = 0 case we have

g′′0 (x) =
R (x)

30x3 (x + 1)3 (21x2 + 2)5 (21x2 + 42x + 23)5
,

where R (x) = 111 993 486 567 921x16 + · · ·+ 1029 814 880 is a 16th degree polyno-
mial with all coefficients positive.

Now g0 is strictly convex on [1,∞) with g0 (∞) = 0, so g0 (x) > 0, for every

x ∈ [1,∞). As a consequence, y
(0)
n is strictly increasing, convergent to zero. Thus

y
(0)
n < 0 and the right-hand side of (1.7) is proved.

In s = 47
882 case, we have

g′′47
882

(x) = − T (x)

30x3(x+1)3(84x2+882x4
−47)5(3696x+5376x2+3528x3+882x4+919)5

,

where

T (x) = 5487956307363940787775816391680x34+ · · ·+751686673758358176995965

is a 34th degree polynomial. Although some coefficients of T are negative, the
polynomial T (x + 1) has all coefficients positive, so T (x) > 0, for every x ∈ [1,∞).

Now g 47

882

is strictly concave on [1,∞) with g 47

882

(∞) = 0, so g 47

882

(x) < 0, for

every x ∈ [1,∞). As a consequence, y
( 47

882 )
n is strictly decreasing, convergent to

zero. Thus y
( 47

882 )
n > 0 and the left-hand side of (1.7) is proved.

3 Concluding remarks

It is to be noticed that our new results (1.4) and (1.7) improve the estimates

1

12n
−

1

360n3
< ln

Γ (n + 1)
√

2πn
(

n
e

)n <
1

12n
(3.1)

obtained by truncation of the Stirling asymptotic series

Γ (x + 1) ∼
√

2πx
(x

e

)x

exp

(

∞
∑

i=1

B2i

2i (2i − 1)x2i−1

)

. (3.2)
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See [8, p. 257, Rel. 6.1.40]. Such inequalities are true even if we truncate (3.2) at
any mth term. We mean that for every integer m ≥ 1, we have

2m
∑

i=1

B2i

2i (2i − 1)x2i−1
< ln

Γ (x + 1)
√

2πx
(

x
e

)x <

2m−1
∑

i=1

B2i

2i (2i − 1)x2i−1
(3.3)

(inequality (3.1) is m = 1 case). Inequality (3.3) is consequence of the following

Lemma 3.1 ([9, Theorem 8]). For every m ≥ 1, the functions

Fm (x) = ln Γ (x) −
(

x −
1

2

)

lnx + x −
1

2
ln 2π −

2m
∑

i=1

B2i

2i (2i − 1)x2i−1

and

Gm (x) = − ln Γ (x) +

(

x −
1

2

)

lnx − x +
1

2
ln 2π +

2m−1
∑

i=1

B2i

2i (2i − 1)x2i−1

are completely monotonic on (0,∞) .

Inequalities (3.3) were used to obtain estimates of gamma function or to con-
struct asymptotic expansions in [10–13] and they are suitable for refinement and
obtaining other results.

A function z : I → R is said to be completely monotonic on interval I if it is
indefinite derivable on I such that

(−1)
n

z(n) (x) ≥ 0 , for all x ∈ I and n = 0, 1, 2, 3 . . . . (3.4)

Dubourdieu [14] proved that if a non-constant function z is completely monotonic,
then strict inequalities hold in (3.4). Completely monotonic functions appear nat-
urally in various fields, like, for example, probability theory and potential theory.
The main properties of these functions are given in [15, Chapter IV].

Inequality (3.3) follows now from Fm > 0 and Gm > 0.
As we can see from (1.4) and (1.7), by modifying the last term of the truncated

series (3.2), better estimates than (3.3) can be obtained. In order to reinforce our
study, remark that the following estimates involving the third term of (3.2)

1

12n
−

1

360n3
+

1

1260
(

n + 3
20n

)5 < ln
Γ (n + 1)

√
2πn

(

n
e

)n

<
1

12n
−

1

360n3
+

1

1260
(

n + 3
20n

− 1909
13 200n3

)5 (3.5)

can be similarly established as (1.4)-(1.7).
Finally we propose the following open problem. Let m be a positive integer.

Do exist a, b, c, d > 0 (depending on m) such that

2m−1
∑

i=1

B2i

2i (2i − 1)x2i−1
+

B4m

4m (4m − 1)
(

x + a
x
− b

x3

)4m−1 < ln
Γ (x + 1)
√

2πx
(

x
e

)x
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<
2m−1
∑

i=1

B2i

2i (2i − 1)x2i−1
+

B4m

4m (4m − 1)
(

x + a
x

)4m−1 (3.6)

and

2m−2
∑

i=1

B2i

2i (2i − 1)x2i−1
+

B4m−2

(4m − 2) (4m − 3)
(

x + c
x

)4m−3 < ln
Γ (x + 1)
√

2πx
(

x
e

)x

<
2m−2
∑

i=1

B2i

2i (2i − 1)x2i−1
+

B4m−2

(4m − 2) (4m − 3)
(

x + c
x
− d

x3

)4m−3 (3.7)

for every integer x > 0? Remark that (3.6) improves the first inequality (3.3)
and (3.7) improves the second inequality (3.3). By Theorem 1.1 and (3.5), the
inequality (3.7) is true for m = 1 with c = 1

30 , d = 53
6300 , for m = 2 with c = 3

20 ,
d = 1909

13200 and by Theorem 1.2, the inequality (3.6) is true for m = 1 with a = 2
21 ,

b = 47
882 .
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