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Abstract : In this paper, we study the solutions of the difference equation

xn+1 =
Axn−(2k+1)

−A +
2k+1
∏

i=0

xn−i

for n = 0, 1, 2, ...

where k is a positive number and initial conditions are non zero real numbers with
∏2k+1

i=0 x−i 6= A.
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1 Introduction

Difference equations have played an important role in analysis of mathematical
models of biology, physics and engineering. Rational difference equations is an
important class of difference equations where they have many applications in real
life for example the difference equation xn+1 = a+bxn

c+xn
which is known by Riccati

Difference Equation has an applications in Optics and Mathematical Biology (see
[1]) . Many researchers have investigated the behavior of the solution of rational
difference equations. For example see Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
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Cinar [2] investigated the positive solutions of the rational difference equation

xn+1 =
axn−1

−1 + bxnxn−1
.

Yalçınkaya [3] investigated the global behaviour of the rational difference equa-
tion

xn+1 = α +
xn−m

xk
n

.

El-Owaidy et al. [4] studied the dynamics of the recurcive sequence

xn+1 =
αxn−1

β + γx
p
n−2

.

Elsayed [5] investigated the qualitative behavior of the solution of the difference
equation

xn+1 = axn +
bx2

n

cxn + dxn−1
.

Hamza et al. [6] studied the asymptotic stability of the nonnegative equilib-
rium point of the difference equation

xn+1 =
Axn−1

B + C
k
∏

i=l

xn−2i

.

Our aim in this paper is to investigate the solutions of the difference equation

xn+1 =
Axn−(2k+1)

−A +
2k+1
∏

i=0

xn−i

for n = 0, 1, 2, ... (1.1)

where k is a positive number and initial conditions are non zero real numbers with
∏2k+1

i=0 x−i 6= A.

Let I be an interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function. Then for every set of initial conditions x−k, x−k+1, ..., x0 ∈
I, the difference equation

xn+1 = f (xn, xn−1, ..., xn−k) , n = 0, 1, ... (1.2)

has a unique solution {xn}
∞

n=−k .

Definition 1.1. (Periodicity) A sequence {xn}
∞

n=−k of Eq.(1.2) is said to be pe-

riodic with period p if

xn+p = xn for all n ≥ −k.
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2 Main Results

Theorem 2.1. Assume that
∏2k+1

i=0 x−i = p and p 6= A. Let {xn}
∞

n=−(2k+1) be a

solution of Eq.(1.1). Then for n = 0, 1, ...

x2(k+1)n+1 =
An+1x

−(2k+1)

(−A + p)n+1 , x2(k+1)n+2 =

(

1

A

)n+1

x
−(2k) (−A + p)n+1

,

x2(k+1)n+3 =
An+1x

−(2k−1)

(−A + p)
n+1 , x2(k+1)n+4 =

(

1

A

)n+1

x
−(2k−2) (−A + p)

n+1
,

...

x2(k+1)n+2k+1 =
An+1x−1

(−A + p)
n+1 , x2(k+1)n+2k+2 =

(

1

A

)n+1

x0 (−A + p)
n+1

.

Proof. For n = 0 the result holds. Now assume that n > 0 and that our assumption
holds for n − 1. Then

x2(k+1)n−(2k+1) =
Anx

−(2k+1)

(−A + p)
n , x2(k+1)n−(2k) =

(

1

A

)n

x
−(2k) (−A + p)

n
,

x2(k+1)n−(2k−1) =
Anx

−(2k−1)

(−A + p)
n , x2(k+1)n−(2k−2) =

(

1

A

)n

x
−(2k−2) (−A + p)

n
,

...

x2(k+1)n−1 =
Anx−1

(−A + p)
n , x2(k+1)n =

(

1

A

)n

x0 (−A + p)
n

.

It follows from Eq.(1.1) that

x2(k+1)n+1 =
Ax2(k+1)n−(2k+1)

−A +
2k+1
∏

i=0

x2(k+1)n−i

and we have from the above equalities

2k+1
∏

i=0

x2(k+1)n−i = p.

Then

x2(k+1)n+1 =
A

Anx
−(2k+1)

(−A+p)n

−A + p

=
An+1x

−(2k+1)

(−A + p)n+1 .

Hence, we have

x2(k+1)n+1 =
An+1x

−(2k+1)

(−A + p)
n+1 .
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Also, we get from Eq.(1.1) that

x2(k+1)n+2 =
Ax2(k+1)n−(2k)

−A +
2k
∏

i=−1

x2(k+1)n−i

.

We have from Eq.(1.1) and the above equalities

2k
∏

i=−1

x2(k+1)n−i =
Ap

−A + p
.

Then

x2(k+1)n+2 =
A

(

1
A

)n
x
−(2k) (−A + p)

n

−A + Ap
−A+p

=

(

1

A

)n+1

x
−(2k) (−A + p)

n+1
.

Hence, we have

x2(k+1)n+2 =

(

1

A

)n+1

x
−(2k) (−A + p)

n+1
.

Similarly, one can obtain the other cases. Thus, the proof is completed.

Theorem 2.2. Eq.(1.1) has a periodic solutions of period (2k +2) iff p = 2A and

will be take the form
{

x
−(2k+1), x−(2k), ..., x−1, x0, x1, x2, ..., x2k+2, ...

}

.

Proof. Firstly, assume that there exists a prime period (2k + 2) solution x
−(2k+1),

x
−(2k),..., x−1, x0, x1, x2,..., x2k+2,... of Eq.(1.1).

We have from the form of solution of Eq.(1.1) that

x
−(2k+1) =

An+1x
−(2k+1)

(−A + p)
n+1 , x

−(2k) =

(

1

A

)n+1

x
−(2k) (−A + p)

n+1
,

x
−(2k−1) =

An+1x
−(2k−1)

(−A + p)
n+1 , x

−(2k−2) =

(

1

A

)n+1

x
−(2k−2) (−A + p)

n+1
,

...

x−1 =
An+1x−1

(−A + p)
n+1 , x0 =

(

1

A

)n+1

x0 (−A + p)
n+1

.

Then p = 2A.
Secondly, suppose that p = 2A. Then we have

x2(k+1)n+1 = x
−(2k+1), x2(k+1)n+2 = x

−(2k),

x2(k+1)n+3 = x
−(2k−1), x2(k+1)n+4 = x

−(2k−2),

...

x2(k+1)n+2k+1 = x−1, x2(k+1)n+2k+2 = x0.
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Thus, we obtain a period (2k + 2) solution.
The proof is completed.

In view of Theorem 2.1 we will give the following corollaries without proofs.

Corollary 2.3. Assume that A = 1, x
−(2k+1), x−(2k), ..., x0 > 0 and p > 2. Let

{xn}
∞

n=−(2k+1) be a solution of Eq.(1.1). Then

lim
n→∞

x2(k+1)n+i =

{

0, i = 1, 3, ..., 2k + 1
∞, i = 2, 4, ..., 2k + 2

Corollary 2.4. Assume that A > 0, x
−(2k+1), x−(2k), ..., x0 > 0 and p > A.

Let {xn}
∞

n=−(2k+1) be a solution of Eq.(1.1). Then all solutions of Eq.(1.1) are

positive.

Corollary 2.5. Assume that A > 0, x
−(2k+1), x−(2k), ..., x0 < 0 and p > A.

Let {xn}
∞

n=−(2k+1) be a solution of Eq.(1.1). Then all solutions of Eq.(1.1) are

negative.
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