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Abstract : The purpose of this paper is to determine spectrum and fine spectrum

of newly introduced operator A2, on sequence space cg. The operator A2, on
sequence space ¢g is defined by A2 x = (upTp — Vn—1Tn—1 + Un—2Tn—2)52, With
x_1,x_2 = 0, where x = (x,,) € ¢, u = (ug) is a either constant or strictly
decreasing sequence of positive real numbers with U = limg_, o ug # 0, v = (vg)
is a sequence of positive real numbers such that vi # 0 for each k € Ny with
V =limg_o vx # 0. In this paper we have obtained the results on spectrum and
point spectrum for the operator A2, over sequence space cg. We have also obtained
the results on continuous spectrum o.(A2, | ¢g), residual spectrum o,.(A2 . o) and
fine spectrum of the operator A2, on sequence space co.
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1 Introduction

The study of spectrum and fine spectrum for various operators are made by
various authors. Wenger [1] examined the fine spectrum of the integer power of
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the Cesaro operator in ¢ and Rhoades [2] generalized this result to the weighted
mean methods. The spectra of Cesaro operator on the sequence space ¢y have also
been investigated by Reade [3]. The fine spectrum of the Rhally operators on the
sequence spaces ¢g and ¢ has been examined by Yildirim [4]. The fine spectrum of
the difference operator A over the sequence spaces cg and ¢ is determined by Altay
and Basar [5]. Complete study of the spectrum such as point spectrum, continuous
spectrum, residual spectrum of the operator A on sequence spaces ¢y and ¢ made
by these authors. The fine spectrum of the generalized difference operator B(r, s)
over sequence spaces ¢y and c is established by Altay and Basar [6]. The fine
spectrum of the generalized difference operator B(r,s,t) over sequence spaces ¢y
and c¢ is established by Furkan, Bilgic and Altay [7], where r,s,t are taken as
scalars.

The present work is in a continuation of the previous works which gives the
characterization of fine spectrum of the operator A2, for various real sequences
u = (ug) and v = (v;) under certain restrictions over the sequence space ¢o. If u =
(1) and v = (2) are constant sequences, then the operator A2  reduces to second
order forward difference operator A2. Thus, the results of this paper unifies the
corresponding results of many authors on operators whose matrix representation
is a triple-band matrix.

2 Preliminaries and Notation

Let X and Y be the Banach spaces and T : X — Y be a bounded linear
operator. We denote the range of T' as R(T"), where R(T) ={y €Y :y=Tz, z €
X}, and the set of all bounded linear operators on X into itself is denoted by
B(X). Further, the adjoint T* of T is a bounded linear operator on the dual
space X* of X defined by

(T*¢)(z) = ¢(Tx) for all € X* and z € X.

Let X # {0} be a complex normed space and T : D(T) — X be a linear
operator with domain D(T) C X. With T, we associate the operator T, =
(T — of), where « is a complex number and I is the identity operator on D(T).
The inverse of T, (if exists) is denoted by T, !, where 7,1 = (T — aI)~! and
known as the resolvent operator of T'. It is easy to verify that T, ! is linear, if T,
is linear. Since the spectral theory is concerned with many properties of T, and
T* which depend on «, so we are interested the set of those « in the complex
plane for which 7,;! exists or 7;! is bounded or domain of T,;! is dense in X.
For this, we need some definitions and known results given below which will be
used in the sequel.

Definition 2.1. ([8], pp. 371) Let X # {0} be a complex normed space and
T : D(T) — X be a linear operator with domain D(T) C X. A regular value of T
is a complex number « such that

(R1) T ! exists,
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(R2) T;!is bounded,
(R3) T, ! is defined on a set which is dense in X.

Resolvent set p(T, X) of T is the set of all regular values v of T. Its com-
plement o(T, X) = C\ p(T, X) in the complex plane C is called spectrum of T
The spectrum o (T, X) is further partitioned into three disjoint sets namely point
spectrum, continuous spectrum and residual spectrum as follows:

Point Spectrum o,(T, X) is the set of all & € C such that ;! does not exist,
i.e., condition (R1) fails. An element of o,(T, X) is called an eigenvalue of T'.

Continuous spectrum o.(T, X) is the set of all & € C such that conditions (R1)
and (R3) hold but condition (R2) fails, i.e., T, ! exists, domain of T);! is dense in
X but T,;! is unbounded.

Residual Spectrum o,.(T, X) is the set of all a € C such that T, ! exists but do
not satisfy condition (R3), i.e., domain of T, ! is not dense in X. The condition
(R2) may or may not holds good.

Goldberg’s Classification of Operator T,([9], pp. 58): Let X be a Banach
space and T, € B(X), where « is a complex number. Again let R(T,) and T, !
denote the range and inverse of the operator T}, respectively. Then the following
possibilities may occur;

(A) R(To) = X,
(B) R(Ta) # R(Ta) = X,
(C) R(Ta) # X,

and

(1) T, is injective and T}, ! is continuous,
(2) T, is injective and T); ! is discontinuous,
(3) T, is not injective.

Remark 2.2. Combining (A), (B), (C) and (1),(2), (3); we get nine different
cases. These are labelled by Ay, As, As, B1, Ba, B3, C1,C> and C3. The notation
a € Asa(T, X) means the operator T, € Az, i.e., R(Ty) = X and T, is injective
but Tt is discontinuous. Similarly others.

Remark 2.3. If a is a complex number such that T, € Ay or T, € By, then «
belongs to the resolvent set p(T, X) of T on X. The other classification gives rise
to the fine spectrum of T .

Definition 2.4. ([10], pp. 220-221) Let A, u be two nonempty subsets of the
space w of all real or complex sequences and A = (a,x) be an infinite matrix of
complex numbers a,, where n,k € Ng = {0,1,2,...}. For every x = (zx) € A
and every integer n, we write

An(x) - Z An kT,
k
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where the sum without limits is always taken from k& = 0 to kK = co. The sequence
Az = (A, (x)), if exists, is called the transformation of 2 by the matrix A. Infinite
matrix A € (A, p) if and only if Az € p whenever z € \.

Lemma 2.5. ([11], pp. 129) The matrix A = (anx) gives rise to a bounded linear
operator T' € B(cg) from ¢ to itself if and only if

(1) the rows of A in l; and their /; norms are bounded,

(2) the columns of A are in ¢o.
Note: The operator norm of T is the supremum of the /1 norms of the rows.

Lemma 2.6. ([9], pp. 59) T has a dense range if and only if T* is one to one,
where T denotes the adjoint operator of the operator T.

Lemma 2.7. ([9], pp. 60) The adjoint operator T* of T is onto if and only if T
has a bounded inverse.

3 Spectrum and Point Spectrum of the Operator
A2 on Sequence Space ¢

In this section we introduce the new second order forward difference operator
Afw and compute spectrum and point spectrum of the operator Afw over space
Co.

Let u = (ug) is a either constant or strictly decreasing sequence of positive
real numbers with U = limy_,o u; # 0, and v = (v;) be a sequence of positive
real numbers such that vy # 0 for each k € Ny with V' = limg_ o, vp # 0. We
define the operator A2, on sequence space co as

2 oo .
A%, = (UnTn — Vpn—1Tp—1 + Un—2Tn_2)p—g Withz_1,2_5 =0,

where x = (z,,) € ¢o.
It is easy to verify that the operator A2

=, can be represented by the matrix

—V9 U1 0 0
2 u —v u 0
A2 = 0 1 2

2

Theorem 3.1. A2 : cog — ¢ is a bounded linear operator and |AL, | (co.c0) =

supy (|ug| + [vk—1| + |ug—2]).

Proof. Proof is simple. So we omit. O
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Note: Through out this work, we consider 1/z, where z is a complex number, as
the square root of z with non-negative real part. If Re(y/z) = 0 then 4/z represents
the square root of z with Im(y/z) > 0.

Theorem 3.2. Assume VV?2 =1V and define the set S by

Jaec. 2|(U - o]
S_{ 6(C'|v+ VVZE—4U(U = a)| = 1}'

Then spectrum of the operator A2, on sequence space cq is given by o (A2

uv?

Co) =S.

Proof. The proof of the theorem is divided into two parts.
In the first part, we show that o(A2 ,cg) C S, which we prove by contradiction.

That is assuming o € C with|v+\/f/(g_—f43ﬁ| > 1, we will show that a €

p(A2, cp). In second part, we establish the reverse inequality, i.e., S C o(AZ,, co).

Part I: Let o € C with ’%’ > 1. Clearly, @ # U and a # uy, for

each k € Ny as it does not satisfy the condition. Further, (A2, — al) reduces to
a triangle and hence has an inverse. Thus, (A2, — al)~! = (bu), where

T 0 0 0

k) 1
b= | T, BT
(up—a)(u1 —a)(uz—a) (wo—a)(us—a)  (u1—a)(ue—a) uzs—a

vnflbnfl,k - un72bn72,k
(un — @)
By Lemma 2.5, the operator (A2, —al)™! € (co, o) if

bn,k: 5 k:O,l,Z,...,n.

(1) series > po g |bnk| is convergent for each n € Ny and sup,, > pe_g |bnk| < o0.

(2) limy,— o0 |bpi| = 0 for each k € Ny.

In order to show that sup, Y, |bak| < oo, first we prove that the series
Y heo |bnk| is convergent for each n € No.

For this consider S, = Y1 _ o |bnk| = [bn,n| + [bun—1|+ -+ |bn,o|. Clearly, for
n is even, the series

1 Un—1 Un—1Un—2
S, = + +
" (un — ) (un — @) (Uup-1 — @) (un — @) (Uup-1 — a)(up—2 — @)
Up—2 VoV1 ... Un—-1

B (Up, — @) (Uup—2 — @) (ug — a)(u1 — @) ... (up, — @)
UeU2 ... Up—-1 uouU ... Up—2

T (wo—a)(uz—a) ... (un—a) " (ug—a)...(un —a)
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is convergent. Similarly for n is odd, S, is also convergent. Next we show that
sup,, Sy, is finite. Now let

_V+ VV2— 4UU - «)

V - V2= 40U - a)

and wy =

w1

2(U — «) 2U - o)
We can observe,

. . 1 —a = 1 w1) — (w
nlingo(un—a)_U—oz— 1_\/V2_4U(U_O‘)[( V)

. Un—1 __V =ay = E wi)” = (ws)*
nh—{]go (@ — ) (un_1 — ) = (U — )2 = ¢2= \/VQ— U (U — a) [( 1) ( 2) ]
nli»ngo (un — @) (Un—1 — @) (Up—2 — )  (un — a)(Up_2 — Q)

V2 U 1

= — :a3:

U—-ap (U-a)p

=o' w)]

1

Clearly, a,, = m [(w1)™ — (w2)"].
Suppose V2 = 4U (U — «) then

o= (%)=l

o0 oo
lim S, = Z|ak| = Z
n—oo

k=1 k=1

Q(U—Va)‘ < 1 and it follows from the ratio test. Therefore a ¢ S implies

which gives,

k
< 00,

2k \%4
V12U - «)

since

a, — 0. So, we may assume that V2 # 4U(U — «). Since « is not in S, we have
|wi] < 1. Now we show that |ws| < 1. Since |w;] < 1, we have

1+ /1- 4U(U - a)/V2| < @
Since |1 — /2| < |1+ /7] for any z € C, we must have
2(U —

1 - V1- 40(U - a)/V2| < %

which leads us to the fact that |ws| < 1. Taking limit both sides of S,, and since
|wi| < 1 and |we| < 1, we get

o0
lim S, = Z|Gk|
n—oo

k=1

1 o0 o0
Jw |[* + |w2|k> < 00.
e (3
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Since (S,,) is a sequence of positive real numbers and lim,,_, o, S, < 00, so sup,, S, <
0o. For n is odd,

lim |bn10|

p— lim vovl = 'vn71 _ UOUQ = "Uﬂ*l —_— . e
n—oo | (ug — a)(ug —a) -+ (up — )  (ug— a)(uz —a)- - (u, — )
Uou2 ** - Un—2
(uo — @) (un — @)
1
< lim |wy|™ 4+ lim |ws|™ | =0.
|\/V2_ 4U(U_ a)|(n~>oo| 1| n~>oo| 2| )

Thus, lim,, . |bn,o| = 0. Similarly, for n is odd, lim, e |bn,o| = 0.
Again, we can show that lim, . |by x| =0 for all k =1,2,3,.... Thus,

20U - a)
V + V22— 4UU - «)

> 1. (3.1)

(A2 —al)™! € B(cp) for a € C with ‘

Next we will show that domain of the operator (A2, — o)~ is dense in ¢q. This
statement holds if and only if range of the operator (A2, — al) is dense in c.
Since (A2, —al)™! € (cg, o), which implies that range of the operator (A2 —al)
is dense in ¢g. Hence we have

< 1} . (3.2)

20U — «)
V + V22— 4aUU - «)

o(A2, co) C {a eC: ‘

Part (IT): We now prove the reverse inequality, i.e.,

. 2(U — «)
{aec'}v + V240U - a)

< 1} Ca(A2, co). (3.3)

First we prove the inclusion (3.3) under the assumption that o # U and o # uy,
for each k € Ny, i.e., we want to show that one of the conditions of Definitions 2.1
fails. Let a € S. Clearly, (A2, — al) is a triangle and hence (A2, — al)™! exists.
So, condition (R1) is satisfied but condition (R2) fails as can be seen below:
First, let V2 = 4U(U — ), then a, = (22)[574]", which gives

V/I2(U-a)
2n 1% "
Hm |bpo| = lim ||| | = o0,
A [bno = lim | <> 26U —a)|  °

since |2(U—V_a)| > 1. So, we may assume that V2 # 4U(U — «). Suppose a € C
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. 2(U—a)
with ‘m‘ < 1. Then |w1| > 1 and |w;| > |wz| always, consequently,
lim_{by o - li ‘( )" = (w2)"
im |bno| = im |(wy)" — (w
n—oo | ™0 VVZ— 40U — a)] n—o= ! 2

lim

1
> wy " — |wa|™
RN a)|"—’°°{| 1 = fal }

1 . jwa] \"
lim |w|"q1 - — — 00,
IV/VZE= aUU — )] n—e |wr |

which gives lim,, . |bn x| # 0 for each k. Hence

2U —
(A2 —al)~! ¢ Bl(cp) for a € C with ‘ Gl < 1. (34)
V + V22— 4UU - «)
Next, we consider o € C with | 2(U—0) | = 1. Then |wi| =1 and |ws| <
V4y/V2—4U(U—a)
|w1| =1,
tim ool > 1 i { " o
11 |0p, = m < |wi| — |w
n— o0 0 |\/V2 _ 4U(U _ a)| n—oo L 2

1
= Iim <1 — |wyl|™
V/VZ— a0 — a)|n~oo{ | }
1
|VVZ2 = 40U — )]

this tells limy,_,o0 [bn,0] # 0. Thus,

2(U - a)
V + /V2—4UU - «)

(A2 —al)™! ¢ B(cp) for a € C with } = 1. (3.5)

Finally, we prove the inclusion (3.3) under the assumption that « = U and « = wy,
for each k£ € Ny. We have

(up — @)z
—voxo + (u1 — @)xq
(Aiv —al)z = UgTo — V11 + (U2 — a):vg

w11 — vas + (uz — @)x3

Case (i): If (ug) is a constant sequence, say ur = U for each k € Ny, then
(A2, —UDz =0 =z0=0,21=0,25=0,....

This shows that the operator (A2, — UI) is one to one, but R(A2, — UI) is not
dense in cy. So, condition (R3) fails. Hence U € o(A2,, o).
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Case (ii): If (uy) is a strictly decreasing sequence, then for fixed k, k > 0,

2 Vk
(AL, —ug)z =0 = x7=0,21=0,...,25-1 = 0,241 = ———— 1,
Uk+1 — Uk
Uk+1Tht1 — UKLk {’Ukvk-i-l + wp(up — Ups1) }
9

{L‘k 2 = =
* Upt2 — Uk (Ukt2 — uk) (Upt1 — Uk)

are non-zero since ry # 0 and we have chosen wuy to be a strictly decreasing
sequence. Similarly it can be shown that, for n > k + 3, x,, is non-zero by using
the expression

UnTpn — Un—-1Tn—1

(Unt1 — uk)

Tn+1 =

Hence we get non-zero solution of (A2, —wuyI)z = 0. This shows that (A2, —uyl)
is not injective. So, condition (R1) fails. Hence uy € o(A2,  co) for all k € Ny.
Hence we have

2 —
aeC: ‘ U= < 1% Co(A2Z, ). (3.6)
V + /V2—4UU - «)
From inclusions 3.2 and 3.6, we get
O’(Aiv,CO)—{OZGC: ‘ 20— o) < 1}.
V + V22— 4UU - «)

This completes the proof. O

Theorem 3.3. Point spectrum of the operator A2, on sequence space cg is

op(AZ

uv?

co) = 0, if (uk) is a constant sequence,
7 Auo,ur, ...}, if (u) is a strictly decreasing sequence.

Proof. The proof of this theorem is divided into two cases.
Case (i): Suppose (ux) is a constant sequence, say ux = U for each k € Ny.
Consider A2 z = ax for z € ¢y and z # 6, which gives

Ugxog = o

—Voxo + U1 = QX

UgTo — V1T1 + U222 = QX2
U1T] — VT2 + U3T3 = QX3

Up—2Tk—2 — Vg—1Tk—1 + ULk = QT

Let (z;) be the first non-zero entry of the sequence z = (z,,). So equation
Ury o — w1241 + Uz = axy, implies a = U, and from the equation Uz;_1 —
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nxy + Uiy = axyy1, we get x4 = 0, which is a contradiction to our assumption.
Therefore
2 _
UP(AUU7 CO) - (Z)

Case (ii): Suppose (uy,) is a strictly decreasing sequence. Consider A2 z = ax
for x € ¢y and x # 6, which gives system of equations (3.7).
If a = ug, then

Vo Vo1 + uo(up — u1)

rN = -—-7 €To =
P ur —wo) T (wn — o) (uz — ug)

Zo,

are non-zero, since wuy is a strictly decreasing sequence and by taking zy # O.
Similarly, it can be shown that, for n > 3, z,, is non-zero by using the expression
UnTn — Upn—-1Tn—1

for all n > 2.
(Uns1 — uo)

InJrl - 9

Hence we get non-zero solution of (A2, — ugl)z = 0.

If @ = uyg, for all & > 1, then solving system of equations, we get g = 0,21 =
Vi
Ug41— Uk

0,...,25-1 =0, 41 = Tg,

_ Ug41Tk+1 — URTE {'Ukkarl + ug(ug, — Uk+1)}
Tp+2 = - ;
U2 — Uk (kg2 — uk) (Upg1 — ug)

is non-zero, since uy, is strictly decreasing sequence and by taking zj # 0. Similarly,
it can be shown that, for n > k 4+ 3, x,, is non-zero by using the expression

UnTp — Un—-1Tn—1

(Unt1 — uk)

Tpy1 = , foralln>k+ 2.

Hence we get non-zero solution of (A2, —uyI)z = 0. This shows that (A2, —uyT) is
not injective. So, condition (R1) fails. we get non-zero solution of (A2, —al)x = 0.
Thus,

O—P(Afuﬂ CO) = {U’Ou U, U2, . - - }

This completes the proof. O

4 Point Spectrum of the Adjoint Operator A% of
A2 on Dual Sequence Space ¢,

Let T': X — X be a bounded linear operator having matrix representation A
and the dual space of X is denoted by X*. Again, let T* be its adjoint operator
on X*. Then the matrix representation of T* is the transpose of the matrix A.

Theorem 4.1. Point spectrum of the adjoint operator A% over ¢ is

2|(U — a)
IV + /VZ— 4U(U — a) = 1}'

ap(Aif),cg) = {oz eC:
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Proof. If A% f = af for 0 # f € ¢ 22 11, where

ug —7Yo Up 0 0 .fO
0 Ul —U1 ul 0 N f1
A?;j — 0 0 uo —Vg Uo - and f _ fg
0 0 0 us —vV3 ... f3
Consider the system of linear equations
uo fo — vof1 +uof2 = afo
uifi —vife+uifs =afi
uzfo —vafs +usfa = afo (4.1)

Solving the system of linear equations (4.1) in terms of fo and f1, we obtain
for k > 2,

fe = (=1)*(bk_1.0f1 — br_1.1f0) (o = Uo)(;%o;ll?). uk_(j — ukfl),

where by—1,0 and by_; 1 are defined as in last section. For @ = o1 + i € C
and u = (uy) is a constant or strictly decreasing positive real sequence, we get for
n=0,1,...,k—2

’a—un

Un

Then

a—U|k-1
- ’ o —U.

[fi] < |bk—1,0f1 — bk—1,1f0|‘

1

— we obtain
w1

Taking limit on both sides and choosing fo =1 and f1 =



68 Thai J. Math. 9 (2011)/ B.L. Panigrahi and P.D. Srivastava

: : a—U k-1
k1LH;o|fk| < klingo |akf1_ak71f0|} ’ lo = U|
ko k£ (o=l _ —1
—  lim [(wi —w3)f1 — (wy wz f0|’ ’ U - qf
k—oo |\/V2 —4U(U — )
|w2|k_1|w1 — ’LU2| U — k-1
= lim ’ ’ |U — «f
k—o0 |w1||\/V2—4U(U—o¢)| U
. |weFTN U — okt
= 1 4.2
oo wn| | U (4.2)
We have the relation
— 2(U — 2(U — 1
U—-a _ (U —«) " (U -« _ 43

U V+/V2—4UU-a) V—/V2-4UU —a) wiw
Then using (4.3) in (4.2), we obtain

|w2|k—1

I < 1 = 1
Jm el = Jim = |w1w2|k (el PP

: 2|(U— o) 1
If « € C with = V+\/V2 WO < 1, then ] < 1. By Cauchy root test
limy oo | f5]F < o < 1. Hence Y oneo | k| converges.

Conversely, we have to show that >°.~ | fx| converges implies ‘—1‘ < 1. This

is equivalent to show that ‘ 7 = 1 implies > oo | x| diverges. To prove this, we
write another representation of fr in terms of fr_1 and fr_o from the system of
equation (4.1) as

Jr= (w)fk 2+(

Uk—2

)fk,l for all k > 2.

Hence, dividing both sides by fx, we obtain

=1

a—ug—2\ fr—2 fr-1 Vk—2\ fr-1
() o)

Up—2 / fr—1 fr up—2/ fr

f’;.;l = L, we obtain a quadratic

() (5o

Solving the above equation, we get two roots as

Taking limit both sides and denoting limy_, oo
equation,

V+/V2—4U(U — «)
2(U — a)

V- /V2-4U(U —a)

L= )

and LQ =



Spectrum and Fine Spectrum of Generalized Second Order Difference ... 69

Now we describe some cases:
. 1 1
(l) If1< m < W, then

1 1
lim L gy [ ‘ ‘_‘:—>1.
k—oo |fr—1|  k—ool fr—1 Ly w1 |
1 ‘ 1
= |—|=—>1
’ LQ |U)2|
Hence by ratio test, series Y- | fx| diverges.
(ii) If 1 < g = 7, then
1 1
k—oo | fe—1|  k—ool fr_1 Ly |w |
= | ! |- Lo
L2 |w2| ’
}.I.e'nce by ratlio test,1 series >~ | fi| diverges.
(lll) Iflzm < W
1 1
tim 25— i i‘ = || =or =1
k—oo | fr—1|  k—ool fr_1 Ly |wi]
1 } 1
= |—|=—>1
‘ LQ |U)2|
Thus ratio test fails for one case. In this case, we take f = (fi) in such a way that it
is an increasing sequence of positive real numbers and limy_, | f;{ k - | = 1. Clearly,
f = (fx) is a divergent sequence and consequently series >~ | fx| diverges.
(iv) If 1 = ﬁ = ﬁ Here also ratio test fails for both the expression for

L. Thus by choosing as same way in (iii), we able to prove that series Y - ||
diverges. This completes the proof. O

5 Residual and Continuous Spectrum of the Op-
erator A2 on Sequence Space ¢

Define two sets S; and Sy as,

81—{a6(C: 2lU — o <1},
IV +/V2—4UU — o)
and
Sg—{&GC: 2lU — o _1}.
[V +/V2— 4U(U - a)|
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Theorem 5.1. Residual spectrum o,.(A2,, co) of the operator A2, over cq is

| S if (uk) is a constant sequence,

2
Tr(Biuwsc0) = { S\ {uo,ut, ...}, if (ug) is a strictly decreasing sequence.

uv?

Proof. The proof of the theorem is divided into two cases.

Case (i): Let (ug) be a constant sequence, say ur = U for each k € Ny. For
a € Cwith 2|U — af < |V + /V2— 4U(U — a)|, the operator (A%, — al) is
a triangle except o = U and consequently (A2 — al) has an inverse. Further by
Theorem 3.3, the operator (A2, — al) is one to one for « = U and hence has an
inverse.

By Theorem 4.1, the operator (A2, — al)* = A2* — al is not one to one for

. 2lU— «f
a € C with [V +4/V2—4U(U- o)

(A2 — al) is not dense in cg. Thus,

< 1. Hence by Lemma 2.6, range of the operator

UT(AiU,Co)—{QECZ 20U - o < 1}.
[V + V22— 4UU - a)|

Case (ii): Let (ug) be a strictly decreasing sequence. For a € C such that

21U — «f
IV + /V2— 4U(U - a)|

< 1,

the operator (A2, — al) is a triangle except for a = wuy for all k& € Ny and
consequently the operator (A2, —al) has an inverse. Further by Theorem 3.3, the
operator (A2, —al) is not one to one for o = uy, for all k € Ny. So, (A2 —al)™?
does not exist.

On the basis of argument as given in Case (i), it is easy to verify that the
range of the operator (A2, — al) is not dense in cg. Thus,

21U — «
o (A2, c —{ae(C: <1} UQ, UL, Uy - -« |-
(B o) vV + V2= 40U - a)| Moz}

O

Theorem 5.2. Continuous spectrum a.(A2, . co) of operator A2, over cq is

uv’

| Sa, if (ur) is a constant sequence,

2
Oe(Buw: C0) = { Sa \ {uo,u1, ...} if (ug) is a strictly decreasing sequence.

uv?

Proof. The proof of this theorem is divided into two cases.
Case (i): Let (ug) be a constant sequence, say ur = U for each k € Ny.

. 2|U— «f _
For o € C with T

because a # U and has an inverse. The operator (A2, — «l)~! is discontinuous
by statement (3.5). Therefore, the operator (A2, — ) has an unbounded inverse.

1, the operator (A2, — «al) is a triangle
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By Theorem 4.1, the operator (A2, — al)* is one to one for a € C with
2|U— «f

|V +4/V2—4U(U- a)|

is dense in ¢g. Thus,

21U — «
0(A2,,c0) = {a eC: |2 = | = = 1}.
|V + V2 —4UU - a)

= 1. Hence by Lemma 2.6, range of the operator (A%, —al)

Case (ii): Let (ug) be a strictly decreasing sequence. For a € C such that
20— «

v+ \/VIL 4U‘(U7 )
for all k € Ny and consequently the operator (A2, — al) has an inverse. Further
by Theorem 3.3, the operator (A2, — al) is not one to one for a = uy, for all
k € No. So, (A2, —al)~! does not exist.

On the basis of argument as given in Case (i), it is easy to verify that the
range of the operator (A2 — al) is dense in cg. Thus,

= 1, the operator (A2 — «l) is a triangle except for o = uy,

21U — «f
CAfw,c :{ae(C: 21} UQy UL, Uy - - - |-
7ol B o) V + JVE— 4U(U - a)| Vo,

O

6 Fine Spectrum of the Operator A2 on Sequence
Space ¢

. 2|U— o 2
Theorem 6.1. If o satisfies TN Ty > 1, then (A7, —al) € A;.

Proof. 1t is required to show that the operator (A2 — al) is bijective and has

2|(U— o] :
Va0 o] > 1. Since a # U, therefore

the operator (A2 — al) is a triangle. Hence it has an inverse. The operator
2|(U— o)
IV +4/V2—4U(U- a)|

an inverse for a € C with

(A% —al)™! is continuous for @ € C with

(3.1). Also the equation

> 1 by statement

(A2 —al)x =ygivesz = (A% —al) tyie,z, = (A2, —al) 'y,),n € No.
Thus , for every y € ¢y, we can find x € ¢y such that
(A2 — al)x =y, since (A2, —al)™! € (co, co).

This shows that the operator (A2, —al) is onto and hence (A2, —al) € A;. This
completes the proof. O

Theorem 6.2. Let (uy) be a constant sequence, say uxp, = U and o« = U. Then
o€ Cld(A2 CQ).

uv)
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Proof. We have

op(AZ ct) = {aE(C:2|(U— Q)| < |V + V2 - 4U(U — a)|}.

For a = U, the operator (A2 —al)* is not one to one. By Lemma 2.6, R(A2 —al)
is not dense in ¢y. Again by Theorem 3.3, since a = U does not belong to the set
op(AZ, . co), therefore the operator (A2, — «f) has an inverse.

Next, we show that the operator (A2 — al)~! is continuous. By Lemma 2.7,
it is enough to show that (A2, — «l)* is onto, i.e., for given y = (y,) € cf, we can
find z = (z,,) € ¢ such that (A2, —al)*z = y. Now, (A2, —Ul)*z =y, i.e.,

—vox1 +Ux2 = 4o
—vize +Uxz = 1
—vi—1%; + Uz = Yioa

Thus, —vp—1Zy + Upq1 = yn—1 for all n > 1 which implies Y7 |z,| < oo,
since y € l;. This shows that the operator (A2 — al)* is onto and hence o €
Cld(Afw,Co). O

Theorem 6.3. Let (uy) be a constant sequence, say u, = U and o # U, a €
or(A2 o). Then a € Ca0(A2,, o).

uv?

Proof. Since a # U, therefore the operator (A2 — o) is a triangle. Hence it has
an inverse. For U # a € C with 2|(U — )| < |V + /V2— 4U(U — a)|, the
operator (A2 — al)~! is discontinuous by statement (3.4). Thus, (A2, — o) is
injective and (A%, — al)~! is discontinuous.

Again by Theorem 4.1, the operator (A2 — al)* is not one to one for a € C
with 2|(U — )] < |V + /V2— 4U(U — «)|. But Lemma 2.6 yields the fact
that range of the (A2 — «l) is not dense in ¢ and a € Caa (A2 cp). O

Theorem 6.4. Let (uy) be constant sequence. If |U| < |vg| for each k, then
U e Cio(A2,,co). If [U| > |vg| for each k, then U € Cya (A2, o).

uv?

Proof. If a = U, then by Theorem 5.1 (A2 — ol) is in state C; or Ca. A left
inverse of A2 is
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The matrix B is in B(cg) for |U| < |vg| and is not in B(co) for |U| > |vg|, k € Ny .
That is (A2, — UT) has a continuous inverse for |U| < |vg|, k € Ny but it does not
have a continuous inverse for |U| > |v|, k € Ng. Therefore, U € C10(A2,,co) for
|U| < |vg|, k € Ng, and U € Ca0(A2,,¢co) for |U| > |vk|, k € Ny. This completes

the proof. O

Theorem 6.5. Let (ug) be a strictly decreasing sequence and o € o,.(A2, . co).

Then o € Coo (A2, o).
Proof. We have,

2|(U - a)
IV + V22— 4U(

or(Afw,co)z{aEC: < 1}\{u0,u1,uQ,...}.
U- o

Since a # wuy, for all k, therefore the operator (A%, — al) is a triangle. Hence it

2|(U— o) .
Vi V00— )] < 1, the inverse of the

operator (A2, — al) is discontinuous by statement 3.4. Thus (A2, — o) injective
and (A2, — al)~! is discontinuous.

On the basis of argument as given in Theorem 6.3, it is easy verify that the
range of the operator (A2, —al) is not dense in ¢g and hence a € Co0(A2,,¢). O

has an inverse. For uy # o € C with
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