Thai Journal of Mathematics Volume 9 (2011) Number 1 : 49–55

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

On the Union of Graded Prime Submodules

Farkhonde Farzalipour † and Peyman Ghiasvand ‡

[†]Department of Mathematics, Payame Noor University (PNU), Langroud, Iran e-mail : f.farzalipour@guilan.ac.ir [‡]Department of Mathematics, Payame Noor University (PNU), Manjil 1161, Iran e-mail : p_ghiasvand@pnu.ac.ir

Abstract: Let G be a group with identity e. Let R be a G-graded commutative ring, and let M be a graded R-module. In this paper, we investigate finite and infinite union of graded submodules of a graded R-module M. Also, we give a number of results concerning the union of graded prime submodules.

Keywords : Graded multiplication, Graded prime. **2010 Mathematics Subject Classification :** 13A02; 16W50.

1 Introduction

Let G be a group with identity e. A ring (R, G) is called a G-graded ring if there exists a family $\{R_g : g \in G\}$ of additive subgroups of R such that $R = \bigoplus_{g \in G} R_g$ such that $1 \in R_e$ and $R_g R_h \subseteq R_{gh}$ for each g and h in G. For simplicity, we will denote the graded ring (R, G) by R. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M = \bigoplus_{g \in G} M_g$ such that for all $g, h \in G$; $R_g M_h \subseteq M_{gh}$. An element of some R_g or M_g is said to be homogeneous element. A submodule $N \subseteq M$, where M is G-graded, is called G-graded if $N = \bigoplus_{g \in G} (N \cap M_g)$ or if, equivalently, N is generated by homogeneous elements. Moreover, M/N becomes a G-graded module with gcomponent $(M/N)_g = (M_g + N)/N$ for $g \in G$. We write $h(R) = \bigcup_{g \in G} R_g$ and $h(M) = \bigcup_{g \in G} M_g$. A graded ideal I of R is said to be graded prime ideal if $I \neq R$;

Copyright \bigodot 2011 by the Mathematical Association of Thailand. All rights reserved.

and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. A graded ideal I of R is said to be graded maximal if $I \neq R$ and there is no graded ideal J of R such that $I \not\subseteq J \not\subseteq R$. A graded ring R is called graded local if it has a unique graded maximal ideal. A proper graded submodule N of a graded R-module M is called graded prime if $rm \in N$, then $m \in N$ or $r \in (N : M)$, where $r \in h(R), m \in h(M)$. A graded module M over a G-graded ring R is called to be graded finitely generated if $M = \sum_{i=1}^{n} Rx_{g_i}$ where $x_{g_i} \in h(M)$. A graded *R*-module *M* is called graded cyclic if $\overline{M} = Rx_q$ where $x_q \in h(M)$. A graded module M over a G-graded ring R is called to be graded multiplication if for each graded submodule N of M; N = IMfor some graded ideal I of R. One can easily show that if N is graded submodule of a graded multiplication module M, then N = (N : M)M (see [3]). Similar to non graded case, a graded multiplication module has a graded maximal ideal. Let R be a G-graded ring and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1}R$ is a graded ring which is called the graded ring of fractions. Indeed, $S^{-1}R = \bigoplus_{g \in G} (S^{-1}R)_g$ where $(S^{-1}R)_g = \{r/s : r \in R, s \in S \}$ and $g = (degs)^{-1}(degr)$. Let M be a graded module over a graded ring R and $S \subseteq h(R)$ be a multiplicatively closed subset of R. The module of fraction $S^{-1}M$ over a graded ring $S^{-1}R$ is a graded module which is called the module of fractions, if $S^{-1}M = \bigoplus_{g \in G} (S^{-1}M)_g$ where $(S^{-1}M)_g = \{m/s : m \in M, s \in S\}$ and $g = (degs)^{-1}(degm)$. Consider the graded homomorphism $\eta: M \longrightarrow S^{-1}M$ defined by $\eta(m) = m/1$. For any graded submodule N of M, the submodule of $S^{-1}M$ generated by $\eta(N)$ is denoted by $S^{-1}N$. Similar to non graded case, one can prove that $S^{-1}N = \{\beta \in S^{-1}M : \beta = m/s \text{ for } m \in N \text{ and } s \in S\}$ and that $S^{-1}N \neq S^{-1}M$ if and only if $S \cap (N:M) = \emptyset$. Let P be any graded prime ideal of a graded ring R and consider the multiplicatively closed subset of S = h(R) - P. We denote the graded ring of fraction $S^{-1}R$ of R by R_P^g and we call it the graded localization of R. This ring is graded local with the unique graded maximal ideal $S^{-1}P$ which will be denoted by PR_P^g . Moreover, R_P^g -module $S^{-1}M$ is denoted by M_P^g . For graded submodules N and K of M, if $N_P^{g'} = K_P^g$ for every graded prime (graded maximal) ideal P of R, then N = K.

If K is a graded submodule of $S^{-1}R$ -module $S^{-1}M$, then $K \cap M$ will denote the graded submodule $\eta^{-1}(K)$ of M. Moreover, similar to the non graded case one can prove that $S^{-1}(K \cap M) = K$. In this paper, we study unions of graded submodules of a graded R-module M. For example, we show that a graded multiplication module is a *ugp*-module.

2 The Union of Graded Prime Submodules

Let $N_1, N_2, ..., N_n$ be graded submodules of a graded *R*-module *M*, we call a covering $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$ efficient if *N* is not contained in the union of any n-1 of the graded submodules $N_1, N_2, ..., N_n$. We say that $N = N_1 \cup N_2 \cup \cdots \cup N_n$ is an efficient union, if non of the N_k may be excluded.

Similar to non graded case, if N, N_1, N_2 are graded submodules of a graded *R*-module *M* such that $N \subseteq N_1 \cup N_2$, then $N \subseteq N_1$ or $N \subseteq N_2$ (see [5]). Hence a covering of a graded submodule by two graded submodules is never efficient.

The following Lemma is known, but we write it here for the sake of references.

Lemma 2.1. Let M be a graded module over a graded ring R. Then the following hold:

- (i) If I and J are graded ideals of R, then I + J and $I \cap J$ are graded ideals.
- (ii) If N is a graded submodule, $r \in h(R)$ and $x \in h(M)$, then Rx, IN and rN are graded submodules of M.
- (iii) If N and K are graded submodules of M, then N + K and $N \cap K$ are also graded submodules of M and (N : M) is a graded ideal of R.
- (iv) Let N_{λ} be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodues of M.

Lemma 2.2. Let R be a G-graded ring and M a graded R-module and N a graded submodule of M. Let $N = N_1 \cup N_2 \cup \cdots \cup N_n$ be a efficient union of graded submodules of M, for n > 1. Then $\bigcap_{i \neq k} N_j = \bigcap_{i=1}^n N_j$ for all $1 \leq k \leq n$.

Proof. It is straightforward.

Lemma 2.3. Let R be a G-graded ring and M a graded R-module and N a graded submodule of M. Let $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$ be a efficient covering concisely of graded submodules of M, for n > 1. If $(N \bigcap N_j : N) \nsubseteq (N \cap N_k : N)$ for all $1 \le k \le n$, then no N_j , for $j \in \{1, 2, ..., n\}$, is a graded prime submodule.

Proof. Clearly, by hypothesis, $N = (N \cup N_1) \cdots (N \cup N_n)$ is an efficient union. Moreover, by Lemma 2.2, $\bigcap_{j \neq k} (N \bigcap N_j) = \bigcap_{j=1}^n (N \bigcap N_j) \subseteq N \bigcap N_k$. Let N_k be a graded prime submodule of M. Now we show that $N \bigcap N_k$ is a graded prime submodule of N. If $r_g n_h \in N \bigcap N_k$ and $n_h \notin N \bigcap N_k$ where $r_g \in h(R)$ and $n_h \in h(N)$, then $r_g n_h \in N_k$ and $n_h \notin N_k$ and so $r_g M \subseteq N$. It follows that $N \bigcap N_k$ is a graded prime ideal of R by [2, Proposition 2.7]. Since $(N \bigcap N_j : N) \notin (N \cap N_k : N)$ whenever $j \neq k$, we get that $(N \bigcap N_1 : N) \cdots (N \bigcap N_{k-1} : N)(N \bigcap N_{k+1} : N) \cdots (N \bigcap N_n : N) \neq (N \bigcap N_k : N)$ by [4, Proposition 1.4]. Therefore there exist $r \in [(N \bigcap N_1 : N) \cdots (N \bigcap N_{k+1} : N)] - (N \bigcap N_k : N)$ and so there exists $n \in N$ such that $rn \notin N \bigcap N_k$, but every $j \neq k$, $rn \in N \bigcap N_j$ which contracts to be $\bigcap_{j \neq k} (N \bigcap N_j) = \bigcap_{j=1}^n (N \bigcap N_j) \subseteq N \bigcap N_k$. Therefore, no N_k is a graded prime submodule.

Theorem 2.4. Let M be a graded R-module. Let $N_1, N_2, ..., N_n$ be graded submodules of M, and N a graded submodule of M such that $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$. Assume that at most two of the N_k 's are not graded prime and $(N \bigcap N_j : N) \notin (N \cap N_k : N)$ whenever, $j \neq k$. Then $N \subseteq N_i$ for some i.

Proof. We may assume that the covering is efficient without loss of generality. Then $n \neq 2$. By Lemma 2.2, $n \leq 2$. Hence n = 1, and so $N \subseteq N_i$ for some i.

Definition 2.5.

- (i) Let M be a graded R-module and N a graded submodule of M. N is called ug-submodule of M provided N contained in a finite union of graded submodules must be contained one of those graded submodules. M is called ug-module if every graded submodule of M is a ug-submodule.
- (ii) Let M be a graded R-module and N a graded submodule of M. N is called ugp-submodule of M provided N contained in a finite union of graded prime submodules must be contained one of those graded prime submodules. M is called ugp-module if every graded submodule of M is a ugp-submodule.
- (iii) Let M be a graded R-module and N a graded submodule of M. N is called ugm-submodule of M provided N contained in a finite union of graded maximal submodules must be contained one of those graded submodules. M is called ugm-module if every graded maximal submodule of M is a ugmsubmodule.

Theorem 2.6. Let M be a graded finitely generated R-module. Then M is ugmmodule if and only if every graded submodule N in M such that $N \subseteq \bigcup_{i=1}^{n} P_i$ where P_i 's are graded prime submodules implies that $N + P_i \neq M$ for some i.

Proof. Let M be a graded finitely generated ugm-module. Suppose that N be a graded submodule of M such that $N \subseteq \bigcup_{i=1}^{n} P_i$ where $P_i s$ are graded prime submodules of M. By [1, Lemma 2.7] for each P_i , choose a graded maximal submodule M_i containing P_i . Then $N \subseteq \bigcup_{i=1}^{n} M_i$ and so $N \subseteq M_i$ by hypothesis. Since $P_i \subseteq M_i$, we have $N + P_i \subseteq M_i \neq M$.

Conversely, let N be a graded submodule of M such that $N \subseteq \bigcup_{i=1}^{n} M_i$ where M_i 's are graded maximal submodules of M. Then $N + M_i \neq M$ for some i by hypothesis. Therefore, since $M_i \subseteq N + M_i \subsetneq M$, then $N + M_i = M_i$, so $N \subseteq M_i$ for some i. The proof is completed.

Proposition 2.7. Let R be a G-graded ring and M a graded R-module and $S \subseteq h(R)$ a multiplicatively closed subset of R such that $S \bigcap p = \phi$, for every graded prime ideal p of R.

- (i) M is a ugp-module if and only if $S^{-1}M$ is a ugp-module.
- (ii) M is a ugm-module if and only if $S^{-1}M$ is a ugm-module.

Proof. Let M be ugp-module. Let $K \subseteq Q_1 \bigcup Q_2 \bigcup \cdots \bigcup Q_n$ where K is a graded submodule of $S^{-1}M$ and $Q_1, Q_2, ..., Q_n$ are graded prime submodules of $S^{-1}M$. So $K = S^{-1}N$ and $Q_1 = S^{-1}P_1, ..., Q_n = S^{-1}P_n$, where N is a graded submodule of $M, P_1, P_2, ..., P_n$ are graded prime submodules of M, then $N \subseteq P_1 \bigcup P_2 \bigcup \cdots \bigcup P_n$, because if $x \in N$, then $x = \sum_{g \in G} x_g$ where $x_g \in N \cap M_g$. So for any $g \in G$; $x_g \in N$. Hence for any $g \in G$; $x_g/1 \in S^{-1}N$, so $x_g/1 \in S^{-1}(P_1 \bigcup \cdots \bigcup P_n)$, hence $x_g/1 = p/s$ for some $p \in P_1 \bigcup \cdots \bigcup P_n$ and $s \in S$. So there exists $1 \le k \le n$ such that $p \in P_k$. Therefore, $tsx_g = pt \in P_k$ for some $t \in S$. Thus $x_g \in P_k$ since $ts \notin$ $(P_k: M)$ and P_k is a graded prime submodule of M, so $N \subseteq P_1 \bigcup P_2 \bigcup \cdots \bigcup P_n$, since M is ugp-module; $N \subseteq P_i$ for some i. Then $S^{-1}N \subseteq S^{-1}P_i$, as needed.

Conversely, let $S^{-1}M$ be a *ugp*-module. Let $N \subseteq P_1 \bigcup \cdots \bigcup P_n$ where N is a graded submodule of M and P_i 's are graded prime submodules of M. Hence $S^{-1}N \subseteq S^{-1}(P_1 \bigcup \cdots \bigcup P_n) \subseteq S^{-1}P_1 \bigcup \cdots \bigcup S^{-1}P_n$. So $S^{-1}N \subseteq S^{-1}P_i$ for some *i* since $S^{-1}M$ is a *ugp*-module. So similar to the above proof, $N \subseteq P_i$. Therefore M is *ugp*-module.

(ii) Similar to (i).

Theorem 2.8. Every graded multiplication module is a ugp-module.

Proof. Let M be a graded multiplication module. Let N be a graded submodule of M such that $N \subseteq P_1 \bigcup P_2 \bigcup \cdots \bigcup P_n$ where at least n-2 of P_1, P_2, \ldots, P_n are graded prime submodules. We may assume that the covering is efficient. Then $(P_j: M) \nsubseteq (P_k: M)$ whenever, $j \neq k$. Otherwise $(P_j: M) \subseteq (P_k: M)$, then $P_j = (P_j: M)M \subseteq (P_k: M)M = P_k$, a contradiction. Hence $N \subseteq P_k$ for some k. This result implies that M is a *ugp*-module.

Definition 2.9. By a chain of graded prime submodules of a graded R-module M we mean a finite strictly increasing sequence $P_1 \subseteq \cdots \subseteq P_n$; the graded dimension of this chain is n. We define the graded dimension of M to be the supremum of the lengths of all chains of graded prime submodules in M.

Let M be a graded module over a G-graded ring R. Now consider the subset T(M) of M is defined by $T(M) = \{m \in M : rm = 0 \text{ for some } 0 \neq r \in h(R)\}$. If R is a graded integral domain, then T(M) is a graded submodule of M (see [1]). If T(M) = 0, then M is called graded torsion free and if T(M) = M, then M is called graded torsion.

Theorem 2.10. Let M be a graded finitely generated R-module. Let M be a graded torsion free module with dimension 1, then M is a ugp-module if and only if M is a ugm-module.

Proof. Let M be a *ugp*-module. Since every *ugp*-module is a *ugm*-module, so M is a *ugm*-module.

Conversely, let M be a ugm-module. Since M is a graded torsion free, 0 is a graded prime submodule by [1, Proposition 2.6]. Let N be a non-zero graded submodule of M such that $N \subseteq P_1 \bigcup P_2 \bigcup \cdots \bigcup P_n$ where P_i 's are graded prime submodule of M. We may assume that $P_i \neq 0$ for all $i \in \{1, 2, ..., n\}$. By Theorem 2.6, $N + P_i \neq M$ for some i. There exists a graded maximal submodule of Msuch that $N + P_i \subseteq M_i$ by [1, Lemma 2.7]. Since the graded dimension of M is 1; $P_i = M_i$. Consequently, $N \subseteq P_i$.

Definition 2.11. Let R be a G-graded ring and M a graded R-module and $S \subseteq h(R)$ a multiplicatively closed subset of R. A non empty subset S^* of h(M) is said to be graded S-closed if $se \in S^*$ for every $s \in S$ and $e \in S^*$.

Theorem 2.12. Let $S \subseteq h(R)$ be a multiplicatively closed subset of graded ring R and S^* be a graded S-closed of a graded R-module of M. Let N be a graded submodule of M which is graded maximal in $M - S^*$. If the graded ideal (N : M) is graded maximal in R - S, then N is a graded prime submodule of M.

Proof. Assume that $r_g \notin (N:M)$ and $m_h \notin N$ for some $r_g \in h(R)$ and $m_h \in h(M)$ but $r_g m_h \in N$. Then there exist $s^* \in M$ and $r^* \in R$ such that $s^* \in (N + Rm_h) \cap S^*$ and $r^* \in ((N:M) + Rr_g) \cap S$. Therefore $r^*s^* \in (N:M) + Rr_g)(N + Rm_h) = (N:M)N + (N:M)Rm_h + Rr_gN + Rr_gRm_h \subseteq N$. So $r^*s^* \in N \cap S^*$. This is a contradiction with $N \cap S^* = \emptyset$

Lemma 2.13. Let M be a graded multiplication module. Let $P_i(i \in I)$ be a collection graded prime submodules of M with $(P_i : M) = p_i$ for any i and $M - S^* = \bigcup_{i \in I} P_i$ where $R - S = \bigcup_{i \in I} p_i$. If N is a graded maximal submodule in $M - S^*$, then N is a graded prime submodule of M.

Proof. Let N be graded maximal submodule in $M - S^*$. Then the ideal (N : M) is graded maximal in R - S. Otherwise, if $(N : M) \subsetneq T \subseteq \bigcup_i p_i$ where T is a graded ideal of R, then $N = (N : M)M \subsetneq TM \subseteq \bigcup_{i \in I} P_i$ which contradicts the presume that N is graded maximal in $M - S^*$. Then N is graded prime submodule of M by Theorem 2.12.

Definition 2.14. Let M be a graded R-module and N a graded submodule of M. N is called graded compactly packed by graded prime submodules if whenever N is contained in the union of a family of graded prime submodules of M, N is contained in one of the graded prime submodules of the family. M is called graded compactly packed by graded prime submodules if every graded submodule of M is graded compactly packed by graded prime submodules.

Theorem 2.15. Let M be a graded multiplication module. Then M is graded compactly packed by graded prime submodules if and only if every graded prime submodule of M is a graded compactly packed by graded prime submodules.

Proof. It is clear that if M is graded compactly packed by graded prime submodules, then every graded prime submodule of M is graded compactly packed.

Conversely, suppose that every graded prime submodule of M be graded compactly packed by graded prime submodules. Let $N = \bigcup_{i=1}^{n} P_i$ where N is a graded submodule of M and P_i 's are graded prime submodules of M. Let L be a graded maximal submodule of M such that $N \subseteq L \subseteq \bigcup_{i=1}^{n} P_i$, then L is graded prime submodule of M by Lemma 2.13. Then $N \subseteq L \subseteq P_i$ for some i by hypothesis. \square

Let N be a graded submodule of a graded R-module M. The graded radical of M, denoted by gr - rad(N), is defined to be intersection of the graded prime submodules of M if such exist, and M otherwise (see [2]).

Theorem 2.16. Let M be a graded multiplication module. Then M is graded compactly packed by graded prime submodules if and only if every graded prime submodule of M is graded radical of a graded cyclic submodule.

Proof. Let *M* be graded compactly packed by graded prime submodules. Suppose that *N* be a graded prime submodule of *M* and not a graded radical of a graded cyclic submodule of *M*. Let $n = \sum_{g \in G} n_g \in N$. Since for each $n_g \in N$; $N \neq gr - rad(Rn_g)$ and since gr - rad(N), is the intersection of all the graded prime submodules of *M* which contains $n_g(g \in G)$, there is a graded prime submodule P_{n_g} such that $n_g \in P_{n_g}$ but $N \notin P_{n_g}$. It is clear that $N \subseteq \bigcup_{n_g} P_{n_g}$, a contradiction. On the other hand, suppose that every graded prime submodule of *M* is the graded radical of a graded cyclic submodule of *M*. Let $N = \bigcup_{i \in I} P_i$ where *N* and $P_i(i \in I)$ are graded prime submodules of *M* and $N = gr - rad(Rn_g)$ for some $n_g \in h(M)$. Then $n_g \in \bigcup_{i \in I} P_i$ and so $n_g \in P_i$ for some $i \in I$. Therefore $N = gr - rad(Rn_g) \subseteq P_i$. Then *M* is graded compactly packed by graded prime submodules by Theorem 2.15.

Acknowledgements : The authors would like to thank the referees for his comments and suggestions on the manuscript.

References

- S. Ebrahimi Atani, F. Farzalipour, Notes On the graded prime submodules, Int. Math. Forum 1 (38) (2006) 1871–1880.
- [2] S. Ebrahimi Atani, F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007) 371–378.
- [3] S. Ebrahimi Atani, F. Farzalipour, On graded multiplication modules, (Submitted).
- [4] M. Refaei, K. Alzobi, On graded primary ideals, Turkish. J. Math. 28 (2004) 217–229.
- [5] R.Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.

(Received 5 March 2010) (Accepted 5 November 2010)

THAI J. MATH. Online @ http://www.math.science.cmu.ac.th/thaijournal