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1 Introduction

Let C' be a nonempty closed convex subset of real Hilbert space H and G :

C x C' — R be a bifunction, where R is the set of real number. Let ¥ : C — H be

a nonlinear mapping. The generalized equilibrium problem for G and V¥ is to find
u € C such that

G (u,v) + (Yu,v —u) >0, Vv € C. (1.1)

The set of solutions for the problem (1.1) is denoted by GEP(G, ¥), i.e.,
GEP (G,¥¢)={ue C:G(u,v)+ {(Tu,v—u) >0, Vv e C}.
The equilibrium problem for G is to find u € C such that
G (u,v) >0, YveC. (1.2)

The set of solutions (1.2) is denoted by EP(G). Many problems in physics, op-
timization, and economics require some elements of EP(G), see [1, 2, 3]. Sev-
eral iterative methods have been proposed to solve the equilibrium problem, see
[2, 4, 5,6, 7,8,9]. The variational inequality problem is to find u € C such that

(Pu,v —u) >0, Yo e C. (1.3)

The set of solutions of the variational inequality is denoted by VI(¥,C).

If the case of ¥ = 0, then the problem (1.1) is reduced to the problem (1.2). In
the case of G = 0, the problem (1.1) reduces to the variational inequality problem
(1.3).

It is well known that (1.1) contains as special cases for instance minimax prob-
lems, optimization problems, Nash equilibrium problems in noncooperative games,
complementarity problems, fixed point problems and variational inequalities and
others, see for instance [1, 2, 7, 9, 10, 11, 12].

A bounded linear operator A on H is called strongly positive with coefficient
7 if there is a constant § > 0 with the property (Az,z) > ﬁ||9c||2 A map-
ping A : C — H is called a-inverse-strongly monotone, see [13], if there ex-
ists a positive real number « such that (z —y, Az — Ay) > al|Az — Ay||® for
all z,y € C. It is obvious that any a-inverse-strongly monotone mapping A is
monotone and Lipschitz continuous. A mapping T : C' — C'is called nonexpansive
it |Tx — Ty|| < ||z — y|| for all z,y € C. We denote by F(T') the set of fixed points
of T, ie., F(T) = {x € C:2=Tx}. Goebel and Kirk [14] showed that F(T) is
always closed convex, and also nonempty provided T has a bounded trajectory.
Recall that a mapping f : C — C'is contraction if there exists a constant o € (0, 1)
such that ||f(z) — f(y)]| < al|lz —y||, for all 2,y € C.

In 2007, Tada and Takahashi [15] and Takahashi and Takahashi [7] considered
iterative methods for finding a common element of a equilibrium problem and the
set of fixed points of a nonexpansive mapping. On the other hand, Takahashi
and Toyoda [16] and Yao et al. [17] introduced an iterative method for finding a
common element of the set of solutions of the variational inequality problem for an



A Hybrid Method for Generalized Equilibrium, Variational Inequality ... 97

inverse-strongly monotone mapping and the set of fixed points of a nonexpansive
mapping. Further, Moudafi [18] and Takahashi and Takahashi [12] introduced
an iterative method for finding a common element of the set of solutions of a
generalized equilibrium problem and the set of fixed points of a nonexpansive
mapping. Recently, Colao et al. [19] introduced a new general iterative method
for finding a common element of the set of solutions of a equilibrium problem and
the set of common fixed points of finite family of nonexpansive mappings in a
Hilbert space.

Very recently, Kangtunyakarn and Suantai [4] introduced a new mapping and
the iteration method to obtain strong convergence to a common element of the
set of solutions of a equilibrium problem and the set of common fixed points of
finite family of nonexpansive mappings under some sufficient suitable conditions,
as follows:

For a finite family of nonexpansive mappings 71, T3, ..., Ty and sequence {gm}f\;l
in [0, 1], they defined the mapping K, : C — C as follows:

Un,l = gn,lTl + (1 - gn,l) Ia
Un2 = &noToUp1+ (1 —&,2)Una,
Uns = &nsTaUn2+ (1 —6,3)Une,
Un-1 = EnN-1IN-1Unn_2+ (1 —E&nn_1)Un N2,
Kn = Un,N — é.n,NTNUn,Nfl + (1 - §n,N) Un,Nfl-

For 1 € C, let {uy,} and {z,} be the sequences defined by

1
G (Un,v) + — (U — Up,up — x,) >0, Yo € C;

Tn

Tpi1 = apYf (xn) + Bz + (1= B) I — apA) Kpuy,, forallneN.

In this paper, motivated by above results, we introduce a general iterative
method (3.1) below for finding a common element of the set of solutions of a gen-
eralized equilibrium problem, the set of common fixed points of a finite family of
nonexpansive mappings and the set of solutions of the variational inequality prob-
lem for an inverse-strongly monotone mapping in real Hilbert spaces. We obtain
a strong convergence theorem which improves and extends the corresponding re-
sults of Kangtunyakarn and Suantai [4], Takahashi and Takahashi [12], and many
others.

2 Preliminaries
Let C be closed convex subset of a Hilbert space H, let Po be the metric

projection of H onto C, i.e., for © € H, Pc satisfies the property || — Pox| =
mingec ||z — yl|. It is well known that Pc is a nonexpansive mapping of H onto
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C and satisfies || Pcx — Poyl||* < (z —y, Pox — Poy) for all z,y € H. Moreover,
Pcx € C is characterized by the following properties:

(¢ — Pow,y — Pea) <0 and ||z - Pez|” + |ly - Pez|” < |lz -y
for all x € H and y € C. It is easy to see that
u € VI(A,C) if and only if u = Po (u — ANAu)

where A > 0. It is also known that Hilbert space H satisfies Opial’s condition [20],
that is, for any sequence {z,} with z,, — z, the inequality

liminf ||2,, — z|| < liminf ||z, — y||

n—oo n—oo
holds for every y € H with y # x.

A set-valued mapping T : H — 29 is called monotone if for all z,y € H,

p € Tx and g € Ty imply (x —y,p — ¢) > 0. A monotone mapping T is maximal
if the graph G(T') of T is not properly contained in the graph of any monotone
mappings. It is known that a monotone mapping T is maximal if and only if
for (z,p) € H x H,(x —y,p—q) > 0 for all (y,q) € G(T) implies p € Tx. Let

A : C — H be a monotone, L-Lipschitz continuous mapping and let Nou be the
normal cone to C at u € C, i.e., Nou ={w € H : (u—v,w) >0, Yv € C}. Define

| Au+ Ncu, uweC;
TU_{(Z), uéC.

Then T is the maximal monotone and 0 € Twu if and only if u € VI(A,C); see
[21].

Lemma 2.1. Let H be a real Hilbert space. Then, for all x,y € H,
(i) llz +yl* < llz|* + 2 (y, 2 + ).
(ii) Nz = ylI* = ll=|* = 2 (z, ) + llyll*.

(iii) Az + (1= Ay = Ml +(1 =2 Jy)* =2 (1 = X) & = y||*, for A € [0,1].
Lemma 2.2. ([22]) Let {s,} be a sequence of nonnegative real numbers satisfying
Snt1 = (1 — ) $p + anfn, ¥n >0
where {an},{0n} satisfy the conditions:

(i) {an} C[0,1], 3502 an = oo,

(i) Timsup,_oc fn <0 0r 325, |anf] < 00.

Then lim,,_, S, = 0.
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Lemma 2.3. ([23]) Let {x,} and {z,} be bounded in a Banach space X and
let {B,} be a sequence in [0,1] with 0 < liminf, . B, < limsup,,_, . B < 1.
Suppose Tpi1 = Bnxn + (1 — By) 2n for all integer n > 0 and

limsup (|[zn+1 = 2ull = [[Tn41 — 20 l]) < 0.

n—oo
Then limy, o0 ||Tn — 2| = 0.

Lemma 2.4. ([6]) Let A be a strongly positive linear bounded operator on a Hilbert
space H with coefficient 5 and 0 < p < ||A||™". Then ||I — pA|| <1 — p7.

For solving the generalized equilibrium problem, we assume that the bifunction
G : C x € — R satisfies the following conditions:

(A1) G(z,2) =0, Vx € C;

(A2) @G is monotone, i.e. G (z,y) + G (y,z) <0, Va,y € C,
(A3) V;v,y,z € Ca liInt—»OJr G (tZ + (1 - t) :Euy) <G (:Euy);
(Ad)

A4) Vx € C, y — G (x,y) is convex and lower semicontinuous.

Lemma 2.5. ([1]) Let C be a nonempty closed convex subset of H and let G be a
bifunction from C x C into R satisfying (A1) — (A4). Letr > 0 and x € H. Then,
there existe z € C such that

G(z,y)—f—l(y—z,z—:wzo, Yy € C. (2.1)
T

Lemma 2.6. ([2]) Assume that G : C x C — R satisfies (A1) — (A4). Forx € H
and r > 0, define a mapping T, : H — C' as follows :

Tr(x):{zEC:G(z,y)—i-l(y—z,z—x)20, VyEC}
T

for all z € H. Then, the following hold:
(B1) T, is single-valued;

(B2) T, is firmly nonexpansive, i.e. ||Trx — Toyl|> < (T,x — Ty, x —y), Va,y €
H:

(B3) F(T,) = EP(G);
(B4) EP (G) is closed and convex.

Remark 2.7. Replacing x with x—rUx € H in (2.1), then there exists z € C such
that G (z,y)+ (Va,y — 2)+ 2 (y — 2,2 —x) > 0, Vy € C. It follows by Lemma 2.6

T

that z =T, (I — r¥) (x) and it is easy to see that F (T, (I —r¥)) = GEP (G, 7).
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Definition 2.8. ([4]) Let C be a nonempty convex subset of a real Banach space.
Let Ty, Ty, ..., Tn be a finite family of nonexpansive mappings of C into itself, and
let &1,&2,...,&ENn be real numbers such that 0 < & < 1 for every i = 1,2,...,N.
Define a mapping K : C — C as follows:

U = &+ Q1-&)1,
Uy = &TU 4+ (1-&)Us,
Us = &T3Ux+ (1 —¢&)Us,
Unv-1 = énvaTn-1Unv—2+ (1 —Ev_1)Un—2,
K=Un = &(NINUn—1+(1—&n)Un-1.

Such a mapping K is called the K -mapping generated by T1,Ts, ..., Tn and &1,&2, ..., EN -

Lemma 2.9. ([4]) Let C be a nonempty closed convex subset of a strictly convex
Banach space. Let Ty, T5,....,Tn be a finite family of nonexpansive mappings of
C into itself, with ﬂi\il F(T;) # 0 and let &,&a, ..., &N be real numbers such that
0<é <1 foreveryi=1,2,...,. N—1and 0 <&y < 1. Let K be the K-mapping
generated by T, T, ..., Ty and &1,&2,....,En. Then F (K) = ﬂf\;l F(T)).

Lemma 2.10. ([4]) Let C be a nonempty closed convex subset of a Banach space.
Let Ty, Ts, ..., Tn be a finite family of nonexpansive mappings of C into itself and
{5"1}11\;1 sequence in [0, 1] such that &, , — &, asn — oo, (i=1,2,...,N). More-
over, for everyn € N, let K and K,, be the K-mappings generated by T, Ts, ..., T
and &1,&2,...,&Nn, and 11,15, ..., Ty and &,1,6n,2, ..., En, N Tespectively. Then, for
every x € C, we have lim, . | K,z — Kz|| = 0.

Lemma 2.11. ([4]) Let H be a Hilbert space, C' a nonempty closed convex subset
of H, Th, Ty, ..., Tn be a finite family of nonexpansive mappings of H into itself
with ﬂf\il F(T;) # 0, and let G : C x C — R be a bifunction satisfying (A1) —
(A4). For every n € N, let K,, be a K-mapping generated by Ty, Ts,...,Tn and
€n1:6n2, - En, N With {§n7i}ij\;1 C [a,b] where 0 < a <b < 1. For a sequence {r,}
n (0,00), let T, : H — C be defined by

1
T, (x) = {zeC:G(z,y)—i——(y—z,z—x) >0, VyEC}.
Tn
If liminf, oo rp > 0,limy, oo % =1 and limy— 00 |&ni — &n—14] = 0,Vi €
{1,2,...,N}, then
(i) limp—oo || Kns1 Ty, 0n — Kna Ty, wn || = 0,

(i) 1limy— oo | Kpirwy — Kpwy|| =0,

for every bounded sequence {wy} in H.
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3 Main Result

In this section, we prove a strong convergence theorem for finding a common
element of the set of solutions of a generalized equilibrium problem, the set of
common fixed points of a finite family of nonexpansive mappings and the set of
solutions of the variational inequality problem for an inverse-strongly monotone
mapping in real Hilbert spaces.

Theorem 3.1. Let C be a nonempty closed convexr subset of a real Hilbert space
H. Let G be a bifunction from C x C into R satisfying (A1) — (44), V:C — H a
B-inverse-strongly monotone mapping, A : C — H a p-inverse-strongly monotone
mapping, f : C — C a contraction mapping with constant « € (0,1). Let {Tz}fil

be a finite family of nonexpansive mappings of C into itself and let {5,”}11\;1 C

(0,1), {€nn} € (0,1], {&}1 € (0,1), En € (0,1] be such that &,; — & for all
i=1,2,..,N. Let K, : C — C be a K-mapping generated by T1,T5,....,Tn and
Entr€n s n . Suppose that Q= N, F(T;)GEP(G,¥) VI (A,C) # 0.
Let B be a strongly positive bounded linear operator on H with coefficient 4 > 0

and |B|| = 1 and let 0 < v < L. For x; € C, let {xn}, {yn} and {u,} be the
sequences generated by

1
G (tun,v) + (Vzp, v — up) + — (U — U, up — xy) >0, Yo € C;
Tn

Tna1 = anVf () + Bnzn + (1= B) I — aB) Kpyn
for all n € N, where {an},{Bn} C (0,1), {\n} C [a,b] for some 0 < a <b<2p
and {rp} C [c,d] for some 0 < ¢ < d < 20 satisfying:

(i) Zzozl oy = 00, limy, o0 a, =0,
(1) liminf, oo Ay > 0 and limy, o0 A1 — An| =0,

(i) liminf, ..o 7, > 0 and lim, o - =1,

(iv) 0 <liminf, oo By < limsup, . Bn < 1.

Then {xn}, {yn} and {u,} converge strongly to the point zy € Q, where zg =
Po (I = (B —=7f)) 2.

Proof. Since lim,, .o a;, = 0, we may assume, without loss of generality that a,, <
(1—6,)1B|" " and 1—a,, (¥ — ay) > 0 for all n € N. Since B is a strongly positive
bounded linear operator on H, we have ||B|| = sup {|(Bz,z)|: z € H, ||z| = 1}.
Observe that

(=B I —apB)x,x) =1—- 3, — a, (Bz,z)
>1-08,—ay ”BH
>0, Vx € H.
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By Lemma 2.4, we have ||(1 — 8,) I — ap Bl < 1— 8, — an?.

We shall divide our proof into 7 steps.
Step 1. We will show that {z,} is bounded. For any z,y € C and r,, € (0,205),
we have

I =ra®)z = (I =) y|* = ||(x = y) = o (Vz — Ty)|®
= llz = y[|* = 2r (x — y, Yz = Uy) + 7 | Vz — Ty|
<l =yl = 200 (8 I1we - wyl?||) + 12 1102 - wy)?
= o = yll* = ra (26 = ra) [| ¥z — Ty|”
<z =yl (3.2)
which implies that I —r, ¥ is nonexpansive. The same as in (3.2), for A, € (0, 2p),

we have I — A\, A is nonexpansive. Remark 2.7 implies that the sequence {u, } and
{zn} are well defined. Inview of the iterative sequence (3.1), we have

1
0 <G (un,v) + {(Pxp,v — Up) + — (U — Up, Up — Tp)

T'n

1
=G (un? U) + — <U — Un, Un — (:En - T‘n\ijEn»
Tn
for allv € C. Tt follows from Lemma 2.6 that u,, = T, (z, — 7,V z,,) for alln € N.
Let z* € Q. For each n € N, we have z* = K,,z* = T, (* —r,¥2z*). By
Lemma 2.6, we have
llwn — Z*H2 = ||T;, (xn —rnVay,) = Tp, (2° — TH\I/Z*)||2

n

<Aup — 2%, (tn — ruVax,) — (2" —r,Uz%))

A

5 (i = 212 4 e = raWz,) = (2" = 702
(= =) = (0 = W) = (" = 1 02)|)
= 2l =212 + 5 (W = raWan) = (=* = 02|
| (un = @) = o (2 = W),
and it follows by nonexpansiveness of I — r, ¥ that
ltn = 21 < e = 271 = 1t = 2n) = 7 (2" = W)
<l — 2717 (3.3)

For z* € VI(A,C), we have z* = Po (2* — A\yAz*). Since Po and I — A\, A are
nonexpansive mappings, by (3.1), we have

g = 2*1% = | P (wn = AuAun) = Pe (2% = AgAz")|?
< Jun — 2|17 (3.4)
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Thus, (3.3) and (3.4) imply that

yn — 2*[| < [lup — 2% < [lzn — 27| (3.5)
and so

||513n+1 - Z*H = ||O‘n"Yf (In) + Bnn + ((1 - ﬂn) I- anB) Knyn — Z*”
(7] () = B2") + B (20 — =) + (1 = Ba) I — anB) (Knin — 2°)]

< an [vf (#n) = B2"|| + B llen — 2% + (1 = B — an?) llyn — 27|
< an [vf (@n) = B2"|| + B [len = 2" + (1 = B0 — any) [lzn — 27
= an [7f (&n) = B2 + (1 — an?) lzn — 27|
Sanlvf (@n) =7 f )+ anllvf (z%) = Bz"|| + (1 — any) [len — 27|
S anyalen =27 +an v f (%) = Bz"|| + (1 — an¥) [an — 27
_ 1 (m I/ (=) — B2"|
=1 —-a, (¥ —va)l|zn — 2% + (¥ — ya) apy——F——
( ( D [+ ( ) =)
*) _ By*
< max{”xn - z*, M} . (3.6)
(¥ —7a)
It follows from (3.6) that
*Y _ By*
|enir — 2% < max{”xl - 2", W(_Z)—Z”} for all n e N.
(Y =)

Hence, {z,} is bounded, so {u,}, {yn}, {Knyn}, {Yan}, {f(zn)} and {Au,} are
also bounded.

Step 2. We will show that lim,—co [|Tnt1 — Zn]| = 0, limy— oo [|YUnt1 — Ynll =
0 and lim,— oo [|nt1 — tunl| = 0. From w, = T;, (2n — 1 V2,) and upyq =
Trpir (Tng1 — Tny1¥xpqg1), we have
1
G (Un,v) + (Vxp, v — up) + — (v — Up, Up — xy) >0, Yo €O (3.7)
and
1
G (tnt1,0) + (Pt 0 = Ung1) + —— (U = Unt1, Un+1 = Tng1) 20, Yo € C.
n+1

(3.8)
Putting v = up41 in (3.7) and v = u,, in (3.8), we get

1
G (unyunJrl) + <\I/$n; Un+1 — un> + ’I”_ <un+1 — Up, Un — :En> Z 0
n

and

1

Tn+1

G (un—i-laun) + <‘I’.’L’n+1, Up — un+l> + <un — Up+1, Un+1 — xn+1> 2 0.
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Adding the above two inequalities, the monotonicity of G implies that

> 0.

Un+1 — Tn+1 Up — Tn >

<\I/$n+1 - \lenaun - un+1> + <un — Un+1,
Tn+1 Tn

This together with nonexpansiveness of I — r, ¥V, we have

0 S <un — Un+1,Tn (\lenqu - \Ijxn) + (unJrl - $n+1) - (un - In)>

Tn+1
Tn

(un-l-l - :En-i-l) + (un - Jin)>
Tn+1

= <un+1 — Up, —Tn (\len-i-l - \I]xn) -
= <un+1 — Up, Unp — un+l> +

Tn
<un+1 — Un, (InJrl - Tn\PInJrl) - (In - Tn\IJIn) + <1 - r > (un+1 - In+1)>
n+1

< = [Junyr — un||2 + [[un+1 — unll X

n

(I = r¥0) = o = )] + 1 - -

et — xn+1||)

n+1

1-n
Tn+1

<~ Jtmgr — tnll® + Jatnss — (||wn+1 el + g — wn+1||) ,
which implies

T'n

i =l < s =l (s = ]+ }1 = 2 s = ol

n
and hence

T'n

un+1 — Tnsa| - (3.9)

ltnt1 — unll < |[|[Tnt1 — xn|l + ’1 -
T

By nonexpansiveness of Po and I — \,,11 4, we have

||yn+1 - ynH = ||PC (un-i-l — Ant1Auni1) — Po (un - )‘nAun)H
< H(un-i-l - )‘n+1Aun+1) - (un - )‘nAun)H
= [[(un+1 = Mg 1AUnt1) = (Un — A1 Aun) — (Ans1 — An) Auy ||
< [(un41 = Anr1Aungr) = (un — AnprAun) || + [Ans1 — Anl [[Aun |
< [unt1 = tnll + [Ang1 = An| [[Aual|- (3.10)

Putting z,, = ﬁ (41 — Bny), we have Ty,11 = Bran + (1 — 5,) 2, Since

:m(ﬁnﬂ—ﬁn;vn):an(x)""((1_567)1 an B) Yn

Zn
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we have
_ an17f (@n41) + (A = Bag1) I — ant1B) Knt1Yntr
T T B
_ anVf (2n) + (1 = Bn) I — 0, B) Kpyn
1- 671
o An41 (679
= ——— (vf (@n+1) = BKni1Yns1) + (BKyyn — v f (72))
1-— 671—1—1 1- 671
+ Kn-i—lyn-i-l - Knyn (311)

Combining (3.9), (3.10) and (3.11), we get
On+1
l[2n41 = znll < 1—76++1 (7S @ne)ll + 1 BEns1ynta )

o,
1-5 (IBEwynll + [17.f @o)l) + [ Knt1yn+1 — Knyall

< ||Kn+1yn+1 - Knyn” + M (an + 1)
<MKt 1ynt1 — KnYnti | + [Knynt1 — Knynl + M (an + ang1)
<N EKnt1Ynt+1 — KnYntill + [[Yns1 = ynll + M (an + any1)
< teng1 = un || + A1 = Al |[Aun| + [ Kng19n+1 — Knyng ||
+ M (o, + ng1)

Tn

< \1 = s = el 4 s — 2l 4 g = Al At

Tn+1
+ [ Knt1Yn1 — Knynall + M (an + ang1)

where

M = max {Sup ] @ne )+ 1 BEniaynsall o IBErynll + 17 (@)l }

1— ﬁn+1 n 1- ﬁn
it follows that

T'n

lUnt1 — Tppt |l + [Ant1 — An| | Aun |

Vst — zull = nss — @l < ]1 -
Tn+1

+ ||Kn+1yn+1 - Knyn-i-lH +M (an + an+1) .

This together with the conditions (i) — (iv) we obtain by Lemma 2.11 that

limsup (|zn+1 — 2all = (2041 — 2al]) 0.
n—oo
Hence, by Lemma 2.3, we have lim,,_, ||2n — || = 0. Consequence,
Hm ||@pi1 — Znl = lUm ||Gnzn + (1= Br) 2n — |
n—oo n—oo

= lim (1-—06,) ||z — zu|| =0.

n—oo
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By (3.9) and (3.10), we have lim, oo ||Yn+1 — Ynl| = limy— oo ||tnt1 — unl| = 0.
Step 3. We will show that lim,,—, ||, — Knyn|| = 0. Since

lzn — Knynll < |20 — Tpga || + (211 — Knynll
= ||£L'n - xn—i—l” + ||an (’7f (xn) - BKnyn) + 671 (xn - Knyn)H
<o = g1l + an |7 f (20) = BKaynll + Ba |20 — Knyall

we have

lzn — Knynll < 1 ([[on = Zniall + an |[7f (2n) — BKnynl|) -

- ﬁn
By (4) and Step 2, we obtain lim,_, ||2n — Knyn| = 0.
Step 4. We will show that lim, o ||tun — yn| = 0, limy,— oo ||un — 25| = 0,
limy, oo | Kyn — ynl|l = 0 and lim, o | K2y — x| = 0. Set w, = vf (z,) —
BK,y, and let § > 0 be a constant such that § > max {sup,, ||wn]| ,sup,, ||zn — 2|}

By nonexpansiveness of K,, and Pg and p-inverse-strongly monotonicity of A to-
gether with (3.3), we have

lZnt1 — Z*Hz = lanyf (#n) + Bun + (1 = Bn) I — anB) Knyn — Z*”2

= (1 = Bn) (Knyn — 2%) + Bn (w0 — 27) + o (vf (z0) — B (Knyn))”z
<1 = Bn) (K nyn - *) + Bn (T — 2 )” + 2 (an (7vf (zn) — B (Knyn)) ,
= ||(1_6n)( nYn — 2°) + Bn (Tn — )”2"'20471 (Wn,, g1 — 27)
< (1= Bn) [[Knyn — 2 || + Bn llzn — Z*||2 + 20 wn |l [[zn41 — 27|
< (1= Ba) llyn — 2°1° + Bn |2 — 2°[I° + 2006 (3.12)
<(1-6n) (||(un — AnAuy) — (2" — AnAZ*)Hz) + B llzn — 2| + 2007,

and so

nss = =217 < (1= Ba) {llun = 2*11° = An 20 = An) [ Aup — 42"}

+ B |lzm — 2*]1* + 20,62
< (1= ) {llzn = 2117 = An 20 = Aa) | Auy — 427}
+ B ||#n — 2*|1* + 200,02
= |lzn — 21> = (1= Bn) An (20 — An) | Aun — Az | + 200,62
It follows that
(1 - ﬁn) An (2/) - )‘n) ||Aun - AZ*||2 < ”xn - Z*”2 - ”xn-i-l - Z*||2 + 2O‘n62
< an = zng1ll (lzn — 271 + |20 — 27])
+ 20,62,
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Since {A\,} C [a,b] for some 0 < a < b < 2p, we have

(1= Bn) a(2p = b) [|Auy — A2*|* < [l2n = @ngall (20 = 2% [ + @041 = 2[]) + 2007,

(3.13)
Since limy, 00 ap = 0, limy o0 |5, — Tny1|| = 0, limsup,, . Brn < 1 and {z,} is
bounded, (3.13) implies that lim,_, ||Au, — Az*|| = 0. By nonexpansiveness of

I — M\ A and firmly nonexpansiveness of Po, we have

lyn — Z*”2 = [P (un — AnAun) — Po (2" — )‘nAZ*)HQ
< {(up — ApAuy) — (25 = M\yAZ") Jyn — 2%)

1 * * *
= 5 (Mn = AnAun) = (=" = X AP + g — 27

= ya) = A (Auy — 42

IN

1 1|2 1|2
5 (lun =217 + g = 2°|

— (||un — yn||2 — 2\ (U — Y, Aty — AZ*)HN2 || Auy, — Az*||2>)

1 ) ) 2 *
5(”“71_2 17+ [y = 2717 = llun — ynll™ + 220 (un — yn, Aup — A2¥)

22 || Auy — A7)
and so

Iy = 271% < llun — 2% = llun = yall* + 2Xn (tn — Y, Aup — Az*)
— 22 || Au,, — Az*|?
S ”xn - Z*”2 - ”un - yn||2 + 2)\71 <un — Yn, Aun - AZ*>
— 22 || Au,, — AZ*|? .

It follows that

lonss = 2712 < (1= B) lgm — 21+ B l1n — 2> + 200,02
< (1-5n) (Hzn - Z*||2 — [lun — yn||2 + 2\ (Un — Yn, Aup — AZ")
X2 At = A2 ) + o llzn = 2| + 20007

< o — Z*||2 — (1= Bn) [lun — yn||2
+2X0 (1 = ) (g, — Y, Aty — AZ*) + 200,62,
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which implies that

2 * 12 * 12
(1= Bn) lun = ynll” < lon — 2717 = [[2n41 — 27|
+ 20, (1 = Bp) (un — yn, Au, — AZ%) + 201,02
<z — Zpsa || (lzn — 2% + [[2n41 — 27))
+ 20 (1 = B0) ltn = yn || || Attr, — Az*|| + 200,62
Since limy, oo ||Aun — Az*|| = 0, limy, oo @y, = 0, limy, o0 [|Zn, — Tpt1|| = 0,

limsup,, ,o On < 1, and the sequence {z,}, {yn} and {u,} are bounded, it follows
that lim,— ||tn — yn|| = 0. By nonexpansiveness of T, (I —r,¥), we have

lmss — 1% < (1= Ba) llgm — 21 + B lom — 2*]12 + 20002
< (1= B0) lun = 2" + Bp [[wn — 27|* + 20,8
(1= Bu) I Tr, (Tn —rnWay) = Tp, (2" — TH‘IJZ*)||2 + B llTn — Z*||2
+ 200,62
(1= Bn) [(zn = rnWay) — (2% — rn\IJZ*)||2 + B l|zn — Z’*”2 + 200,62
(1= Ba) (@0 = 2%) = o (W — O2")|* + By [l — 27| + 2008
(1 By) (||3:n — 2P = 2rp i — 2, Wiy — U2Y)

A

2 [ W, = ) + B [ — 2| + 20007
< (1= Ba) (lkon — 271 = 7 (26 = r) [ — 27 ?)
+ B l|ln — 2*[° + 200,68
= |0 — 2*[]> = 7 (28 — 1) (1 = Ba) W2y — U2*||* + 20,6
and so
o (26 = 70) (1= By) |0, — U2*|?

< = 27 = lzass = 27|° + 2008

< llen = tnaall (lon = 2° [l + ll@nts = 2]]) + 2006°.
Since {rp} C [e, d] for some 0 < ¢ < d < 23, we have

¢(28 —d) (1= B,) W, — ="
< e = 21 = 21 — 2* I + 20,67
< Nlen = @nrill (len — 21+ l@ass — 2°[) + 2005

Since limy, 00 ap = 0, limy o0 ||Tn, — Tny1|| = 0, limsup,, . Brn < 1 and {z,} is
bounded, it implies that lim, _, || Pz, — Tz*|| = 0. By (3.3), (3.4) and (3.12), we
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have
[#n41 — Z*||2 < (1= 5n) llun — Z*”2 + B llzn — Z*”2 + 20,67
*(12 * 2
< (1= B0) (lon = 21 = l(un = @) = 7o (02" = W,)||*)
+ B l|l2n — 2*]1* + 200,06
< (1= ) (lln = 1 = lun = 2ll® + 2 {1t — 0, B2" = W)
—’I“Z ||\I]Z* - \I]xn”z) + 671 ||xn - Z*||2 + 2Oén62
|2 2
<oy = 2"" = (1 = Bn) llun — zn |l
+ 21, (1= Bn) (g, — 2, U2* — Way,) + 200,62
and so
(1= Ba) ltn = @nll® < & — 2|° = 2nga — 277
+ 27, (1 = By) (U — T, U2* — V) + 20,67
< lzn = znall Hlzn = 2% + l2nga — 27)
+ 27, (1 = By) (U — T, U2* — V) + 20,67

<|lzn = zng1ll (lzn = 2% + [|2041 — 27))
+ 27 (1= By) |t — 2| || ¥2* — Wy || + 20,62, (3.14)

Since limy, o0 [|[P2, — U2*|| = 0, limy—oo o, = 0, limy o0 ||@n — Zng1l] = 0,
lim sup,, o, fn < 1 and the sequence {z, }, {yn} and {u, } are bounded, it follows
from (3.14) that lim, o ||un — || = 0. Since

|zn — Knznll < |20 — Knynll + | Knyn — Knunl| + | Knun — Knzn ||
<z — Knyull + lyn — unll + lun — 24|

and

< | Enzpn — ol + 2 |20 — yal
< NKnzn = n|l + 2 (|20 — unll + lun — yall) ,

it follows by Step 3 and Step 4 that
nlirrgo |zn — Kpxn| =0 and nlirgo | Knyn — yn| = 0.
Let K be the K-mapping generated by 11,75, ....,Tn and &1,&s, ..., En. From
1Ky = ynll < [1Kyn — Knynll + 1 Knyn — yul

and
|Kzy — zp|| < [[Kzn — KnZn || + [ Knon — 20|,
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it follows by Lemma 2.10 that

Step 5. We will show that there exists a unique element zy € H such that
20 = Po (I — (B —~vf)) 2z0. Observe that Pq (I — (B —~f)) is a contraction of H
into itself and from Lemma 2.4, we have that || — B|| < 1 — 4. Indeed, for all
z,y € H, we have

[P (I = (B=7f))(x) = Pa(I—(B=~f)) Wl
<= (B=7f) (@) == (B =)Wl
= =B)(z-y) +7(f () - fWI
<M =Bl =yl + v [I(f (x) = F W)l
<A =Nle—yll+yalz -yl
=(1=@7 =) llz—yl.

Hence Pq (I — (B —~f)) is a contraction. Since H is complete, there exists a
unique element zp € H such that zo = Po (I — (B —7f)) 20-

Step 6. We will show that limsup,,_, . {((vf — B) 20, 2n — 20) < 0. We choose
a subsequence {yn,} of {yn} such that limsup,_, . ((vf — B) z0, Kyn — 20) =
lim; oo {(vf — B) 20, Kyn, — 20). Since {yn,} is bounded, there exists a subse-
quence {ynj} of {yn,} which converges weakly to z € C. Without loss of gen-

erality, we can assume that y,, — z. From lim, . ||Kyn — yn| = 0, we obtain
Kyn, — z. Therefore we have

limsup ((vf = B) 20, Kyn — z0) = lim ((vf = B) 20, Kyn; — 20)
=((vf = B) 20,2 — 20) -
Next we prove that z € Q. First, we show that z € GEP(G, V). Indeed, we

observe that u,, =T}, (x, —r,¥x,) and

1
G (Un, ) + (U2, v — Up) + — (U — Up, Uy, — Tp) >0, Yo € C.

Tn

By (A2), we deduce that
(U2, , 0 — Un,;) + <’U — Up,, M> > G (v,up,), YveC. (3.15)
Tn,

From lim, e ||tn — yn|l = 0 and y,, — 2, we get u,, — 2.
Put z; = tv+ (1 —t)z for all ¢ € (0,1] and v € C. Consequently, we get z; € C.
From (3.15), it follows that

u> — G (2 un,) >0

uz

(Vay,, 2t — Un,) + <Zt — Up,,
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and hence

Uy, — Ty
<\Ilztvzt - un1> 2 <\I/Ztvzt - un1> - <\I/:Eniazt - un1> - <Zt = Uny, %>
n
+ G (2, up,)
= Uz — Qup,, 2t — Un,) + (P, — Uy, 20 — Up,)
Uy, — Ty
— <zt — U, M> + G (2t, un,) -
T,

Since (Uz; — Yuy,,, 2t — Uy, ) > 0, above inequality implies

Un,; — T,
— ) — (Vuy, — Yy, 2t — Un,) -

nq

G(Ztauni) < <\I/Ztvzt - un1> + <Zt — Un,,

By Step 4, we know that lim,_,« ||un — 2y | = 0, it follows by Lipschitz continuity
of U that lim; .o ||Pu,, — Yz, || = 0. Since “22" — 0 as i — oo, it follows
from (A4) that
G (zt,2) < lim G (2, up,)
< lim (Uze, 2¢ — ;)
= Uz, 20 — 2) .
Owing to (A1) and (A4), we get that

0=G(2t,2¢) <tG (2zt,0) + (1 —t) G (2, 2)
<tG (z4,0) + (1 — 1) (Vzy, 20 — 2)
=tG (zt,0) + (1 =)t (T2, v — 2)

and hence G (z;,v) + (1 —t) (Uz, v — z) > 0. Letting t — 0, we have
G (z,v) +(¥z,v—2z) > 0.

This implies that z € GEP(G, ¥).

Next, assume that there exists j € {1,2, ..., N} such that z # T}z, by Lemma 2.9
we have z # Kz. Since lim, oo [|un — 2,/ = 0, we have z,, — 2. From
lim,, oo || K2n — 25| = 0 and Opial’s condition, we get

liminf ||z, — z|| < liminf ||z,, — Kz||
11— 00 71— 00
11— 00
= liminf | Kz,, — Kz||
11— 00

<liminf ||x,, — z]| .
1— 00

This is a contradiction. Hence, z € ﬂf\;l F(T;).
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Let T be the maximal monotone mapping define by

| Au+ Ncu, uveC
TU_{(Z), u¢C.

For any given (u,w) € G(T'), hence w— Au € Ncu. Since y, € C, by the definition
of N¢, we have (u — y,, w — Au) > 0. From y, = Po (un, — A\ Auy,), we have

<u —Yn,Yn — (un - )\nAun» Z 07

and so

<u_yn,yn)\_un +Aun> > 0.

By the p-inverse monotonicity of A, we have (u — yp,, w) — (u — yYn,, Au) > 0 and
0

_ <u—ym,AU—Aum _ u>
An;
. — Up,;
= = g A= A )+ (0= i A, — A = (1= g, 22
Uz

. — Unp.:
Z<u_ym7Ayni_Auni>_<u_yniaynl)\ n1>'
g

Since limy, o0 ||n — Yn|| = 0, yn, — 2z and by Lipschitz continuity of A, we obtain
(u— z,w) > 0. Since T is maximal monotone, hence 0 € Tz. This shows that
z € VI(A,C). Thus, z € Q. By Step 5, we have ((vf — B) z9,2 — z9) < 0. It
follows that

limsup ((vf = B) 20, 2n — 20) = limsup ((vf — B) 20, (¥n — Knyn) + (Knyn — 20))

n—oo n—oo

= limsup ((vf — B) 20, Knyn — 20)

n—oo

= limsup ((vf — B) 20, Kyn — 20)

= lim {(vf = B) z0, Kyn, — 20)
=((vf — B) 20,2 — 20) < 0.

Step 7. Finally we show that {z,}, {un} and {y,} converge strongly to zo.
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Indeed, from (3.1), we have

20 = 200" = llomf (@) + Butn + (1 = Ba) T = nB) Ky — 20|
= [[((1 = Bn) I — anB) (KnYn — 20) + Bn (0 — 20) + an (Vf (w0) — BZ*)||2
<I((1 = Ba) T = anB) (K — 20) + Bn (€0 — 20)|”
+ 2an (Vf (@) — B2o, Tn+1 — 20) ,
_ H (1 =Bn) (A = Bn) I — anB) (Knyn — 20)
+ 20, {(vf (xr) — Bzo, Tnt1 — 20)

<(1-4) ‘ (=)t T & )(K"y" )

+ 20, (vf (xn) — B2o, Tnt1 — 20)
_ _ ((1 - 671) I— anB) (Knyn - ZO)
+ 20 (v f (xn) = 7f (20) , Tng1 — 20) + 200 (Vf (20) — B2", Zng1 — 20)
(1 =Bn) I = anB) (Knyn — 20)|

1- 671

+ 2anya |20 — 20l [|Tn41 — 20l + 200 (7 (20) — B20, Tnt1 — 20)
(1= B~ an®)’ [l — 2ol
N 1- ﬁn

+awya (llen = 20> + a1 = 20l + 200 (7f (20) = Bzo, @1 — 20)

2

+ ﬁn (xn - ZO)

2
\ T B fln — 20

2
+ B |20 — 20H2

2
<l B e — 20

+ B ||lzn — ZOH2

252

1 - 671
+ 20, (7f (20) — B2o, Tny1 — 20) ,

- Q
= (1 —ap (27 —ya) + ) ||xn—zo|\2+an7a||:vn+1 —zo||2

which implies

1 252
s =l < g (1 an @1 =700+ £25 ) o =
2an
ﬁ (vf (2") = Bzo, Tny1 — 20)
b (1 0 (27— 7)) e~ 2ol
=——(1—an (27 —7a)) lzn — 2
1— Qpyo Y Y 0
~2
1 _C;nn,ya (2 (vf (20) = Bzo, Tny1 — 20) + % len — 20|2>
1
T 1-ana (1= anya =20, (7 = 70) |20 — zo|”
~2
1 _C;nn,ya (2 (vf (20) = Bzo, Tny1 — 20) + % len — 20|2> ,
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and so
200, (7 — vy
fown ol < (1- 2220200 Y g,
— apya
~2
Qnp an%y 2
—m (9 - B ] — 0 Nz, —
I—apa ( (vf (20) 20, Tnt1 — 20) + -3, [2n — 2o )

200, (7 — vy 2(7 —vya fo7%
— apyo 2(y —va) 1 — apya

anﬁﬂ 2
X | 2(vf (20) — Bzo, Tnt1 — 20) + ——— ||zn — 20|

1_671
200, (7 — vy 200, (7 — vy
_(;_2(3—=79) len — 20|? + (¥ —7e)
1 — apya 1 —apya
_B n - n72
% (Wf (20) _ 20, Tn41 — 20) +— Qn7y |£Cn—zo||2>-
Y=o 2(y —ya) (1= By)

(3.16)

Set K, = 20n(Y=72) 414 5, = (1f(z0)=Bzo,ny1=20) 4 2(&—;1;)?
all n € N. We can rewrite (3.16) as [|2,11 — 20/|> < (1= k) |20 — 20||° + £ndn.
By our hypotheses it is easily verified that >~ ; k,, = 0o and limsup,, . 6, < 0.
Therefore, by Lemma 2.2, we can conclude that ||z, — zo|| — 0. Since |Ju, — 2, || —
0 and ||uyn, — yn|| — 0, it follows that ||u, — zo]| — 0 and ||y — 2o|| — 0. This com-
pletes the proof. O

2 2 ‘
l—apya F—ya 1-08,) H.In - ZOH or

As direct consequences of Theorem 3.1, we have the following three corollaries.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G be a bifunction from C x C into R satisfying (A1) — (A4), f:C — C
a contraction mapping with constant o € (0,1). Let {Tz}i\[:1 be a finite family of
nonexpansive mappings of C into itself and let {fnl}f\;l c (0,1), {&,n} C (0,1],
{eANT1 € (0,1), éx € (0,1] be such that €, — & for all i = 1,2,..,N. Let
K, : C — C be a K-mapping generated by T1,T>,...,Tn and £,.1,6n.2, .-, €n.N -
Suppose that € := ﬂfil F(T;) NEP(G) #0. Let B be a strongly positive bounded
linear operator on H with coefficient ¥ > 0 and ||B|| =1 and let 0 <y < 2. For
x1 € C, let {z,} and {u,} be the sequences generated by

G (un,v) + L (V= Up, Uy — Tp) >0, Yo € C;
T'n
:En-i-l — O‘n/yf (wn) + ﬁnxn + ((1 - ﬁn) I - anB) Knun
for all n € N, where {a,},{8n} C (0,1) and {r,} C (0,00) satisfying:

(i) Y07 an = 00, limy, 00 i = 0,

(it) liminf, o, > 0 and lim,, o, 2 =1

Tr41 ’
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(11i) 0 < liminf,,_ . Bp <limsup,,_, . On < 1.

Then {zn} and {un} converge strongly to the point zy € €2,
where zg = Po (I — (B — 7)) 2o.

Proof. Let A, = 1 for allm € N and Y = 0 and Az = 0 for all z € C in
Theorem 3.1. Since u,, € C, we get that u,, = Pcu,. Then y, = u,. Therefore
the conclusion follows. O

Remark 3.3. Putting 6, = 3, Yn € N in Corollary 3.2, we obtained Theorem 3.1
in 4]

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let ¥V : C — H a (-inverse-strongly monotone mapping, A : C — H a p-
inverse-strongly monotone mapping and f : C — C a contraction mapping with
constant o € (0,1). Let {Ti}ij\il be a finite family of nonexpansive mappings
of C into itself and let {€,: )" C (0,1), {€an} C (0,1], {&}NT" € (0,1),
&nv € (0,1] be such that &,; — & for alli=1,2,..,N. Let K, : C — C be a
K-mapping generated by T1,T5,....,Tn and &,1,&n,2,-..,&n N Suppose that ) :=
ﬂﬁil F(T)NVI(Y,C)NVI(AC) # 0. Let B be a strongly positive bounded
linear operator on H with coefficient 5 > 0 and ||B|| =1 and let 0 <y < L. For
x1 € C, let {zn}, {yn} and {un} be the sequences generated by

Un, = Po (xn, —rnPay) ;
yn = Po (un — AAuy,) ;
Tnt1 = anVf (Tn) + Bnn + (1 = Bu) I — anB) Knyy,
for all n € N, where {an},{6n} C (0,1), {\} C [a,b] for some 0 < a <b<2p
and {rn} C [e,d] for some 0 < ¢ < d < 20 satisfying:
(i) D0y = 00, limy o0 iy =0,
(1) liminf, oo Ay > 0 and lim, o0 A1 — An| =0,
(i4i) liminf, o 7, > 0 and lim,,—, o % =1,
(i) 0 <liminf, . B, <limsup,,_,. OB < 1.
Then {xn}, {yn} and {un} converge strongly to the point zy € 2, where zo =
Po (I = (B =~f)) -

Proof. In Theorem 3.1, put G(z,y) = 0 for all ,y € C. Then, we obtain that
(Uxp, v — up) + Ti (V—="Un,up —Tp) > 0, Yo € C, ¥n € N. This implies that
(v — Up, (Tp, — rn\f;xn) —up) <0, Vo € C. So, we get that Po (z, — 1, ¥x,) = uy
for all n € N. Then, we obtain the desired result from Theorem 3.1. [l

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G be a bifunction from C x C into R satisfying (A1) — (44), f: C — C

a contraction mapping with constant « € (0,1). Let T be a nonexpansive mapping
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of C into itself. Suppose that Q := F (T)(EP(G) # 0. For zy € C, let {z,} and
{un} be the sequences generated by

1
G (tUn,v) + — (U — Up,up — x,) >0, Yo € C;

T'n

Tp41 = anf (:En) + ﬁnxn + (1 - ﬁn - an) Tun

foralln € N, where {a,},{Bn} C (0,1), and {r,} C [c,d] for some0 < ¢ < d < o0
satisfying:

(Z) 220:1 oy = 00, llmnﬂoo Qy = O’

(i) liminf, .o r, >0 and lim,_ TTL =1,

Then {x,} and {u,} converge strongly to the point zo € Q, where zo = Pof (20).

Proof. In Theorem 3.1, put A, = 1 for all n € N and Y2 = 0 and Az = 0 for all
z € C. Since u,, € C, we get that u,, = Pcu,,. Then y, = u,. Pt N =171 =T
and £, 1 =1 for all n € N. Then K,, = T. Hence, we obtain the desired result
from Theorem 3.1. O

Recall that a mapping T : C — C'is called strictly k-pseudocontractive map-
ping, see [13], if there exists k with 0 < k < 1 such that

T = Ty|* < o —y|* + kI -T)x = (I =T)y|*, forallz,yeC.

If £ = 0, then T is nonexpansive mapping. Putting A =1 — T, where T : C — C
is a strictly k-pseudocontractive mapping. We know that

(x —y, Ax — Ay) > % | Az — Ay||?, for all z,y € C.

That is A is %—inverse—strongly monotone mapping. Now, using Theorem 3.1
we state a strong convergence theorem for strictly k-pseudocontractive mapping

as follows.

Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let G be a bifunction from C x C into R satisfying (Al)—(A4), ¥ :C — C be a
strictly k-pseudocontractive mapping, A : C' — C be a strictly l-pseudocontractive
mapping, f: C — C a contraction mapping with constant o € (0,1). Let {Ti}fil
be a finite family of nonexpansive mappings of C into itself and let {énl}f\izl -
(O, 1), {gn,N} - (0, 1] , {fz}fizl - (O, 1)7 v € (0, 1] be such that gn,i — & for all
i1=1,2,...,.N. Let K, : C — C be a K-mapping generated by T1,Ts,....,Tn and
EntrEn2y s Enn- Suppose that Q == 1, F (T;) NGEP(G, ¥V (A, C) # 0,
where W' =1 — VU and A’ =1 — A. Let B be a strongly positive bounded linear
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operator on H with coefficient 5 > 0 and |B|| =1 and let 0 < v < L. Forz; € C,
let {xn}, {yn} and {u,} be the sequences generated by

1
G (Un,v) + (V'xp, v — up) + — (0 — Up, Uy — x,) >0, Vv € C
T

n

Yn = PC (un - )\nA/un) )
Tny1 = anVf (xn) + BnTn + ((1 - 671) I—- oan) Knyn

for all n € N, where {an},{Bn} C (0,1), {A\} C [a,b] for some 0 <a<b<1-—1
and {rn} C [c,d] for some 0 < ¢ < d < 1—k satisfying:

(Z) EZOZI Qp = 00, hmnﬂoo ap = 0,

(it) lminf, oo Ap > 0 and lim, o [Ap+1 — An| =0,

Tn

(#1) liminf, o ry > 0 and lim, o =1,

Tn4+1

(iv) 0 <liminf, . B, <limsup,,_, ., On < 1.

Then {xn}, {yn} and {u,} converge strongly to the point zy € Q, where zg =
Po (I = (B —=7f)) 2.
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