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1 Introduction

In this paper we study the existence solution to quasilinear impulsive evolution
integrodifferential equation of the form

v′(t) +A(t, v)v(t) = f(t, v(t),

∫ t

0

g(t, s, v(s)))ds t ∈ J, t 6= ti, (1.1)

v(0) = u0, (1.2)

∆v(θi) = Ii(v(θi)), i = 1, 2, ...,m, 0<θ1< · · ·<θm<T, (1.3)

where A(t, v) is the infinitesimal generator of an analytic semigroup in a Banach
space X . Here u0 ∈ X ; f : J ×X ×X → X is uniformly bounded and continuous
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in all of its arguments and g : ∆ × X → X is continuous. Here J = [0, T ] and
∆ = {(t, s) : 0 ≤ s ≤ t ≤ T }. Let PC([0, T ] : X) consist of functions u from [0, T ]
into X , such that v(t) is continuous at t 6= θi and left continuous at t = θi, and
the right limit v(θi

+) exists for i = 1, 2, 3, . . . ,m. Evidently PC([0, T ] : X) is a
Banach space with the norm

‖v‖PC = sup
t∈[0,T ]

‖v(t)‖.

The problem of existence of solutions of quasilinear evolution equations in Banach
spaces has been studied by many authors [1–9]. Hayden and Massey [10], have
considered analyticity for semilinear equations

du

dt
+A(t)u = f(t, u).

Pazy [1] considered the following quasilinear equation

u′(t) +A(t, u)u(t) = 0, 0 < t ≤ T,

u(0) = u0,

and the mild and classical solutions by using fixed point argument. Kato [11]
studied the nonhomogeneous evolution equations. Oka [7] and Oka and Tanaka
[8] discussed the existence of solutions of quasilinear integrodifferential equations
in Banach spaces. An equation of this type occurs in a nonlinear conversation law
with memory

u(t, x) + ψ(u(t, x))x =

∫ t

0

b(t− s)ψ(u(t, x))x ds+ f(t, x), t ∈ [0, T ], (1.4)

u(0, x) = Ψ(x), x ∈ R. (1.5)

It is clear that if nonlocal condition (1.2) is introduced to (1.4), then it will also
have better effect than the classical condition u(0, x) = Ψ(x). It is interesting to
investigate the existence problem for these of equations in Banach spaces.Recently
Balachandran and Park [4] have studied the existence of solutions of quasilinear
integrodifferential evolution equations by using the Schauder fixed point theorem.

On the other hand, the study of the impulsive differential equations has at-
tracted a great deal of attention. The theory of impulsive differential and inte-
grodifferential equations become an important area of invetigation in recent years.
Many evolution process are characterized by the fact that at certain moments of
time they experience a change of state abruptly. These processes are subject to
short-term perturbations whose duration is negligible in comparison with the dura-
tion of the process. Consequently, it is natural to assume that these perturbations
act instantaneously, that is, in the form of impulses. It is known, for example,
that many biological phenomena involving thresholds, bursting rhythm models
in medicine and biology, optimal control model in economics, pharmacokinetics
and frequency modulated systems, do exhibit impulsive effects. Thus differential
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equations involving impulsive effects appear as a natural description of observed
evolution phenomena of several real world problems. The theory of impulsive dif-
ferential and integrodifferential equations has been studied by several authors [5,
12–15].

2 Preliminaries

Consider the intial value problem

x′(t) +A(t)x(t) = f(t), 0 ≤ s < t ≤ T,

x(s) = y, (2.1)

with the following assumptions:

(E1) The domain D(A(t)) = D of A(t), 0 ≤ t ≤ T is dense in X and independent
of t.

(E2) For t ∈ J , the resolvent R(λ;A(t)) = (λI − A(t))−1 of A(t) exists for all λ
with Re λ ≤ 0 and there is a constant C such that

‖R(λ;A(t))‖ ≤ C[‖λ‖ + 1]−1 for Reλ ≤ 0, t ∈ J.

(E3) There exists constants L and 0 ≤ α ≤ 1 such that

‖(A(t) −A(s))A(τ)‖ ≤ L|t− s|α for t, s, τ ∈ J.

Theorem 2.1. Under the assumptions (E1) − (E3) there is a unique evolution
system Uv(t, s) on 0 ≤ s ≤ t ≤ T , satisfying

(i) ‖Uv(t, s)‖ ≤M0 for 0 ≤ s ≤ t ≤ T.

(ii) For 0 ≤ s ≤ t ≤ T , Uv(t, s) : X → D and t → Uv(t, s) is strongly differen-

tiable in X . The derivative
∂

∂t
Uv(t, s) ∈ B(X) and it is strongly continuous

on 0 ≤ s ≤ t ≤ T. Moreover,

∂

∂t
Uv(t, s) +A(t)Uv(t, s) = 0,

‖
∂

∂t
Uv(t, s)‖ = ‖A(t)Uv(t, s)‖ ≤M0(t− s)−1 and

‖A(t)Uv(t, s)A
−1(s)‖ < M0 for 0 < s < t < T.

(iii) For every v ∈ D and t ∈ J, Uv(t, s)v is differential with respect to s on
0 ≤ s ≤ t ≤ T and

∂

∂t
Uv(t, s) = Uv(t, s)A(s)v.
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(iv) Uv(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T and

Uv(t, r) = Uv(t, s)Uv(s, r), r ≤ s ≤ t

Uv(t, t) = I.

Note that (E2) and the fact that D is dense in X imply that for every t ∈
J, −A(t) is the infinitesimal generator of an analytic semigroup. We define the
classical solutions (2.1) as functions x : [s, T ] → X which are continuous for s ≤
t ≤ T, continuously differentiable for s < t ≤ T, x(t) ∈ D for s < t ≤ T, x(s) = y
and x′(t) + A(t)x(t) = f(t) holds for s < t ≤ T . We will call a function x(t) is a
solution of the initial value problem (2.1) if it is a classical solution of this problem.

Theorem 2.2. Let A(t), 0 ≤ t ≤ T satisfy the conditions (E1) − (E3) and let
Uv(t, s) be the evolution system in Theorem 2.1. If f is Holder continuous on
[0, T ] when the initial value problem (2.1) has, for every y ∈ X, a unique solution
x(t) given by

x(t) = Uv(t, s)y +

∫ t

s

Uv(t, τ)f(τ)dτ.

The proofs of the above theorems can be found in [1].

3 Existence Results

In this paper we discuss, the existence of solutions of quasilinear integrodiffer-
ential equations with impulsive condition by using fractional powers of operators
and the Schauder fixed-point theorem. The results generalize the results of [1,
4–6, 15]. Throughout the paper Ci’s are positive constants. Let r > 0 and take
Br = {v ∈ X ; ‖v‖PC < r} and assume the following conditions.

(A1) The operator A0 = A(0, u0) is a closed operator with domain D dense in X
and

‖(λI −A0)
−1‖ ≤ C[‖λ‖ + 1]−1 for all λ with Reλ ≤ 0.

(A2) The operator A−1
0 is completely continuously operator on X .

(A3) For some α ∈ [0, 1) and for any v ∈ Br the operator A(t, A−α
0 v) is well

defined on D for all t ∈ J . Furthermore for any t, τ ∈ J and for v, w ∈ Br.

‖[A(t, A−α
0 v) −A(τ, A−α

0 w)]A(τ, A−α
0 w)‖ ≤ C1[|t− τ |ǫ + ‖v − w‖ρ],

where 0 < ǫ ≤ 1, 0 < ρ ≤ 1.

(A4) For every t, τ ∈ J and v, w ∈ Br

‖f(t, A−α
0 v1, A

−α
0 w1)−f(τ, A−α

0 v2, A
−α
0 w2)‖ ≤ C2[|t−τ |

ǫ+‖v1−v2‖
ρ+‖w1−w2‖

ρ].
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(A5) For every s, t,∈ J and v1, v2 ∈ Br

‖g(t, s, A−α
0 v1) − g(t, s, A−α

0 v2)‖ ≤ C3‖v1 − v2‖
ρ.

(A6) For every v1, v2 ∈ Br.

‖Ii(A
−α
0 v1) − Ii(A

−α
0 v2)‖ ≤ C4‖v1 − v2‖

ρ.

(A7) u0 ∈ D(Aβ
0 ) for some β > α and

‖Aα
0u0‖ < r.

Under these assumptions, we get the following lemma, They are due to Kato
[16–18]

(K1) ‖A(t)αUv(t, s)‖ ≤ (β − α)−1N1(t− s)−α; N1 > 0, 0 ≤ α < β,

(K2) ‖A(0)αA(t)−α‖ ≤Mα, for any 0 ≤ t ≤ T.

In proposition [19], we have

Aα
0 [Uv(t, 0) − Uv(s, 0)]A(0)−β‖ ≤ C5|t− s|β−α (3.1)

and

Aα
0 [Uv(t, θi) − Uv(s, θi)]‖ ≤ C6|t− s|1−α(s− θi)

−1 ∀ i = 1, 2, ...,m. (3.2)

Let us take

fv(t) = f(t, A−α
0 v(t),

∫ t

0

g(t, A−α
0 v(s))ds)

and Ii(v(θi)) = v(θ+i ) − v(θ−i ).

Then if follows that the function fv(t) is Holder continuous such that

‖fv(t) − fv(τ)‖ ≤ C7|t− τ |µ, where µ = min{ǫ, ηρ}.

Lemma 3.1 ([19]). Let the functions fv(t) is continuous on [0, T ]. Then for any
0≤ t2≤ t1≤ T, 0 ≤ α < β, the following inequality holds

‖Aα
0 [

∫ t1

0

Uv(t1, s)fv(s)ds−

∫ t2

0

Uv(t2, s)fv(s)ds]‖

≤ Cα|t1 − t2|
1−α(|log(t1 − t2)| + 1). (3.3)

Theorem 3.2. Let the assumptions (A1)–(A7) are satisfied, then there exists at
least one continuously differential solution of the equation (1.1)–(1.3).
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Proof. To study the existence problem, we must introduce a set S of function
v(t), t ∈ J and a transformation wv = Ψv defined by wv = Aα

0w, where w is the
unique solution of

dw

dt
+Av(t)w = f(t, A−α

0 v(t),

∫ t

0

g(t, s, A−α
0 v(s))ds), (3.4)

w(0) = u0, (3.5)

∆w(θi) = Ii(v(θi)), i = 1, 2, 3, . . . ,m. (3.6)

We show that Ψ has a fixed point, that is, there is a function y ∈ S such that
Ψy = y and so v = Aα

0 y is the required solution of our problem (1.1)–(1.3).

Define the set

S = {v ∈ Y : ‖v(t) − v(τ)‖PC ≤ K|t− τ |η for t, τ ∈ J, v(0) = Aα
0 u0}, (3.7)

where K is a positive constant and η is any number satisfying 0 < η < β−α and Y
is a Banach space PC(J : X) with usual sup norm. From assumption (A7), and the
definition of S it follows that if T is sufficiently small (depending on K, η, ‖Aα

0u0‖
then

‖v(t)‖PC < r for t ∈ J.

Hence the operator Av(t) = A(t, A−α
0 v(t)) is well defined and satisfies the condi-

tions

‖(Av(t) −Av(τ))A−1
0 ‖ = C8[|t− τ |ǫ + ‖v(t) − v(τ)‖ρ

PC ],

= C8[|t− τ |ǫ +K|t− τ |ηρ],

= C9|t− τ |µ,

where µ = min{ǫ, ηρ}. Further, if v(0) = Aα
0u0,

Av(0) = A(0, A−α
0 v(0)) = A(0, A−α

0 Aα
0 u0) = A(0, u0) = A0,

and it follows that for every t ∈ J and λ with Reλ ≤ 0,

‖[λI − Av(t)]
−1‖ ≤ C10[|λ| + 1]−1,

‖[Av(t) −Av(τ)]A−1
v (s)‖ ≤ C11|t− τ |µ

for every t, τ, s ∈ J .

By the assumptions (i)–(iv) there exists a fundamental solution Uv(t, s) corre-
sponding to Av(t), and all estimates for fundamental solutions derived in Theorem
2.1 hold uniformly with respect to v ∈ S.

Since, fv(0) = f(0, A−α
0 v(0), 0) is independent of v, we have from the above

inequalities

‖fv(t)‖ ≤ M1, and ‖Ii(v(θi))‖ ≤ M2,
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where M1 > 0 and M2 > 0 from Lemma 3.1 and using (3.1)-(3.2) we get

∥

∥

∥

∥

Aα
0

[
∫ t1

0

Uv(t1, s)fv(s)ds−

∫ t2

0

Uv(t2, s)fv(s)ds

]∥

∥

∥

∥

+

∥

∥

∥

∥

∥

Aα
0

∑

0<θi<ti

[Uv(t1, θi)−Uv(t2, θi)] Ii(v(θi))

∥

∥

∥

∥

∥

≤ M1C12|t1−t2|
1−α(|log(t1−t2)|+1)+M2C13|t1−t2|

1−α(t2−θi)
−1.

We shall show that the operator Ψ : S → Y defined by

Ψv(t) = Aα
0Uv(t, 0)u0 +Aα

0

[

∫ t

0

Uv(t, s)fv(s)ds+
∑

0< θi<t

Uv(t, θi)Ii(v(θi))

]

(3.8)

has a fixed point. This fixed point is the solution of equation (1.1)–(1.3). Clearly
S is closed convex and bounded set of Y . First we show that Ψ maps S into itself.
Obviously Ψv(0) = Aα

0u0. For any 0 ≤ α < β ≤ 1 and 0 ≤ t1 ≤ t2 ≤ T , we have

‖Ψv(t1) − Ψv(t2)‖ ≤ ‖Aα
0 [Uv(t1, 0) − Uv(t2, 0)]A−β

0 ‖‖Aβ
0u0‖

+

∥

∥

∥

∥

∥

Aα
0

∫ t1

0

Uv(t1, s)fv(s)ds+Aα
0

∑

0< θi<t1

Uv(t1, θi)Ii(v(θi))

−

[

Aα
0

∫ t2

0

Uv(t2, s)fv(s)ds+Aα
0

∑

0< θi<t2

Uv(t2, θi)Ii(v(θi))

]∥

∥

∥

∥

∥

.

Thus, for T sufficiently small,

‖Ψv(t1) − Ψv(t2)‖ ≤ rC14|t1 − t2|
β−α + C15M1T |t1 − t2|

1−α

+C16M2|t1 − t2|
1−α(t2 − θi)

−1 (3.9)

for η < β − α and i = 1, 2, ...,m. Hence Ψ maps S into itself.
Next we show that this operator is continuous on the space Y . Let v1, v2 ∈ S

and set w1 = A−α
0 Ψv1, w2 = A−α

0 Ψv2, then

dwj

dt
+Avj

(t)wj = fvj
(t), (3.10)

wj(0) = u0 j = 1, 2., (3.11)

∆w(θi) = Ii(v(θi)), i = 1, 2, 3, . . . ,m. (3.12)

Therefore,

d(w1 − w2)

dt
+Av1

(t)(w1 − w2) = [Av2
(t) −Av1

(t)]w2 + fv1
(t) − fv2

(t).

It is easy to see that the function Av2
(t)w2(t) and A0A

−1
v2

are uniformly Holder
continuous, and so A0w2(t) = [A0A

−1
v2

]Av2
(t)w2(t) is uniformly Holder continuous.
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Similarly the functions

fv1
(t) − fv2

(t) and Ii(v1(θi)) − Ii(v2(θi)) ∀ i = 1, 2, ...,m

are also uniformly Holder continuous in [τ, T ], τ > 0. Hence we have

[w1(t) − w2(t)] = Uv1
(t, τ)[w1(τ) − w2(τ)] +

∫ t

0

Uv1
(t, s)

(

[Av2
(s) −Av1

(s)]w2(s)

+[fv1
(s) − fv2

(s)]
)

ds+
∑

0< θi<t

Uv1
(t, θi)[Ii(v1(θi)) − Ii(v2(θi))].

Since Aα
0

∫ t

0
Uv2

(t, s)fv2
(s)ds+

∑

0< θi<t Uv2
(t, θi)Ii(v2(θi)) is a bounded function,

it follows that

‖A0w2(t)‖ ≤ C17t
β−1.

Hence we can take τ → 0 in the above equation, we get

[w1(t) − w2(t)] =

∫ t

0

Uv1
(t, s)

(

[Av2
(s) −Av1

(s)]w2(s) + [fv1
(s) − fv2

(s)]
)

ds

+
∑

0< θi<t

Uv1
(t, θi)[Ii(v1(θi)) − Ii(v2(θi))].

Since w1 = A−α
0 Ψv1 and w2 = A−α

0 Ψv2 and from (A3)–(A6), it follows that

[Ψv1(t) − Ψv2(t)] ≤

∫ t

0

‖Aα
0Uv1

(t, s)‖
(

[‖Av2
(s)−Av1

(s)]w2(s)‖+‖fv1
(s)−fv2

(s)‖
)

ds

+
∑

0< θi<t

‖Aα
0Uv1

(t, θi)‖‖[Ii(v1(θi)) − Ii(v2(θi))]‖

≤

∫ t

0

C18|t−s|
−α

[

C19‖v1(s)−v2(s)‖
ρsβ−1+C20‖v1(s)−v2(s)‖

ρ
]

ds

+M2

m
∑

i=1

|t− θi|
−α‖v1(θi)) − v2(θi))‖

ρ.

Hence

‖Ψv1(t) − Ψv2(t)‖ ≤
[

C21|t− s|−αsβ−1 + C22

+M2

m
∑

i=1

|t− θi|
−α

]

max{‖v1 − v2‖
ρ} . (3.13)

This shows that Ψ : S → Y is continuous. This completes the proof.

Theorem 3.3. Let the assumptions (A1), (A3)-(A6) hold with ρ = 1. Then the
assertion of Theorem 3.1 is valid and the solution is unique.
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Proof. If ρ = 1, then from (3.13) shows that for T sufficiently small Ψ is a con-
traction, that is ‖Ψv1(t) − Ψv2(t)‖ ≤ K‖v1 − v2‖ for some K < 1. Hence by the
Banach fixed point theorem Ψ has a unique fixed point.

In section 4, we discuss the case when Uu(t, s) is compact by using Schauder
fixed point thorem. We need to prove that Ψ is a compact operator (or com-
pletely continuous). We claim that the set ΨS is contained in a compact subset
of Y . Indeed, the function v(t) of S are uniformly bounded and equicontinu-
ous. By Arzela-Ascoli’s theorem it is sufficient to show that for each t the set
{Ψv(t) : v ∈ S} is contained in a compact subset of X .

4 Uu(t, s) is compact

Note that a compact (or completely continuous) operator is a continuous oper-
ator which maps a bounded set into a precompact set. We shall make the following
assumptions.

(H1) f is continuous and maps a bounded set into a bounded set.

(H2) Ii : X → X, i = 1, 2, 3, ...,m are compact operator, and Uv(·, ·) is also
compact (Uv(t, s) is a compact operator for any t > 0).

Next we show that Ψ is continuous on the space Y . Let v ∈ S and set
w = A−α

0 Ψv. Then

dw

dt
+Av(t)w = fv(t), (4.1)

w(0) = u0, (4.2)

∆w(t) = Ii(v(θi)), i = 1, 2, . . . ,m, 0 < θ1 <, . . . θm < T. (4.3)

Let S be a closed convex set in Banach space Y and let Ψ be a continuous operator
from S into Y such that ΨS is contained in S. To show that the closure of ΨS is
compact. Let

S = {v ∈ Y : ‖v(t) − v(τ)‖PC ≤ K|t− τ |η for t, τ ∈ [0, T ], v(0) = Aα
0u0}.

Consider an operator Ψ on S defined by

Ψv(t) = Aα
0Uv(t, 0)u0 +Aα

0

[

∫ t

0

Uv(t, s)fv(s)ds+
∑

0< θi<t

Uv(t, θi)Ii(v(θi))

]

= Ψ1v(t) + Ψ2v(t)

where

Ψ1v(t) = Aα
0

[

Uv(t, 0)u0 +

∫ t

0

Uv(t, s)fv(s)ds

]

, 0 ≤ s ≤ t ≤ T



148 Thai J. Math. 9 (2011)/ F.P. Samuel and K. Balachandran

and

Ψ2v(t) = Aα
0

∑

0< θi<t

Uv(t, θi)Ii(v(θi)), 0 ≤ θi < t ≤ T.

From our assumptions, Ψ is a coninuous mapping from S to S. Thus we are able
to apply Schauder’s fixed point theorem to obtain a fixed point. For that we need
to prove that Ψ is a compact operator or Ψ1 and Ψ2 are both compact operators.

To prove the compactness of Ψ2, note that

Ψ2v(t) = Aα
0

∑

0< θi< t

Uv(t, θi)Ii(v(θi))

= Aα
0















0 if t ∈ [0, θ1]
Uv(t, θ1)I1(v(θ1)) if t ∈ (θ1, θ2]
· · ·
∑m

i=1 Uv(t, θi)Ii(v(θi)) if t ∈ (θm, T ]















and that interval [0, T ] is divided into finite subintervals by θi, i = 1, 2, 3, ...,m,
so that we only need to prove that

Z = {U(·, θ1)I1(v(θ1)) : · ∈ [θ1, θ2], v ∈ Y } (4.4)

is precompact in PC([θ1, θ2], X), as the cases for other subintervals are the same.
From the above assumption, we see that for each t ∈ [θ1, θ2], the set

{Uv(t, θ1)I1(v(θ1)) : v ∈ S}

is precompact in X .
Using the semigroup property, we get

Aα
0 ‖Uv(t, θ1)I1(v(θ1))−Uv(s, θ1)I1(v(θ1))‖ ≤ ‖Aα

0 [Uv(t, θ1)−Uv(s, θ1)]‖‖I1(v(θ1))‖

≤ M5C19|t− s|1−α (4.5)

for any t, s ∈ [0, T ].
Thus, the functions in Z are equicontinuous due to the compactness of I1

and the strong continuity of Uv(·, ·). An application of the Arzela-Ascoli’s theorem
justifies the precompactness of Z. Therefore, Ψ2 is a compact operator.

The same argument can be used to prove that the compactness of Ψ1. That is,
for any 0 ≤ α < β ≤ 1. The set {Aα

0Uv(t, 0)u0 : v ∈ S, ‖Aα
0u0‖ < r} is precompact

in X, since Uv(·, ·) is compact.

‖Aα
0Uv(t, 0)A−β

0 ‖‖Aβ
0u0‖ ≤ rtβ−α.

For each t ∈ (0, T ] and ǫ ∈ (0, t),

{

Aα
0

∫ t−ǫ

0

Uv(t, s)fv(s)ds

}

=

{

Aα
0

∫ t−ǫ

0

Uv(t, t− ǫ)Uv(t− ǫ, s)fv(s)ds

}

=

{

Uv(t, t− ǫ)

∫ t−ǫ

0

Aα
0 [Uv(t− ǫ, s)]fv(s)ds

}
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is precompact in X since Uv(·, ·) is compact. Then, as

Uv(t, t− ǫ)

∫ t−ǫ

0

Aα
0 [Uv(t− ǫ, s)]fv(s)ds → Aα

0

∫ t

0

Uv(t, s)fv(s)ds, as ǫ→ 0,

we conclude that
{

Aα
0

∫ t

0 Uv(t, s)fv(s)ds : v ∈ S
}

is precompact in X , using the

total boundedness. Therefore, for each t ∈ [0, T ], {(Ψ1v)(t) : v ∈ S} is precompact
in X .

Next, we show that the equicontinuity of

P = {(Ψ1v)(·) : · ∈ [0, T ], v ∈ S} . (4.6)

The equicontinuity of {Aα
0Uv(·, s)u0 : · ∈ [0, T ], v ∈ S} can be shown using the

condition (4.1), for the secondterm in P ,we let 0 ≤ α < β ≤ 1 and 0 ≤ t1 ≤ t2 ≤ T ,
we have

∥

∥

∥

∥

Aα
0

∫ t2

0

Uv(t2, s)fv(s)ds−Aα
0

∫ t1

0

Uv(t1, s)fv(s)ds

∥

∥

∥

∥

=

∥

∥

∥

∥

Aα
0

(
∫ t1

0

[Uv(t2, s) − Uv(t1, s)]fv(s)ds+

∫ t2

t1

Uv(t2, s)fv(s)ds

)∥

∥

∥

∥

≤

∥

∥

∥

∥

Aα
0

∫ t1

0

[Uv(t2, s) − Uv(t1, s)]fv(s)ds

∥

∥

∥

∥

+

∫ t2

t1

‖Aα
0Uv(t2, s)‖‖fv(s)‖ds

≤

∥

∥

∥

∥

Aα
0

∫ t1

0

[Uv(t2, s) − Uv(t1, s)]fv(s)ds

∥

∥

∥

∥

+(β − α)−1N1(t2 − s)−α

∫ t2

t1

‖fv(s)‖ds. (4.7)

If t1 = 0, then the right-hand side of (4.7) can be made small when t2 is small
independently of v ∈ S. If t1 > 0, then we can find a small number ξ > 0 so that
if t1 ≤ ξ, then the right-hand side of (4.7) can be estimated as

∥

∥

∥

∥

Aα
0

∫ t1

0

[Uu(t2, s)−Uu(t1, s)]fv(s)ds

∥

∥

∥

∥

+(β−α)−1N1(t2−s)
−α

∫ t2

t1

‖fv(s)‖ds

≤ ξ(β − α)−1N1

[

(t2 − s)−α + (t1 − s)−α
]

max ‖fv(s)‖

+(β − α)−1N1(t2 − s)−α

∫ t2

t1

‖fv(s)‖ds

which can be made small when t2 − t1 is small independently of v ∈ S. If t1 > ξ,
then the right-hand side of (4.7) can be estimated as
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∥

∥

∥

∥

Aα
0

∫ t1

0

[Uv(t2, s)−Uu(t1, s)]fv(s)ds

∥

∥

∥

∥

+(β − α)−1N1(t2 − s)−α

∫ t2

t1

‖fv(s)‖ds

≤

∫ t1−ξ

0

‖Aα
0 [Uv(t2, s) − Uv(t1, s)]fv(s)‖ds

+

∫ t1

t1−ξ

‖Aα
0 [Uu(t2, s)−Uu(t1, s)]fv(s)‖ds+(β − α)−1N1(t2−s)

−α

∫ t2

t1

‖fv(s)‖ds

≤

∫ t1−ξ

0

‖Aα
0 [Uv(t2, s) − Uv(t1, s)]fv(s)‖ds

+ξ(β − α)−1N1

[

(t2 − s)−α + (t1 − s)−α
]

max ‖fv(s)‖

+(β − α)−1N1(t2 − s)−α

∫ t2

t1

‖fv(s)‖ds.

Now, as Uv(·, ·) is compact, Uu(t, s) is operators norm continuous for t > 0.
Thus Uu(t, s) is operator norm continuous uniformly for t ∈ [ξ, T ]. Therefore,
‖Aα

0 [Uv(t2, s) − Uu(t1, s)]‖ and hence

∫ t1−ξ

0

‖Aα
0 [Uv(t2, s) − Uv(t1, s)]fv(s)‖ds

can be made small when t2 − t1 is small independently of v ∈ S. Accordingly, we
see that the Arzela-Ascoli theorem, and hence Ψ is also a compact operator. Now,
Schauder fixed point theorem implies that Ψ has a fixed point. This completes
the proof.

Remark 4.1. When there is no impulsive initial condition (1.3), Theorem 3.1
reduces to the results proved in [4]. However the Banach space here in PC whereas
in [4] it is C. This is the main difference from that paper.

5 Example

Consider the following nonlinear parabolic integrodifferential equation

∂z

∂t
+ Σ|α| = 2maα(v, t, z,Dz, ..., D2m−1z)Dαz

= f
(

v, t, z,Dz, ..., D2m−1z,

∫ t

0

g(v, t, s, z,Dz, ..., D2m−1z)
)

ds,

(5.1)

∂jz

∂xj
= 0 on ST = {(v, t) : v ∈ ∂Ω, 0 ≤ t ≤ T }, 0 ≤ j ≤ m− 1, (5.2)

u(v, 0) = 0 on Ω0 = {(v, 0) : v ∈ ∂Ω}, (5.3)

∆z|t=ti
= Ii(z) =

∫

Ω

di(q, s)cos
2v(s)ds, 1 ≤ i ≤ n (5.4)



Existence of Solutions of Quasilinear Integrodifferential Evolution ... 151

in a cylinder QT = Ω×(0, T ) with coefficients in QT , where Ω is a bounded domain
in Rn, ∂Ω the boundary of Ω, x is the outward normal and di ∈ C(Ω×Ω;Rn) for
each i = 1, 2, ..., n. Here the parabolicity means that for any vector y 6= 0 and for
arbitrary values of z,Dz, ..., D2m−1z,

(−1)mRe{Σ|α| =2m aα(v, t, z,Dz, ..., D2m−1z)yα} ≥ C|y|2m, C > 0.

If z0(v) ∈ C2m−1(Q̄), then A0z = Σ|α| = 2maα(v, t, z,Dz, ..., D2m−1z)Dαz is a
strongly elliptic operator with continuous coefficients. So the condition (i) holds.
Let us take X to be Lp(Ω), 1 < p <∞. Then A−1

0 maps bounded subsets of Lp(Ω)
in to bounded subsets of W 2m,p(Ω), so it is a completely continuous operator in
Lp(Ω).

Further, if (2m− 1)/2m < α < 1, then [6]

|DβA0 − αz|Ω0,p ≤ C|z|Ω0,p , 0 ≤ |β| ≤ 2m− 1,

where C depends only on a bound on the coefficients A0, on a module of strong
ellipticity and on a modulus of continuity of the leading coefficients. Here the
norm is defined as

|z|Ωj,p =







∑

|α|≤j

∫

Ω

|Dαz(v)|pdv







1

p

for any nonnegative integer j and a real number p, 1 ≤ p < ∞. It follows that
if f and aα are continuously differentiable in all variables, then (A4) and (A3)
hold with σ = ρ = 1. Hence there exist fundamental operator solution Uv(t, s) for
the equation (5.1)–(5.4). The nonlinear functions f, g satisfy the conditions (A4),
(A5) and Ii also satisfy the condition (A6). Hence by the above theorem there
exist a local solution for the equation (5.1)–(5.4).
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