On the Union of Graded Prime Submodules

Farkhonde Farzalipour ${ }^{\dagger}$ and Peyman Ghiasvand ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, Payame Noor University (PNU), Langroud, Iran
e-mail: f.farzalipour@guilan.ac.ir
${ }^{\ddagger}$ Department of Mathematics, Payame Noor University (PNU), Manjil 1161, Iran
e-mail : p_ghiasvand@pnu.ac.ir

Abstract

Let G be a group with identity e. Let R be a G-graded commutative ring, and let M be a graded R-module. In this paper, we investigate finite and infinite union of graded submodules of a graded R-module M. Also, we give a number of results concerning the union of graded prime submodules.

Keywords : Graded multiplication, Graded prime.
2010 Mathematics Subject Classification : 13A02; 16W50.

1 Introduction

Let G be a group with identity e. A ring (R, G) is called a G-graded ring if there exists a family $\left\{R_{g}: g \in G\right\}$ of additive subgroups of R such that $R=\bigoplus_{g \in G} R_{g}$ such that $1 \in R_{e}$ and $R_{g} R_{h} \subseteq R_{g h}$ for each g and h in G. For simplicity, we will denote the graded ring (R, G) by R. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M=\bigoplus_{g \in G} M_{g}$ such that for all $g, h \in G ; R_{g} M_{h} \subseteq M_{g h}$. An element of some R_{g} or M_{g} is said to be homogeneous element. A submodule $N \subseteq M$, where M is G-graded, is called G-graded if $N=\bigoplus_{g \in G}\left(N \cap M_{g}\right)$ or if, equivalently, N is generated by homogeneous elements. Moreover, M / N becomes a G-graded module with g component $(M / N)_{g}=\left(M_{g}+N\right) / N$ for $g \in G$. We write $h(R)=\cup_{g \in G} R_{g}$ and $h(M)=\cup_{g \in G} M_{g}$. A graded ideal I of R is said to be graded prime ideal if $I \neq R$;

Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.

and whenever $a b \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. A graded ideal I of R is said to be graded maximal if $I \neq R$ and there is no graded ideal J of R such that $I \nsubseteq J \nsubseteq R$. A graded ring R is called graded local if it has a unique graded maximal ideal. A proper graded submodule N of a graded R-module M is called graded prime if $r m \in N$, then $m \in N$ or $r \in(N: M)$, where $r \in h(R), m \in h(M)$. A graded module M over a G-graded ring R is called to be graded finitely generated if $M=\sum_{i=1}^{n} R x_{g_{i}}$ where $x_{g_{i}} \in h(M)$. A graded R-module M is called graded cyclic if $M=R x_{g}$ where $x_{g} \in h(M)$. A graded module M over a G-graded ring R is called to be graded multiplication if for each graded submodule N of $M ; N=I M$ for some graded ideal I of R. One can easily show that if N is graded submodule of a graded multiplication module M, then $N=(N: M) M$ (see [3]). Similar to non graded case, a graded multiplication module has a graded maximal ideal. Let R be a G-graded ring and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1} R$ is a graded ring which is called the graded ring of fractions. Indeed, $S^{-1} R=\bigoplus_{g \in G}\left(S^{-1} R\right)_{g}$ where $\left(S^{-1} R\right)_{g}=\{r / s: r \in R, s \in S$ and $g=(\text { degs })^{-1}($ degr $\left.)\right\}$. Let M be a graded module over a graded ring R and $S \subseteq h(R)$ be a multiplicatively closed subset of R. The module of fraction $S^{-1} M$ over a graded ring $S^{-1} R$ is a graded module which is called the module of fractions, if $S^{-1} M=\bigoplus_{g \in G}\left(S^{-1} M\right)_{g}$ where $\left(S^{-1} M\right)_{g}=\{m / s: m \in M, s \in S$ and $g=(\text { degs })^{-1}($ degm $\left.)\right\}$. Consider the graded homomorphism $\eta: M \longrightarrow S^{-1} M$ defined by $\eta(m)=m / 1$. For any graded submodule N of M, the submodule of $S^{-1} M$ generated by $\eta(N)$ is denoted by $S^{-1} N$. Similar to non graded case, one can prove that $S^{-1} N=\left\{\beta \in S^{-1} M: \beta=m / s\right.$ for $m \in N$ and $\left.s \in S\right\}$ and that $S^{-1} N \neq S^{-1} M$ if and only if $S \cap(N: M)=\emptyset$. Let P be any graded prime ideal of a graded ring R and consider the multiplicatively closed subset of $S=h(R)-P$. We denote the graded ring of fraction $S^{-1} R$ of R by R_{P}^{g} and we call it the graded localization of R. This ring is graded local with the unique graded maximal ideal $S^{-1} P$ which will be denoted by $P R_{P}^{g}$. Moreover, R_{P}^{g}-module $S^{-1} M$ is denoted by M_{P}^{g}. For graded submodules N and K of M, if $N_{P}^{g}=K_{P}^{g}$ for every graded prime (graded maximal) ideal P of R, then $N=K$.

If K is a graded submodule of $S^{-1} R$-module $S^{-1} M$, then $K \cap M$ will denote the graded submodule $\eta^{-1}(K)$ of M. Moreover, similar to the non graded case one can prove that $S^{-1}(K \cap M)=K$. In this paper, we study unions of graded submodules of a graded R-module M. For example, we show that a graded multiplication module is a ugp-module.

2 The Union of Graded Prime Submodules

Let $N_{1}, N_{2}, \ldots, N_{n}$ be graded submodules of a graded R-module M, we call a covering $N \subseteq N_{1} \cup N_{2} \cup \cdots \cup N_{n}$ efficient if N is not contained in the union of any $n-1$ of the graded submodules $N_{1}, N_{2}, \ldots, N_{n}$. We say that $N=N_{1} \cup N_{2} \cup \cdots \cup N_{n}$ is an efficient union, if non of the N_{k} may be excluded.

Similar to non graded case, if N, N_{1}, N_{2} are graded submodules of a graded R-module M such that $N \subseteq N_{1} \cup N_{2}$, then $N \subseteq N_{1}$ or $N \subseteq N_{2}$ (see [5]). Hence a
covering of a graded submodule by two graded submodules is never efficient.
The following Lemma is known, but we write it here for the sake of references.
Lemma 2.1. Let M be a graded module over a graded ring R. Then the following hold:
(i) If I and J are graded ideals of R, then $I+J$ and $I \cap J$ are graded ideals.
(ii) If N is a graded submodule, $r \in h(R)$ and $x \in h(M)$, then $R x, I N$ and $r N$ are graded submodules of M.
(iii) If N and K are graded submodules of M, then $N+K$ and $N \cap K$ are also graded submodules of M and $(N: M)$ is a graded ideal of R.
(iv) Let N_{λ} be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodues of M.

Lemma 2.2. Let R be a G-graded ring and M a graded R-module and $N a$ graded submodule of M. Let $N=N_{1} \cup N_{2} \cup \cdots \cup N_{n}$ be a efficient union of graded submodules of M, for $n>1$. Then $\bigcap_{j \neq k} N_{j}=\bigcap_{j=1}^{n} N_{j}$ for all $1 \leq k \leq n$.

Proof. It is straightforward.
Lemma 2.3. Let R be a G-graded ring and M a graded R-module and N a graded submodule of M. Let $N \subseteq N_{1} \cup N_{2} \cup \cdots \cup N_{n}$ be a efficient covering concisely of graded submodules of M, for $n>1$. If $\left(N \bigcap N_{j}: N\right) \nsubseteq\left(N \cap N_{k}: N\right)$ for all $1 \leq k \leq n$, then no N_{j}, for $j \in\{1,2, \ldots, n\}$, is a graded prime submodule.

Proof. Clearly, by hypothesis, $N=\left(N \cup N_{1}\right) \cdots\left(N \cup N_{n}\right)$ is an efficient union. Moreover, by Lemma 2.2, $\bigcap_{j \neq k}\left(N \bigcap N_{j}\right)=\bigcap_{j=1}^{n}\left(N \bigcap N_{j}\right) \subseteq N \bigcap N_{k}$. Let N_{k} be a graded prime submodule of M. Now we show that $N \bigcap N_{k}$ is a graded prime submodule of N. If $r_{g} n_{h} \in N \bigcap N_{k}$ and $n_{h} \notin N \bigcap N_{k}$ where $r_{g} \in h(R)$ and $n_{h} \in h(N)$, then $r_{g} n_{h} \in N_{k}$ and $n_{h} \notin N_{k}$ and so $r_{g} M \subseteq N$. It follows that $N \bigcap N_{k}$ is a graded prime submodule and so $\left(N \bigcap N_{k}: N\right)$ is a graded prime ideal of R by [2, Proposition 2.7]. Since $\left(N \cap N_{j}: N\right) \nsubseteq\left(N \cap N_{k}: N\right)$ whenever $j \neq k$, we get that $\left(N \bigcap N_{1}: N\right) \cdots\left(N \bigcap N_{k-1}: N\right)\left(N \bigcap N_{k+1}: N\right) \cdots\left(N \bigcap N_{n}\right.$: $N) \nsubseteq\left(N \cap N_{k}: N\right)$ by [4, Proposition 1.4]. Therefore there exist $r \in\left[\left(N \cap N_{1}\right.\right.$: $\left.N) \cdots\left(N \bigcap N_{k-1}: N\right)\left(N \bigcap N_{k+1}: N\right) \cdots\left(N \bigcap N_{n}: N\right)\right]-\left(N \bigcap N_{k}: N\right)$ and so there exists $n \in N$ such that $r n \notin N \bigcap N_{k}$, but every $j \neq k, r n \in N \bigcap N_{j}$ which contracts to be $\bigcap_{j \neq k}\left(N \bigcap N_{j}\right)=\bigcap_{j=1}^{n}\left(N \bigcap N_{j}\right) \subseteq N \bigcap N_{k}$. Therefore, no N_{k} is a graded prime submodule.

Theorem 2.4. Let M be a graded R-module. Let $N_{1}, N_{2}, \ldots, N_{n}$ be graded submodules of M, and N a graded submodule of M such that $N \subseteq N_{1} \cup N_{2} \cup \cdots \cup N_{n}$. Assume that at most two of the $N_{k} s$ are not graded prime and $\left(N \cap N_{j}: N\right) \nsubseteq$ $\left(N \cap N_{k}: N\right)$ whenever, $j \neq k$. Then $N \subseteq N_{i}$ for some i.

Proof. We may assume that the covering is efficient without loss of generality. Then $n \neq 2$. By Lemma $2.2, n \leq 2$. Hence $n=1$, and so $N \subseteq N_{i}$ for some i.

Definition 2.5.

(i) Let M be a graded R-module and N a graded submodule of $M . N$ is called ug-submodule of M provided N contained in a finite union of graded submodules must be contained one of those graded submodules. M is called $u g$-module if every graded submodule of M is a ug-submodule.
(ii) Let M be a graded R-module and N a graded submodule of $M . N$ is called ugp-submodule of M provided N contained in a finite union of graded prime submodules must be contained one of those graded prime submodules. M is called ugp-module if every graded submodule of M is a ugp-submodule.
(iii) Let M be a graded R-module and N a graded submodule of $M . N$ is called ugm-submodule of M provided N contained in a finite union of graded maximal submodules must be contained one of those graded submodules. M is called ugm-module if every graded maximal submodule of M is a ugmsubmodule.

Theorem 2.6. Let M be a graded finitely generated R-module. Then M is ugmmodule if and only if every graded submodule N in M such that $N \subseteq \bigcup_{i=1}^{n} P_{i}$ where $P_{i}^{\prime} s$ are graded prime submodules implies that $N+P_{i} \neq M$ for some i.

Proof. Let M be a graded finitely generated ugm-module. Suppose that N be a graded submodule of M such that $N \subseteq \bigcup_{i=1}^{n} P_{i}$ where $P_{i} s$ are graded prime submodules of M. By [1, Lemma 2.7] for each P_{i}, choose a graded maximal submodule M_{i} containing P_{i}. Then $N \subseteq \bigcup_{i=1}^{n} M_{i}$ and so $N \subseteq M_{i}$ by hypothesis. Since $P_{i} \subseteq M_{i}$, we have $N+P_{i} \subseteq M_{i} \neq M$.

Conversely, let N be a graded submodule of M such that $N \subseteq \bigcup_{i=1}^{n} M_{i}$ where $M_{i} s$ are graded maximal submodules of M. Then $N+M_{i} \neq M$ for some i by hypothesis. Therefore, since $M_{i} \subseteq N+M_{i} \varsubsetneqq M$, then $N+M_{i}=M_{i}$, so $N \subseteq M_{i}$ for some i. The proof is completed.

Proposition 2.7. Let R be a G-graded ring and M a graded R-module and $S \subseteq$ $h(R)$ a multiplicatively closed subset of R such that $S \bigcap p=\phi$, for every graded prime ideal p of R.
(i) M is a ugp-module if and only if $S^{-1} M$ is a ugp-module.
(ii) M is a ugm-module if and only if $S^{-1} M$ is a ugm-module.

Proof. Let M be ugp-module. Let $K \subseteq Q_{1} \bigcup Q_{2} \bigcup \cdots \bigcup Q_{n}$ where K is a graded submodule of $S^{-1} M$ and $Q_{1}, Q_{2}, \ldots, Q_{n}$ are graded prime submodules of $S^{-1} M$. So $K=S^{-1} N$ and $Q_{1}=S^{-1} P_{1}, \ldots, Q_{n}=S^{-1} P_{n}$, where N is a graded submodule of $M, P_{1}, P_{2}, \ldots, P_{n}$ are graded prime submodules of M, then $N \subseteq P_{1} \cup P_{2} \cup \cdots \cup P_{n}$, because if $x \in N$, then $x=\sum_{g \in G} x_{g}$ where $x_{g} \in N \bigcap M_{g}$. So for any $g \in G$; $x_{g} \in N$. Hence for any $g \in G ; x_{g} / 1 \in S^{-1} N$, so $x_{g} / 1 \in S^{-1}\left(P_{1} \cup \cdots \cup P_{n}\right)$, hence $x_{g} / 1=p / s$ for some $p \in P_{1} \bigcup \cdots \bigcup P_{n}$ and $s \in S$. So there exists $1 \leq k \leq n$ such that $p \in P_{k}$. Therefore, $t s x_{g}=p t \in P_{k}$ for some $t \in S$. Thus $x_{g} \in P_{k}$ since $t s \notin$
$\left(P_{k}: M\right)$ and P_{k} is a graded prime submodule of M, so $N \subseteq P_{1} \bigcup P_{2} \bigcup \cdots \bigcup P_{n}$, since M is ugp-module; $N \subseteq P_{i}$ for some i. Then $S^{-1} N \subseteq S^{-1} P_{i}$, as needed.

Conversely, let $S^{-1} M$ be a ugp-module. Let $N \subseteq P_{1} \cup \cdots \bigcup P_{n}$ where N is a graded submodule of M and $P_{i}^{\prime} s$ are graded prime submodules of M. Hence $S^{-1} N \subseteq S^{-1}\left(P_{1} \bigcup \cdots \bigcup P_{n}\right) \subseteq S^{-1} P_{1} \bigcup \cdots \bigcup S^{-1} P_{n}$. So $S^{-1} N \subseteq S^{-1} P_{i}$ for some i since $S^{-1} M$ is a ugp-module. So similar to the above proof, $N \subseteq P_{i}$. Therefore M is ugp-module.
(ii) Similar to (i).

Theorem 2.8. Every graded multiplication module is a ugp-module.
Proof. Let M be a graded multiplication module. Let N be a graded submodule of M such that $N \subseteq P_{1} \bigcup P_{2} \bigcup \cdots \bigcup P_{n}$ where at least $n-2$ of $P_{1}, P_{2}, \ldots, P_{n}$ are graded prime submodules. We may assume that the covering is efficient. Then $\left(P_{j}: M\right) \nsubseteq\left(P_{k}: M\right)$ whenever, $j \neq k$. Otherwise $\left(P_{j}: M\right) \subseteq\left(P_{k}: M\right)$, then $P_{j}=\left(P_{j}: M\right) M \subseteq\left(P_{k}: M\right) M=P_{k}$, a contradiction. Hence $N \subseteq P_{k}$ for some k. This result implies that M is a ugp-module.

Definition 2.9. By a chain of graded prime submodules of a graded R-module M we mean a finite strictly increasing sequence $P_{1} \subseteq \cdots \subseteq P_{n}$; the graded dimension of this chain is n. We define the graded dimension of M to be the supremum of the lengths of all chains of graded prime submodules in M.

Let M be a graded module over a G-graded ring R. Now consider the subset $T(M)$ of M is defined by $T(M)=\{m \in M: r m=0$ for some $0 \neq r \in h(R)\}$. If R is a graded integral domain, then $T(M)$ is a graded submodule of M (see [1]). If $T(M)=0$, then M is called graded torsion free and if $T(M)=M$, then M is called graded torsion.

Theorem 2.10. Let M be a graded finitely generated R-module. Let M be a graded torsion free module with dimension 1, then M is a ugp-module if and only if M is a ugm-module.

Proof. Let M be a $u g p$-module. Since every $u g p$-module is a ugm-module, so M is a ugm-module.

Conversely, let M be a $u g m$-module. Since M is a graded torsion free, 0 is a graded prime submodule by [1, Proposition 2.6]. Let N be a non-zero graded submodule of M such that $N \subseteq P_{1} \bigcup P_{2} \bigcup \cdots \bigcup P_{n}$ where $P_{i}^{\prime} s$ are graded prime submodule of M. We may assume that $P_{i} \neq 0$ for all $i \in\{1,2, \ldots, n\}$. By Theorem 2.6, $N+P_{i} \neq M$ for some i. There exists a graded maximal submodule of M such that $N+P_{i} \subseteq M_{i}$ by [1, Lemma 2.7]. Since the graded dimension of M is 1 ; $P_{i}=M_{i}$. Consequently, $N \subseteq P_{i}$.

Definition 2.11. Let R be a G-graded ring and M a graded R-module and $S \subseteq$ $h(R)$ a multiplicatively closed subset of R. A non empty subset S^{*} of $h(M)$ is said to be graded S-closed if se $\in S^{*}$ for every $s \in S$ and $e \in S^{*}$.

Theorem 2.12. Let $S \subseteq h(R)$ be a multiplicatively closed subset of graded ring R and S^{*} be a graded S-closed of a graded R-module of M. Let N be a graded submodule of M which is graded maximal in $M-S^{*}$. If the graded ideal $(N: M)$ is graded maximal in $R-S$, then N is a graded prime submodule of M.

Proof. Assume that $r_{g} \notin(N: M)$ and $m_{h} \notin N$ for some $r_{g} \in h(R)$ and $m_{h} \in$ $h(M)$ but $r_{g} m_{h} \in N$. Then there exist $s^{*} \in M$ and $r^{*} \in R$ such that $s^{*} \in$ $\left(N+R m_{h}\right) \bigcap S^{*}$ and $r^{*} \in\left((N: M)+R r_{g}\right) \bigcap S$. Therefore $r^{*} s^{*} \in(N: M)+$ $\left.R r_{g}\right)\left(N+R m_{h}\right)=(N: M) N+(N: M) R m_{h}+R r_{g} N+R r_{g} R m_{h} \subseteq N$. So $r^{*} s^{*} \in N \cap S^{*}$. This is a contradiction with $N \bigcap S^{*}=\emptyset$

Lemma 2.13. Let M be a graded multiplication module. Let $P_{i}(i \in I)$ be a collection graded prime submodules of M with $\left(P_{i}: M\right)=p_{i}$ for any i and $M-$ $S^{*}=\bigcup_{i \in I} P_{i}$ where $R-S=\bigcup_{i \in I} p_{i}$. If N is a graded maximal submodule in $M-S^{*}$, then N is a graded prime submodule of M.

Proof. Let N be graded maximal submodule in $M-S^{*}$. Then the ideal $(N: M)$ is graded maximal in $R-S$. Otherwise, if $(N: M) \varsubsetneqq T \subseteq \bigcup_{i} p_{i}$ where T is a graded ideal of R, then $N=(N: M) M \varsubsetneqq T M \subseteq \bigcup_{i \in I} P_{i}$ which contradicts the presume that N is graded maximal in $M-S^{*}$. Then N is graded prime submodule of M by Theorem 2.12.

Definition 2.14. Let M be a graded R-module and N a graded submodule of $M . N$ is called graded compactly packed by graded prime submodules if whenever N is contained in the union of a family of graded prime submodules of M, N is contained in one of the graded prime submodules of the family. M is called graded compactly packed by graded prime submodules if every graded submodule of M is graded compactly packed by graded prime submodules.

Theorem 2.15. Let M be a graded multiplication module. Then M is graded compactly packed by graded prime submodules if and only if every graded prime submodule of M is a graded compactly packed by graded prime submodules.

Proof. It is clear that if M is graded compactly packed by graded prime submodules, then every graded prime submodule of M is graded compactly packed.

Conversely, suppose that every graded prime submodule of M be graded compactly packed by graded prime submodules. Let $N=\bigcup_{i=1}^{n} P_{i}$ where N is a graded submodule of M and $P_{i}^{\prime} s$ are graded prime submodules of M. Let L be a graded maximal submodule of M such that $N \subseteq L \subseteq \bigcup_{i=1}^{n} P_{i}$, then L is graded prime submodule of M by Lemma 2.13. Then $N \subseteq L \subseteq P_{i}$ for some i by hypothesis.

Let N be a graded submodule of a graded R-module M. The graded radical of M, denoted by $g r-\operatorname{rad}(N)$, is defined to be intersection of the graded prime submodules of M if such exist, and M otherwise (see [2]).

Theorem 2.16. Let M be a graded multiplication module. Then M is graded compactly packed by graded prime submodules if and only if every graded prime submodule of M is graded radical of a graded cyclic submodule.

Proof. Let M be graded compactly packed by graded prime submodules. Suppose that N be a graded prime submodule of M and not a graded radical of a graded cyclic submodule of M. Let $n=\sum_{g \in G} n_{g} \in N$. Since for each $n_{g} \in N$; $N \neq g r-\operatorname{rad}\left(R n_{g}\right)$ and since $g r-\operatorname{rad}(N)$, is the intersection of all the graded prime submodules of M which contains $n_{g}(g \in G)$, there is a graded prime submodule $P_{n_{g}}$ such that $n_{g} \in P_{n_{g}}$ but $N \nsubseteq P_{n_{g}}$. It is clear that $N \subseteq \bigcup_{n_{g}} P_{n_{g}}$, a contradiction. On the other hand, suppose that every graded prime submodule of M is the graded radical of a graded cyclic submodule of M. Let $N=\bigcup_{i \in I} P_{i}$ where N and $P_{i}(i \in I)$ are graded prime submodules of M and $N=g r-\operatorname{rad}\left(R n_{g}\right)$ for some $n_{g} \in h(M)$. Then $n_{g} \in \bigcup_{i \in I} P_{i}$ and so $n_{g} \in P_{i}$ for some $i \in I$. Therefore $N=g r-\operatorname{rad}\left(R n_{g}\right) \subseteq P_{i}$. Then M is graded compactly packed by graded prime submodules by Theorem 2.15.

Acknowledgements : The authors would like to thank the referees for his comments and suggestions on the manuscript.

References

[1] S. Ebrahimi Atani, F. Farzalipour, Notes On the graded prime submodules, Int. Math. Forum 1 (38) (2006) 1871-1880.
[2] S. Ebrahimi Atani, F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007) 371-378.
[3] S. Ebrahimi Atani, F. Farzalipour, On graded multiplication modules, (Submitted).
[4] M. Refaei, K. Alzobi, On graded primary ideals, Turkish. J. Math. 28 (2004) 217-229.
[5] R.Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.
(Received 5 March 2010)
(Accepted 5 November 2010)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

