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1 Introduction

The Gamma function plays an important role in several fields of mathematics
such as probability theory or combinatorics. One often has to evaluate the function
for large positive values. One way to aim this is to use asymptotic approximations.
It is well known that for large values of x the Gamma function has the asymptotic
series of the form [1, 2, 3]

Γ (x + 1) ∼ xxe−x
√

2πx

(

1 +
1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+ · · ·

)

.

(1.1)
Equation (1.1) is called Stirling’s formula however, Laplace was the first who
derived it by his approximation method for special integrals. Another famous
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result is the Stirling series [1, 2, 3]

log Γ (x + 1) ∼
(

x +
1

2

)

log x−x+
1

2
log (2π)+

1

12x
− 1

360x3
+

1

1260x5
−· · · . (1.2)

A main advantage of this latter series is that it has only odd powers of the variable.
For the past almost three hundred years several authors established fascinating new
asymptotic formulas to improve the accuracy of (1.1). For example, Karatsuba [4]
showed that a formula of Ramanujan can turn into an asymptotic expansion:

Γ (x + 1) ∼ xxe−x√π
6

√

8x3 + 4x2 + x +
1

30
− 11

240x
+ · · ·. (1.3)

Mortici [5] proved in his more recent paper the following expansion similar to
Karatsuba’s:

n! = Γ (n + 1) ∼ nne−n
√

π

√

2n +
1

3
+

1

36n
− 31

3240n2
− 139

77760n3
+ · · ·. (1.4)

For further developments in this topic, see, for example, [5, 6, 7, 8, 9, 10, 11, 12].
We develop some new variants of (1.1) in this paper and show that these

formulas are numerically more efficient than much of the early ones in many cases.
The first few values of the newly introduced coefficients and sequences can be
found in Appendix A.

2 New asymptotic expansions

The motivating examples are the following two asymptotic expansions [3, p.
12]:

(

2n

n

)

∼ 22n

√
πn

(

1 − 1

8n
+

1

128n2
+

5

1024n3
− 21

32768n4
+ · · ·

)

, (2.1)

(

2n

n

)

∼ 22n

√

π
(

n + 1

4

)

(

1 − 1

64
(

n + 1

4

)2
+

21

8192
(

n + 1

4

)4
− · · ·

)

. (2.2)

The first one is the standard asymptotic series of the central binomial coefficients.
If one expands them into a series in powers of 1/ (n + 1/4), the asymptotic series
contains only even powers. This remarkable result suggests that there might have
been an asymptotic expansion similar to (1.1) that is, it contains only even powers
of the shifted variable. The formula

Γ (x + 1) = xxe−x

√

2π

(

x +
1

6

)(

1 + O
(

1

x2

))

, (2.3)

known as Gosper’s approximation [13] can be a good starting point. Our aim is
to elaborate the asymptotic series part in Gosper’s formula. It seems from (2.2)
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that another series in terms of 1/ (x + 1/6) would be the right choice. It can be
shown that a series like that contains even and odd powers. If we insist to have
even powers only we are lead to the form

Γ (x + 1) ∼ xxe−x

√

2π

(

x +
1

6

)

(

g0 +
g1

(x + v1)
2

+
g2

(x + v2)
4

+ · · ·
)

, (2.4)

where the sequences {gn}n≥0
and {vn}n≥1

has to be determined. One of our main
result is

Theorem 2.1. The Gamma function has an asymptotic series expansion of the

form

Γ (x + 1) ∼ xxe−x

√

2π

(

x +
1

6

)



g0 +
∑

n≥1

gn

(x + vn)
2n



 , (2.5)

as x → ∞, where the sequences {gn}n≥0
and {vn}n≥1

can be found from the

recurrence

g0 = a0 = 1,

n
∑

j=0

(−1/2

j

)

an−j

6j
=

⌊n/2⌋
∑

j=1

( −2j

n − 2j

)

gjv
n−2j
j , n ≥ 1. (2.6)

Here the an coefficients are those appearing in (1.1), i.e.,

Γ (x + 1)

xxe−x
√

2πx
∼
∑

n≥0

an

xn
. (2.7)

Proof. As x → ∞ we have

Γ (x + 1) ex

xx
√

2π
(

x + 1

6

)

=
Γ (x + 1) ex

xx
√

2πx

(

1 +
1

6x

)−1/2

∼
(

1 +
1

6x

)−1/2
∑

n≥0

an

xn
.

From the binomial formula we find
(

1 +
1

6x

)−1/2

∼
∑

n≥0

(−1/2

n

)

1

6nxn
,

as x → ∞. Thus we obtain the asymptotic expansion

Γ (x + 1) ex

xx
√

2π
(

x + 1

6

)

∼
∑

n≥0





n
∑

j=0

(−1/2

j

)

an−j

6j





1

xn
. (2.8)

Suppose the expansion of the form

∑

n≥0





n
∑

j=0

(−1/2

j

)

an−j

6j





1

xn
∼ g0 +

∑

n≥1

gn

(x + vn)
2n . (2.9)
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Now we expand the sum on the right-hand side in powers of 1/x:

∑

n≥1

gn

(x + vn)
2n =

∑

n≥1

gn

x2n

(

1 +
vn

x

)−2n

=
∑

n≥1

gn

x2n

∑

l≥0

(−2n

l

)

vl
n

xl

=
∑

n≥1

∑

l≥0

(−2n

l

)

gnvl
n

x2n+l
=
∑

n≥1





⌊n/2⌋
∑

j=1

( −2j

n − 2j

)

gjv
n−2j
j





1

xn
.

Clearly, from formula (2.9) we see that g0 = a0 = 1. What remains is to show
that the system

n
∑

j=0

(−1/2

j

)

an−j

6j
=

⌊n/2⌋
∑

j=1

( −2j

n − 2j

)

gjv
n−2j
j (2.10)

has (unique) solutions {gn}n≥1
and {vn}n≥1

. Depending on the parity of n, we
have

gk =

2k
∑

j=0

(−1/2

j

)

a2k−j

6j
−

k−1
∑

j=1

( −2j

2k − 2j

)

gjv
2k−2j
j (2.11)

and

− 2kgkvk =

2k+1
∑

j=0

(−1/2

j

)

a2k−j+1

6j
−

k−1
∑

j=1

( −2j

2k − 2j + 1

)

gjv
2k−2j+1

j , (2.12)

when k ≥ 1. First, expression (2.11) gives g1 = 1/144, and if we already found
the terms g1, v1, . . . , gk, then from formula (2.12) the value of vk follows. Now,
g1, v1, . . . , gk, vk determine gk+1 by (2.11). Thus, by induction, system (2.10)
defines the sequences {gn}n≥1

and {vn}n≥1
uniquely.

The first few values of the sequences {gn}n≥0
and {vn}n≥1

can be found in
Table 3. We have obtained an expansion in even powers however, the shift sequence
{vn}n≥1

has different terms whereas (2.2) has constant (= 1/4) shift in all terms.
Numerical evaluation of the first few vn (see Table 4) leads us to the

Conjecture 2.2. limn→∞ vn = 1/4.

This conjecture suggests a new asymptotic series to the Gamma function in
terms of 1/ (x + 1/4). Our second result is

Theorem 2.3. The Gamma function has an asymptotic series expansion of the

form

Γ (x + 1) ∼ xxe−x

√

2π

(

x +
1

6

)

∑

n≥0

Gn
(

x + 1

4

)n , (2.13)
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as x → ∞, where the Gn coefficients are given by

Gn =
n
∑

j=0

(−1/2

j

)

an−j

6j
−

n−1
∑

j=0

( −j

n − j

)

Gj

4n−j
. (2.14)

The an coefficients are from (1.1).

Proof. Similarly to the previous proof we expand our series in terms of 1/x:

∑

n≥0

Gn
(

x + 1

4

)n =
∑

n≥0

Gn

xn

∑

l≥0

(−n

l

)

1

4l

1

xl
=
∑

n≥0

∑

l≥0

(−n

l

)

Gn

4l

1

xn+l

=
∑

n≥0







n
∑

j=0

( −j

n − j

)

Gj

4n−j







1

xn
.

According to (2.8) and the uniqueness of asymptotic series the proof of (2.14) is
complete.

3 Numerical comparisons

We will compare in this paragraph the numerical performance of some asymp-
totic formulas to the Gamma function with our new formulas for large values. We
compare the following approximation formulas for Γ (x + 1).

(x

e

)x √
2πx exp

(

1

12x
− 1

360x3
+

1

1260x5
− · · ·

)

(Stirling) , (3.1)

(x

e

)x √
2πx

(

1 +
1

12x
+

1

288x2
− 139

51840x3
− · · ·

)

(Laplace) , (3.2)

(x

e

)x √
2πx 6

√

(

1 +
1

2x
+

1

8x2
+

1

240x3
− · · ·

)

(Ramanujan) , (3.3)

(x

e

)x √
2πx

√

(

1 +
1

6x
+

1

72x2
− 31

6480x3
− · · ·

)

(Mortici) , (3.4)

(x

e

)x

√

2π

(

x +
1

6

)

(

1 +
1

144
(

x + 1

4

)2
− 1

12960
(

x + 1

4

)3
− · · ·

)

(New) . (3.5)

Table 1 displays the number of exact decimal digits (edd) of the formulas for
some values of x. Exact decimal digits are defined as follows:

edd (x) = − log10

∣

∣

∣

∣

1 − approximation (x)

Γ (x + 1)

∣

∣

∣

∣

. (3.6)
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In the table below the (i)-th entry (i = 1, 2, . . .) in a line starting with “name”
is the edd of the given approximation using the series up to the i-th order term.
The “−” sign indicates that the approximation is smaller and the “+” sign (not
displayed) indicates that the approximation is larger than the true value. Note
that in the case of Stirling’s formula the first n terms of the asymptotic series give
the 2nth order approximation.

Conclusion. It is seen that when we use odd order approximations, Laplace’s for-
mula is the most accurate. In the case of even orders Ramanujan’s approximation
is better than Stirling’s, Laplace’s and the one by Mortici, but our new formula
gives better approximations even than that of Ramanujan’s.

Formula x (1) (2) (3) (4) (5) (6) (7) (8)

Stirling 100 8.6 -13.1 17.2 -21.1
Laplace 100 -6.5 8.6 11.7 -13.1 16.2 17.2 -20.4 -21.1
Ramanujan 100 -5.7 -9.2 11.0 -13.3 -15.4 17.3 19.5 -21.1
Mortici 100 -6.2 8.6 11.4 -13.1 -15.9 17.2 -20.0 -21.1
New 100 -6.2 10.1 10.9 -14.9 -15.2 19.4 19.2 -23.0

Stirling 1000 11.6 -18.1 24.2 -30.1
Laplace 1000 -8.5 11.6 15.6 -18.1 22.2 24.2 -28.3 -30.1
Ramanujan 1000 -7.7 -12.2 15.0 -18.3 -21.4 24.3 27.5 -30.1
Mortici 1000 -8.2 11.6 15.4 -18.1 -21.9 24.2 -28.0 -30.1
New 1000 -8.2 13.1 14.9 -19.7 -21.2 26.9 27.2 -33.5

Stirling 10000 14.6 -23.1 31.2 -39.1
Laplace 10000 -10.5 14.6 19.6 -23.1 28.2 31.2 -36.3 -39.1
Ramanujan 10000 -9.7 -15.2 19.0 -23.3 -27.4 31.3 35.5 -39.1
Mortici 10000 -10.2 14.6 19.3 -23.1 -27.9 31.2 -36.0 -39.1
New 10000 -10.2 16.1 18.9 -24.7 -27.2 33.7 35.2 -42.1

Table 1: The number of exact decimal digits of the asymptotic series for
some values of x.

Expression (2.5) is a slightly different than the previous ones, thus we consider
it’s edds in a separate table. The notations are the same except the fact that this
series contains only even order terms.

Formula x (2) (4) (6) (8) (10)

Special 100 10.9 -15.2 19.2 -22.9 26.5
Special 1000 14.9 -21.2 27.2 -32.9 38.5
Special 10000 18.9 -27.2 35.2 -42.9 -50.5

Table 2: The number of exact decimal digits of the special asymptotic series
(2.5) for some values of x.
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A Tables of coefficients

g0 1

g1
1

144
v1

23

90

g2 − 3857

3110400
v2

1792627

7289730

g3
20932906335329

34283052002304000
v3

570984637359867601981

2288928529497568067550

Table 3: The first few exact values of the sequences {gn}n≥0
and {vn}n≥1

.

g0 1.000000000000000

g1 0.006944444444444 v1 0.255555555555555

g2 −0.001240033436214 v2 0.245911302613402

g3 0.000610590513759 v3 0.249454987345193

g4 −0.000655407405149 v4 0.249839892410196

g5 0.001199164540953 v5 0.249958497082160

Table 4: The first few numerical values of the sequences {gn}n≥0
and

{vn}n≥1
.

G0 1 G5 − 53

2612736
G10

360182239526821

300361133850624000

G1 0 G6
5741173

9405849600
G11

104939254406053

210853515963138048000

G2
1

144
G7

37529

18811699200
G12 − 508096766056991140541

151814531493459394560000

G3 − 1

12960
G8 − 710165119

1083553873920 G13 − 70637580369737593

151814531493459394560000

G4 − 257

207360
G9 − 3376971533

4022693756928000
G14

289375690552473442964467

21861292535058152816640000

Table 5: The first few Gn coefficients.
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