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Abstract : In this paper, we defined an extended null scroll in Minkowski 3-
space R

3
1 which is obtained by a null line moving with (proper) null frame along a

null curve. We proved the well-known theorem due to Bonnet in the 3-dimensional
Euclidean space for an extended null scroll. We calculated the geodesic and normal
curvature of a curve on the extended null scroll.
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1 Introduction

The Classification of surfaces and curves in Euclidean or Non-Euclidean spaces
has been of particular interest for geometers. Many interesting results in Non-
Euclidean spaces have neen obtained by many mathematicians. This subject have
been studied by many researcher [1, 2, 3, 4, 5].

In this study, we have done a study about null scrolls in Minkowski 3-sapce.
Let R

3
1 be a Minkowski 3-space with the natural Lorentz metric

〈·, ·〉 = −dx2
1 + dx2

2 + dx2
3,
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in terms of natural coordinates. The vector product operation of R
3
1 is defined by

XΛY = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y1),

for X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R
3
1.

The norm of −→v ∈ R
3
1 is denoted by ‖−→v ‖ and defined as

‖−→v ‖ =
√

|〈−→v ,−→v 〉|.

Since 〈·, ·〉 is an indefinite metric, recall that a vector −→v ∈ R
3
1 can have one of

three causal characters: it can be spacelike if 〈−→v ,−→v 〉 > 0 or −→v = 0, timelike if
〈−→v ,−→v 〉 < 0 and null (lightlike) if 〈−→v ,−→v 〉 = 0 for −→v 6= 0. Similarly, an arbitrary
curve α = α(t) in R

3
1 can locally be spacelike, timelike or null (lightlike), if all of

its velocity vectors α′(t) are respectively spacelike, timelike or null (lightlike) [6].

Definition 1.1. ([7]) A surface in a Minkowski 3-space is called a timelike surface
if the induced metric on the surface is a Lorentz metric, i.e., the normal on the
surface is a spacelike vector.

Lemma 1.2. ([8]) In the Minkowski 3-space R
3
1, the following properties are

satisfied:

(i) Two timelike vectors are never orthogonal.

(ii) Two null vectors are orthogonal if and only if they are linearly dependent.

(iii) A timelike vector is never orthogonal to a null (lightlike) vector.

A basis F =
{−→

X,
−→
Y ,

−→
Z

}

of R
3
1 is called a (proper) null frame if it satisfies the

following conditions:

〈−→
X,

−→
X

〉

=
〈−→

Y ,
−→
Y

〉

= 0,
〈−→
X,

−→
Y

〉

= −1,

〈−→
X,

−→
Z

〉

=
〈−→

Y ,
−→
Z

〉

= 0,
〈−→

Z ,
−→
Z

〉

= 1,

det(X, Y, Z) = 1, [9].
Let α = α(t) be a null curve in R

3
1, namely, a smooth curve whose tangent

vectors α′(t), ∀t ∈ I are null. For a given smooth positive function k0 = k0(t) let
us put X = X(t) = k−1

0 α′. Then X is a null vector field along α. Moreover, there
exists a null vector field Y = Y (t) along α satisfying 〈X, Y 〉 = −1. Here if we put
Z = XΛY then we can obtain a (proper) null frame field F = {X, Y, Z} along α.
In this case the pair (α, F ) is said to be a (proper) framed null curve. A framed
null curve (α, F ) satisfies the following, so called the Frenet equations:

X ′(t) = k1(t)X(t) + k2(t)Z(t),

Y ′(t) = −k1(t)Y (t) + k3(t)Z(t), (1.1)

Z ′(t) = k3(t)X(t) + k2(t)Y (t),
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where ki = ki(t), i = 1, 2, 3 are smooth functions defined by

k1 = −〈X ′, Y 〉 , k2 = 〈X ′, Z〉 , k3 = 〈Y ′, Z〉 .

The function ki is called an i − th curvature of the framed null curve. It
follows from the fundamental theorem of ordinary differential equations that a
framed null curve (α, F ) = (α(t), F (t)) is uniquely determined by the functions
k0(> 0), k1, k2, k3 and the initial condition. The functions k2 and k3 are called
the curvature and torsion of α, respectively.

A framed null curve (α, F ) with k0 = 1 and k1 = 0 is called a Cartan framed
null curve and the frame field F is called a Cartan frame.

We call the vector fields X, Y, Z a tangent vector field, a binormal vector field
and a (principal) normal vector field of α, respectively.

Note that α is called null geodesic if k2 = 0 [9, 10].

Lemma 1.3. ([11]) Assume that α(t) is a null curve in R
3
1 and {X, Y, Z} be its

(proper) null frame field. Then

XΛY = Z, Y ΛZ = −Y, XΛZ = X.

2 Null Scrolls in R
3
1

Let (α, F ) = (α(t), F (t)) be a null curve with frame F = {X, Y, Z}. A ruled
surface is a surface swept out by a straight line Y moving along a curve α. The
various positions of the generating line Y are called the rulings of the surface. Such
a surface, thus has a parametrization in ruled form as follows:

Ψ : U −→ R
3
1,

Ψ(t, v) = α(t) + vY (t); ∀(t, v) ∈ U

is called a null scroll and denoted by M . We call α to be the base curve and Y

to be the director curve. If the tangent plane is constant along each ruling, then
the ruled surface is called a developable surface. The remaining ruled surfaces are
called skew surfaces. One can see that M is a timelike surface. Furthermore, for
a Cartan framed null curve α with Cartan frame F = {X, Y, Z} the ruled surface
is called a B-scroll [11].

Now consider a ruled surface in R
3
1 generated by a null generator

−→
L (t) moving

with (proper) null frame of a null curve α = −→α (t), i.e.,

−→
L (t) = ℓ1(t)X(t) + ℓ2(t)Y (t) + ℓ3(t)Z(t), (2.1)

where the components ℓi = ℓi(t), ℓ2 6= 0 (i = 1, 2, 3) are scalar functions of the

parameter of the null curve α = −→α (t). Thus if
−→
L moves with (proper) null frame,

the constructed ruled surface is given by the following parametrization

Ψ(t, v) = −→α (t) + v
−→
L (t), (t, v) ∈ U ⊂ R

2,
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<
−→
L (t),

−→
L (t) >= ℓ2

3(t) − 2ℓ1(t)ℓ2(t) = 0. (2.2)

This ruled surface is called an extended null scroll.
From (2.1) and using (1.1), we obtain

−→
L′(t) = (ℓ′1 + ℓ1k1 + ℓ3k3)

−→
X + (ℓ′2 − ℓ2k1 + ℓ3k2)

−→
Y + (ℓ′3 + ℓ1k2 + ℓ2k3)

−→
Z . (2.3)

It obvious that the vector
−→
L′(t) is a spacelike vector or null vector and in the

second case it is linearly dependent with the generator.

The assumption
−→
L′(t) 6= 0, is usually expressed by saying that the ruled surface

M is a noncylindrical.
From (2.2), one can obtain the first fundamental quantities of the extension

g11 = −2k0v(ℓ′2 − ℓ2k1 + ℓ3k2) + v2 ‖L′‖
2
, g12 = −k0ℓ2, g22 = 0. (2.4)

Thus the induced metric on the extended null scroll is a Lorentz metric. There-
fore the extended null scroll is a timelike ruled surface.

The unit normal vector field −→n = −→n (t, v) on the extended null scroll in R
3
1 is

−→n =
α′(t) ∧

−→
L (t) + v

−→
L′(t) ∧

−→
L (t)

∥

∥

∥
α′(t) ∧

−→
L (t) + v

−→
L′(t) ∧

−→
L (t)

∥

∥

∥

. (2.5)

Thus, from (2.5) the unit normal vector to the surface M at the point (t,0) is

−→n (t, 0) =
ℓ3X + ℓ2Z

|ℓ2|
, ℓ2 6= 0. (2.6)

Definition 2.1. ([1]) If there exists a common perpendicular to two preceding
rulings in the skew surface, the foot of the common perpendicular on the main
ruling is called a central point. The locus of the central points is called the curve
of striction.

Using (1.1) and (2.3), it is easy to see that the parametrization of the striction
curve on an extended null scroll (2.2) is given by

−→
β (t) = −→α (t) +

k0(ℓ
′

2 − ℓ2k1 + ℓ3k2)
∥

∥

∥

−→
L′

∥

∥

∥

2

−→
L (t) (2.7)

From (2.6), it follows that the base curve of the extended null scroll (2.2) to

be a geodesic curve (−→n (t, 0) =
−→
Z ) if ℓ2 6= 0 and ℓ3 = 0.

Theorem 2.2. Let M be an extended null scroll. Then the curve of striction is a
timelike curve in an extended null scroll M.

Proof. If we use the equation (2.6), we can show easily that the tangent vector
field of the curve of striction is a timelike vector field.
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Thus we have the Bonnet’s theorem for the extended null scroll which is for-
mulated as follows:

Theorem 2.3. If a timelike curve on an extended null scroll in R
3
1 has two of the

following properties, it has the third also

(i) it is a geodesic (k2 = 0) and k1 = 0,

(ii) it cut the rulings at a constant angle (ℓ2 = const.),

(iii) it is a striction curve.

Now we examine the extended null scroll for which the striction curve is the
base curve, i.e.,

M s : Ψs(t, v) = −→α (t) + v
−→
L (t)

ℓ2
3 − 2ℓ1ℓ2 = 0, ℓ′2 − ℓ2k1 + ℓ3k2 = 0. (2.8)

Corollary 2.4. Let the curve of striction be the base curve of an extended null

scroll M. Then the vector
−→
L′(t) is a spacelike vector.

Proof. From (2.3), using (2.8), it can be seen easily.

Let us consider an extended null scroll M s. Then since
〈−→

L (t),
−→
L′(t)

〉

= 0 and
〈−→
α′,

−→
L′(t)

〉

= 0, we can write

−→
α′(t) ∧

−→
L (t) = λ

−→
L′(t),

where

λ = λ(t) = −
det(

−→
α′(t),

−→
L (t),

−→
L′(t))

∥

∥

∥

−→
L′(t)

∥

∥

∥

2 . (2.9)

The function λ = λ(t) is called the distribution parameter of the extended null
scroll M s. In more explicitly using (1.1), (2.1) and (2.3), we get

λ(t) = −
k0ℓ2(ℓ1k2 + ℓ2k3 + ℓ′3)

∥

∥

∥

−→
L′(t)

∥

∥

∥

2 . (2.10)

The normal vector field on M s takes the form

−→
N = λ

−→
L′(t) + v

−→
L′(t) ∧

−→
L (t). (2.11)

Thus, from (2.10) we have

ℓ2
2 =

λ2

k2
0

∥

∥

∥

−→
L′(t)

∥

∥

∥

2

. (2.12)

Hence, we have
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Corollary 2.5. The singular points on the extended null scroll M s are the points

for which λ = 0. Since
∥

∥

∥

−→
L′

∥

∥

∥
6= 0, i.e., ℓ1k2 + ℓ2k3 + ℓ′3 6= 0, the singular points are

given ℓ2 = 0.

Let M s be an extended null scroll for which the striction curve is the base
curve in R

3
1. The unit normal vector to the extended null scroll M s at (t, v) is

given from (2.11) and (2.12) by

−→n (t, v) = k0
−→
ℓ + k0

v

λ

−→
ℓ ∧

−→
L ,

where
−→
ℓ =

−→

L′(t)


−→L′(t)



 .

For a regular patch on M s (λ 6= 0), it is easy to see that the normal along the
striction curve on M s is given by

−→n 0(t, 0) = k0
−→
ℓ .

Since −→n 0 is a unit spacelike vector and −→n is unit spacelike vector, thus if θ is the
angle of rotation from the normal −→n 0 to the normal −→n we get

sin θ = ‖−→n 0 ∧
−→n ‖ =

∥

∥

∥

∥

k0
−→
ℓ (t) + v

k0

λ

−→
ℓ (t) ∧

−→
L (t) ∧

−→
ℓ (t)

∥

∥

∥

∥

.

Routine calculation, one can obtain θ = 0. Thus we have without loose
of generality following theorem which is similar to Chasles theorem for the ex-
tended null scroll in R

3
1.

Theorem 2.6. For the extended null scroll M s in R
3
1, the normal vector −→n at a

point of a ruling and the normal vector −→n 0 at the striction point of this ruling are
parallel.

3 Extended Null Scrolls with Constant Parame-

ter of Distribution

From (2.10), one can see that an extended null scroll M s with a constant
distribution parameter satisfies the following differential equation:

−k0ℓ2(ℓ1ℓ2 + ℓ2k3 + ℓ′3 = c
〈−−→
L′(t),

−−→
L′(t)

〉

,

where c is constant. If we consider (2.8), we get easily,

ℓ2 =

∫

(k1ℓ2 − k2ℓ3)dt + c1

ℓ3 = −

∫

(
c
〈−−→
L′(t),

−−→
L′(t)

〉

k0ℓ2
+

ℓ2
3

2
+ k3ℓ2)dt + c2 (3.1)

ℓ2
3 − 2ℓ1ℓ2 = 0.



On the Extended Null Scrolls in Minkowski 3-space 35

The first equation of (3.1) is an integral equation for the unknown ℓ1 = ℓ1(t).
Therefore if ℓ2 = ℓ2(t) and ℓ3 = ℓ3(t) are given we get ℓ1 = ℓ1(t).

Theorem 3.1. The range of existence of a one parametric extended null scrolls
{M s} with constant parameter of distribution comprises within two arbitrary func-
tions of one variable.

Developable null scrolls are special class of the ruled surfaces which is described
k1 = k3 = 0 [11].

Definition 3.2. ([11]) Let M s be an extended null scroll in R
3
1. If there exists a

curve which makes constant angle with one of the rulings, this curve is called a
pseudo-orthogonal trajectory of M s.

Theorem 3.3. Let M be an extended null scroll in R
3
1. The shortest distance

between two ruling is measured only on the curve of striction which is one of the
pseudo-orthogonal trajectories.

Now we calculate the geodesic curvature and normal curvature of an extended
null scroll M s in R

3
1.

Let −→γ = −→γ (t) be a curve on the extended null scroll M s. Then it can be
represented in the form

−→γ (t) = −→α (t) + v(t)
−→
L (t).

Using (1.1), it is easy to see that the unit tangent vector along the curve −→γ = −→γ (t)
is

−→γ ′

0(t) =
γ′(t)

‖γ′(t)‖
=

ξ1X + ξ2Y + ξ3Z
√

|ξ2
3 − 2ξ1ξ2|

,

where,

ξ1 = k0v
′ℓ1 + vη1

ξ2 = η2

ξ3 = v′ℓ3 + vη3

η1 = ℓ′1 + ℓ1k1 + ℓ3k3

η2 = v′ℓ2

η3 = ℓ′3 + ℓ1k2 + ℓ2k3.

Therefore, one can see that

−→γ
′′

0 =
1

R
1

2

[(ξ′1 + ξ1k1 + ξ3k3)X + (ξ′2 − ξ2k1 + ξ3k2)Y + (ξ′3 + ξ1k2 + ξ2k3)Z]

−
R′

2R
3

2

(ξ1X + ξ2Y + ξ3Z),

where R =
∣

∣ξ2
3 − 2ξ1ξ2

∣

∣ .
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Using (2.5), the unit normal vector field on the extended null scroll M s along
the curve (v = v(t)) is

−→n (t, v(t)) =
[k0ℓ3 + v(ℓ3η1 − ℓ1η3)]X + (vℓ2η3)Y + (k0ℓ2 + vℓ2η1)Z

√

(k0ℓ2 + vℓ2η1)2 − 2vℓ2η3[k0ℓ3 + v(ℓ3η1 − ℓ1η3)]
.

The geodesic curvature of the curve −→γ = −→γ (t) is given by

kg =
1

2 ‖−→n (t, v(t))‖R
3

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ1 ξ2 ξ3

2R(ξ′1 + ξ1k1

+ξ3k3) − R′ξ1

2R(ξ′2 − ξ2k1

+ξ3k2) − R′ξ2

2R(ξ′3 + ξ1k2

+ξ2k3) − R′ξ3

k0ℓ3

+v(ℓ3η1 − ℓ1η3)
vℓ2η3 k0ℓ2 + vℓ2η1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(3.2)
Then, the normal curvature of a curve −→γ

0
= −→γ

0
(t) is given by

kn =
1

2 ‖−→n (t, v(t))‖R
3

2

{−[2R(ξ′1 + ξ1k1 + ξ3k3) − R′ξ1](vℓ2η3)

−[2R(ξ′2 − ξ2k1 + ξ3k2) − R′ξ2](k0ℓ3 + v(ℓ3η1 − ℓ1η3))

+[2R(ξ′3 + ξ1k2 + ξ2k3) − R′ξ3](k0ℓ2 + vℓ2η1)}.

Corollary 3.4. From (3.2) and (3.3) the geodesic curvature kg and the normal
curvature kn of a base curve on the extended null scroll M s in R

3
1 are not define.

The results in the study are confirmed by the following example:

Example 3.5. ϕ(t, v) = (t + v, cos t + v cos t, sin t + v sin t) is a null scroll where

α(t) = (t, cos t, sin t) is a null base curve and
−→
L (t) = (1, cos t, sin t) is a null

generator.The striction curve is α(t) = α(t)−
−→
L (t). The distribution parameter is

λ = −1 and it is nondevelopable null scroll.

Fig1.
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