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Abstract : In this paper, we consider an experiment from a sample whose size
is determined by the values smaller than all previous ones which is record values.
We suppose that the data available are lower record values such as Ly, Ki, Lo,
Ks,..., L., K,,..., where Ly, Lo,... are successive and K, K5, ... are the numbers
of trials needed to obtain new records. Bayesian estimation and survival function
are obtained based on record values under square error and linear exponential
loss functions or briefly (SEL, LLF). We consider weibull distribution with un-
known two parameters o and (. Estimation of both parameters and numerical
computations under square error loss function are investigated.
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1 Introduction

Let L1, Ly, L3, ... be a sequence of continuous random variables. Ly is a lower
record value if its value is smaller than all preceding values L1, Lo, ..., Ly_1. There
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has been general interest in record values for centuries, particularly for sporting
events like the Olympic Games. Motivated by the reported frequency of record
weather conditions, Chandler [1] began studying the distributions of lower records,
record times, and inter-record times for independent and identically distributed
(i.i.d) sequences of random variables. Interested readers may refer to Glick [2],
Ahsanullah [3], Arnold and Balakrishnan [4], Al-Hussaini [5, 6], Neutsand [7], for
a review of developments in this area of research. There are also some papers
done on statistical inference based on record values. See for instance, Berred [8],
Ahmadi et al. [9)].

2 Main Results

2.1 Bayesian estimation densities and survival functions

Through this paper, we assume that the data available for study are lower
record values. Such data may be rewritten as the following :

L17K17L27K27"'7LT7KT (21)

where L; is the ith record value or new minimum and K is the number of trials fol-
lowing the observation of L; needed to obtain a new record. Inference with record
values would seem to provide a good opportunity for Bayesian techniques. From
a sequence of n (i.7.d) continuous random variables only about log(n) records are
expected. We expect to have little data, hence any prior information is welcome.
We adopt the natural conjugate prior distribution for parameters. This leads to
a posterior distribution in the same family as the prior. The form of the natural
conjugate prior can often be identified by interchanging the role of the data and
the parameter in the likelihood function. The natural conjugate for the record
distribution is often the same as that for the distribution generating the original
(i.i.d) sequence from which the records were taken.

The classical decision theory approach to point estimation hinges on choice
of the loss function. Clearly, the choice of the loss function may be crucial. It
has always been recognized that the most commonly used SEL function is inap-
propriate in many situations. Under SEL a measure of inaccuracy, i.e., R(6,0) =
Eo{L(6,5(X))} (Risk of # and § ) is often too sensitive to the assumptions about
the behavior of the tail of the probability distribution of X. In practice, overesti-
mation and underestimation of the same magnitude often have different economics
and the actual loss function is asymmetric. There are numerous such examples in
the literature. A useful alternative to the SEL is a convex but asymmetric loss
function, called the LINEX (Linear-Exponential) loss function was proposed by
Vatutin [10]. LINEX loss function (LLF) is defined as following:

L(6,6) = b[e?©O~ — (6 —0) — 1], v#0, b>0, (2.2)

where 'v’ and ’b’ are the shape and scale parameters of the loss function (2.2).
Obviously, the nature of LLF changes according to the choice of v. Without loss
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of generality we will assume that b = 1 in (2.2), in what follows. The sign of
v represents the direction of penalty and its magnitude represents the degree of
symmetry. For v = 1, loss is quite asymmetric about zero with overestimation
being more costly than underestimation. In general when v > 0, this loss increase
almost linearly for negative error § — €, and almost exponential for positive error.
Therefore, overestimation is a more serious mistake than underestimation. When
v < 0, the linear-exponential increase are interchanged, where underestimation is
more serious than overestimation.

The magnitude of a reflects the degree of asymmetry, so the proposed loss
function allows for an asymmetric penalty. The loss function is strictly convex
and for small, positive values of v, i.e. v/ ~ 0 for j > 3, the loss function is
almost symmetric and not far from a squared error loss function. Indeed, on ex-
panding e?C=% ~ 1 4 u(§ — 0) + M, L(6,6) ~ M, a squared error
loss function. Thus for small values of |v|, optimal estimates and prediction are
not far different from those obtained with a squared error loss function. Writing
My x (t) :== Eg|x[e'] for the moment-generating function of the posterior distribu-
tion of 0, it is easy to verify that the value of §(X) that minimizes Eg)x [L(0, (X )]
in (2.2) as following:

1
6B(X) = 5 In My x(—v), (2.3)
where, Mpy x exists and is finite.

Theorem 2.1. Suppose that the data available {L1, K1, ..., L., K, }, are a sequence
of variable X with distribution function Fp(x) = 1—e @) 2 > 0, where, Ag(x) is
nonnegative continuous differentiable function of x such that A\g(x) — 0as x — 07,
and \g(z) — +0o as x — +oo, then estimator of 0 under SEL and LLF function,
as following:
i Jo 0C1(6;1,6)e=P1(%:Lk3) gp
B8 0 Cu(0;1,6)e DOtk 4

70 ; - HA X
1111 <f@e 0C1(6;1,5)ePrO:bEk )d9>

Opr = ——
BT 5 C1(6;1,6)e=D1®:LkD) g

Proof. The joint probability function or likelihood associated as following:

L) = [0 = PO T, (24)

where lp = o0, k, = 1, I4(z) is the indicator function of the set A and (L,k) :=
(I, k1, e by ).
We know that:
Fy(z)=1—e @ 2>, (2.5)

then the corresponding density function is given by:

fo(z) = Mg(z)e @) 2> 0 (2.6)
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By substituting (2.6) and (2.5) in (2.4) the likelihood function of (1, k) is given by:
L(6;1,k) = A(6,1)e~BOLI), (2.7)
where A(60,1) = [T/, Ay (i), and B(6,1,k) = S27_, kAo (ly).
We suggest that conjugate prior density function to be given by
7(0;8) x Co(0;8)e P gec o, §e, (2.8)

where ( is the hyperparameter space. From (2.7) and (2.8), the posterior density
function is given by:

7(0L,k) o Cy(0;1,8)ePr0ibkd), (2.9)
where
C1(0;1,6) = Cyp(0;0)A(0;1), and Dq(6;1,k, ) = Do(6;6)B(6; Lk).

Assuming a squared error loss function (SEL), the Bayes estimate of a parameter
is it' s posterior mean. Therefore, by (2.9) the Bayes estimate of the parameter 6
as following:

jo f@ 901(9;l,é)e*Dl(e;l,k,J)de

N : 2.10
BS = O (6;1, 0)e D kD) 4 (2.10)
From (2.3), the Bayes estimator of § under LINEX loss function
5 1 —v00,(6: 1, §)e~P1(0:1k.9) gg
b =—31 Jot ! L 9;Lk,0 (2.11)
o LGB Lo)e PR ag
O

Remark 2.2. 0pg and Opy, in (2.10) and (2.11) are the unique Bayes estimates of
0 under SEL and LLF functions, respectively. Hence, they are admissible provided
that the prior density (2.8) be proper.

2.2 Weibull model

In this section we assume that data available are a sequnce of random variable
with Weibull model such that both parameters are unknown. Baysian estimator
of parameters under SEL and numerical computation are proposed.

Theorem 2.3. Suppose that the data available {L1, K1, ..., L., K, }, are a sequence
of random variable X with distribution function W («, 3), such that both o and 3
are unknown, and prior density function of (a, B) is given by

dD"  ha—1pa—1_—a(d+bB)
_ eta—1ga—1,-o 2.12
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then

. (r+c+a)p(r+a,r+c+a+1) 4 Y(r+a+1l,r+c+a)
aps = , Pps = (2.13)
Y(r+a,r+c+a) Y(r+a,r+c+a)

o rha—1r, 18
where Y(r 4+ a,r +c+a) = [, [Er:fkil@w[zgﬁ)}rﬂﬂ dg.

Proof. Since
flz;a,8) = aﬁxﬁ_le_‘mﬁ, x>0, a>0, >0, (2.14)

then ;
Flz;o,8)=1—e¢ ", >0, a>0, >0. (2.15)

By substituting (2.14) and (2.15) in (2.4) we obtain:

flkas) = JLasd et ety

i=1
- B
(o) [[ 1/ emet
=1

(@) (D) e imkll (2.16)

where n(1) = [T_, &
The posterior density function 7(«, 8], k) is given by
m(o, Bl k) o f(LK|e, B)m(a, B)
= mf(l,kla, B)7(c, B)

" dcb®
_ "in(l B-1 _agizlkilf ct+a—1pa—1,—a(d+bp)
m(aB)" [n(1)]" e x T (a)" p* e
= Marteretgrre e e bl i) @)

We know that, [ [0 m(c, I, k)dad = 1, so we can write as following:

r roo 0o -1
M = / / 6r+a—l [n(l)]ﬁar—i-c-l-a—le—a(ﬁl:1kil?+d+bﬁ)dadﬁ:|
LJO 0

-1

_ '/oo ﬁTJrail[n(l)]ﬁ(/oo ar+c+a1ea(E:1kil5+d+bﬁ)dQ)dﬂ:|
LJO 0

_ —1
_ r+a—1 B F(T+C+G)
= [ rmo) T S mmﬂ)dﬁ]

_ R 10) 4 )
= [Tt C+a)/o (21 kil? +d+bﬁ]r+0+adﬂ]

= [Dr+c+a)p(r+ar+c+a) (2.18)
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by substituting (2.18) in (2.17) we obtain:

ar—i—c-{-a—lﬁr—i—a—l [n(l)]ﬁe—a[Elekil?—i-d—i-bB]

k1) = 2.19
(e, ik, 1) P(r+c+a)(r+a,r+c+a) (2.19)
so we can write as following:
&BS = Ot|k l
— M/ / ﬁr—i-a 1 ] r+c+ae—a[Z::1kil?+d+bﬁ]dadﬂ
— M/ ﬁrJra 1 ] F(;+C+a+1)
(X7 kil +d + bp|rtetatl
= MT(r+c+a+1)¢(r+ar+c+a+1) (2.20)
by substituting M from (2.18) in (2.20)we obtain:
. (r+c+a)p(r+a,r+c+a+1)
= 2.21
aBs Y(ir+a,r+c+a) ( )
and similarly
fps = E[BLK|
- M / / ﬁr-{-a r+c+a—1e—a[E;‘zlkilf—kd—i—bﬁ] dadﬂ
I(r+c+a)
= M/ / Brtain(l)]? dg 2.22
o Jo (L) [S7_ kil? + d + bf)r+eta (2.22)
by substituting M from (2.18) in (2.22) we obtain:
5 v(ir+a+1,r+c+a)
= 2.23
Pes Y(r+a,r+c+a) (2.23)
O

2.3 Numerical computations

In this section, we using MATLAB software for simulation of estimated para-
meters in last section. We generate sample of size m = 12 from the W (2, 3) model
given by (2.14) and written in order form as: (1,k) = 0.7936, 1, 0.2995, 5, 0.2202,
31, 0.2176, 1. It can be seen that with prior parameters a = 3, b =1, ¢ = 4 and
d = 3 for the joint prior density given in (2.12), the Bayes estimators of o and
under SEL are apg = 1.5218 and BBS = 2.5182, respectively.
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