On the Maximal Inequalities for Partial Sums of Strong Mixing Random Variables with Applications ${ }^{1}$

Guo-dong Xing ${ }^{\dagger}$ and Shan-chao Yang ‡
${ }^{\dagger}$ Department of Mathematics, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China e-mail : xingguod@163.com
${ }^{\ddagger}$ Department of Mathematics, Guangxi Normal University, Guilin, Guangxi 541004, China

Abstract

Maximal inequalities for partial sums of strong mixing random variables are established. To show the applications of the inequalities obtained, we discuss the strong consistency of Gasser-Müller estimator of fixed design regression estimate and obtain the almost sure convergence rate $n^{-1 / 2}(\log \log n)^{1 / \xi} \log ^{3 / 2} n$ with any $0<\xi<2$, which closes to the optimal achievable convergence rate for independent random variables under an iterated logarithm.

Keywords : Convergence rate; Gasser-Müller estimator; Maximal inequality; Strong mixing.
2010 Mathematics Subject Classification : 60E15; 60F15; 62G07.

1 Introduction and Inequalities

Definition 1.1. Assume that $\left\{X_{i}: i \in Z\right\}$ is a real-valued random variable sequence on a probability space $(\Omega \mathcal{B} P)$. Let \Re_{m}^{n} denote the σ-algebra generated by $\left(X_{i}: m \leq i \leq n\right)$. Set

$$
\alpha(n)=\sup _{m \geq 1} \sup _{A \in \Re_{-\infty}^{m}, B \in \Re_{m+n}^{\infty}}\{|P(A B)-P(A) P(B)|\}
$$

[^0]The sequence $\left\{X_{i}\right\}$ is said to be strong mixing if $\alpha(n) \rightarrow 0$ as $n \rightarrow \infty$.
Since Rosenblatt [1] introduced the strong mixing coefficient, one has been recognizing its importance more and more. One can refer to Chanda [2], Gorodeskii [3], Withers [4], Liang et al. [5], Liang and Uña-Álvarez [6] and Xing et al. [7] for further understanding.

In this paper, we'll prove the following maximal inequalities for strong mixing sequences.

Theorem 1.2. Let $1<r \leq 2, \delta>0$ and $\left\{X_{i}, i \geq 1\right\}$ be a strong mixing sequence of random variables with zero mean. Assume that

$$
\begin{equation*}
\alpha(n) \leq C n^{-\theta} \text { for some } C>0 \text { and } \theta>r(r+\delta) /(2 \delta) \tag{1.1}
\end{equation*}
$$

Then, for any $\varepsilon>0$, there exists a positive constant $K=K(\varepsilon, r, \delta, \theta, C)$ such that

$$
\begin{equation*}
E \max _{1 \leq j \leq n}\left|S_{j}\right|^{r} \leq K\left\{n^{\varepsilon} \sum_{i=1}^{n} E\left|X_{i}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\} \tag{1.2}
\end{equation*}
$$

Remark 1.3.

(1) Although the mixing coefficient condition of Theorem 1.2 in this paper is stronger than that of Theorem 1.2 of Xing et al. [7], the bound of the result (1.2) is smaller than that of Theorem 1.1 of Xing et al. [7].
(2) Since the result (1.2) holds without the assumption that $\left.E X_{i}\right|^{r+\delta}<\infty$, Theorem 1.1 improves Theorem 1 in Huang and Xing [8].
(3) Since the up-boundary of the inequality (1.2) contains the information of moment summations, it may be of much efficiency in exploring the asymptotical property of weighted sums.

Theorem 1.4. Let $\left\{X_{i}, i \geq 1\right\}$ be a strong mixing sequence of random variables with zero mean and $\alpha(i)$ satisfy

$$
\begin{equation*}
\sum_{i=1}^{\infty} \alpha(i)^{(u-2) / u}<\infty \tag{1.3}
\end{equation*}
$$

for some $u>2$. Then, we have

$$
\begin{equation*}
E \max _{1 \leq j \leq n}\left|S_{j}\right|^{2} \leq C \log ^{2}(2 n) \sum_{i=1}^{n}\left\|X_{i}\right\|_{u}^{2} \tag{1.4}
\end{equation*}
$$

To illustrate the applications of the inequalities above, we explore the strong consistency of Gasser-Müller estimator of fixed design regression estimate under strong mixing errors by Theorem 1.2 and obtain the almost sure convergence rate
$n^{-1 / 2}(\log \log n)^{1 / \xi} \log ^{3 / 2} n$ with any $0<\xi<2$ for strong mixing sequences by Theorem 1.2, which closes to the optimal achievable convergence rate for independent random variables under an iterated logarithm.

Throughout this paper, we always suppose that C denotes constant which only depends on some given numbers and may vary from one appearance to the next, $a_{n}=O\left(b_{n}\right)$ represents $a_{n} \leq C b_{n}, a_{n} \ll b_{n}$ means $a_{n}=O\left(b_{n}\right)$, $[x]$ denotes the integer part of $x,\|X\|_{r}=\left(E|X|^{r}\right)^{1 / r}$ and $a \wedge b=\min \{a, b\}$. The paper is organized as following. Section 2 contains the applications of the maximal inequalities, section 3 provides the proofs of the maximal inequalities.

2 Applications

In this section, we'll show the applications of Theorem 1.2 and Theorem 1.4. Firstly, let us investigate the strong consistency of Gasser-Müller estimator of fixed design regression estimate. Let A be a compact set in R. Consider observations

$$
Y_{i}=g\left(x_{n i}\right)+\varepsilon_{i}, \quad i=1,2, \ldots, n
$$

where $x_{n 1}, x_{n 2}, \ldots, x_{n n} \in A$ are fixed points, g is a bounded real valued function on A and $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are random errors with $E \varepsilon_{i}=0, i=1,2, \ldots, n$. The general linear smooth estimate is defined by the formula

$$
g_{n}(x)=\sum_{i=1}^{n} \omega_{n i}(x) Y_{i}, \quad x \in A \subset R
$$

where weight functions $\omega_{n i}, i=1,2, \ldots, n$, depend on the fixed design points $x_{n 1}, x_{n 2}, \ldots, x_{n n}$ and the number of observations n. Assume

$$
\omega_{n i}(x)=\frac{K\left(\frac{x-x_{n i}}{h_{n}}\right)}{\sum_{j=1}^{n} K\left(\frac{x-x_{n j}}{h_{n}}\right)}
$$

where $0=x_{n 0} \leq x_{n 1} \leq \cdots \leq x_{n n}=1,0<h_{n} \rightarrow 0, K(\cdot)$ is a probability density function and $g(\cdot)$ is bounded and integrable in $[0,1]$. Denote Gasser-Müller estimator by

$$
\begin{equation*}
g_{n}(x)=\sum_{i=1}^{n} \omega_{n i}(x) Y_{i} \tag{2.1}
\end{equation*}
$$

By the proof of Theorem 2.3 in Xing et al. [7] and Theorem 1.2, we can obtain the following theorem.

Theorem 2.1. Let $2 \geq r>p \geq 1$ and $\left\{\varepsilon_{i}\right\}$ be a strong mixing sequence of random variables. Assume
(i) $E \varepsilon_{i}=0, \sup _{i \geq 1} E\left|\varepsilon_{i}\right|^{r}<\infty$.
(ii) $\alpha(n) \leq C n^{-\theta}$ for some $\theta>r p /(2(r-p))$.
(iii) $K(u)$ is continuous almost everywhere in R, nonincreasing in $[0, \infty)$, nondecreasing in $(-\infty, 0)$ and $\lim _{|u| \rightarrow \infty}|u| K(u)=0$. There exists a majorcant $H(u)$ which is bounded, symmetric, nonincreasing in $[0, \infty)$ and integrable over R, such that $K(u) \leq H(u)$ for $u \in R$.
(iv) There exists two constants C_{1} and C_{2} such that $\frac{C_{1}}{n} \leq x_{n i}-x_{n, i-1} \leq \frac{C_{2}}{n}$ for $i=1,2, \ldots, n$.
(v) $\left(n h_{n}\right)^{-1}=O\left(n^{-1 / p}\right)$.

Then at every continuous point $x \in A$ of the function g, we obtain

$$
\begin{equation*}
g_{n}(x) \rightarrow g(x), \text { a.s. } \tag{2.5}
\end{equation*}
$$

Next, we will investigate almost sure convergence rate for α-mixng sequeces by Theorem 1.4. The result is

Theorem 2.2. Let $\left\{X_{i}, i \geq 1\right\}$ be a strong mixing sequence of random variables with $E X_{i}=0$, the mixing coefficient $\alpha(i)$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{\infty} \alpha(i)^{\eta /(2+\eta)}<\infty \tag{2.6}
\end{equation*}
$$

for some $\eta>0$ and $\sup _{i \geq 1} E\left|X_{i}\right|^{v+\eta_{1}}<\infty$ for some $1 \leq v \leq 2$ and $\eta_{1}=v \eta / 2$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then, we have, for any $0<\xi<2$,

$$
\begin{equation*}
S_{n} /\left(n(\log \log n)^{2 / \xi} \log ^{3} n\right)^{1 / v} \rightarrow 0 \quad \text { a.s. } \tag{2.7}
\end{equation*}
$$

Proof. Set $b_{n}=\left(n(\log \log n)^{2 / \xi} \log ^{3} n\right)^{1 / v}, \quad X_{i 1}=X_{i} I\left(\left|X_{i}\right| \leq b_{n}\right)$ and $S_{j 1}=$ $\sum_{i=1}^{j}\left(X_{i 1}-E X_{i 1}\right)$. By subsequence method, it is sufficient to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1} P\left(\max _{1 \leq j \leq n}\left|S_{j}\right|>\varepsilon b_{n}\right)<\infty \tag{2.8}
\end{equation*}
$$

for any $\varepsilon>0$. We first show that

$$
\begin{equation*}
b_{n}^{-1} \max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} E X_{i 1}\right| \rightarrow 0 \tag{2.9}
\end{equation*}
$$

Since $E\left|X_{i}\right| I\left(\left|X_{i}\right|>b_{n}\right) \leq b_{n}^{1-v-\eta_{1}} E\left|X_{i}\right|^{v+\eta_{1}} I\left(\left|X_{i}\right|>b_{n}\right) \ll b_{n}^{1-v-\eta_{1}}$, we can get

$$
\sum_{i=1}^{n} E\left|X_{i}\right| I\left(\left|X_{i}\right|>b_{n}\right) \ll n b_{n}^{1-v-\eta_{1}}
$$

By this and $E X_{i}=0$, we have

$$
\begin{aligned}
b_{n}^{-1} \max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} E X_{i 1}\right| & =b_{n}^{-1} \max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} E X_{i} I\left(\left|X_{i}\right| \leq b_{n}\right)\right| \\
& =b_{n}^{-1} \max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} E X_{i} I\left(\left|X_{i}\right|>b_{n}\right)\right| \\
& \leq b_{n}^{-1} \sum_{i=1}^{n} E\left|X_{i}\right| I\left(\left|X_{i}\right|>b_{n}\right) \\
& \leq n b_{n}^{-v-\eta_{1}} \rightarrow 0
\end{aligned}
$$

Hence, (2.9) holds. From (2.9), it follows that for sufficiently large n,

$$
\begin{aligned}
& P\left(\max _{1 \leq j \leq n}\left|S_{j}\right|>\varepsilon b_{n}\right) \\
& \quad=P\left(\max _{1 \leq j \leq n}\left|S_{j}\right|>\varepsilon b_{n}, \exists\left|X_{i}\right|>b_{n}\right)+P\left(\max _{1 \leq j \leq n}\left|S_{j}\right|>\varepsilon b_{n}, \forall\left|X_{i}\right| \leq b_{n}\right) \\
& \quad \leq P\left(\max _{1 \leq i \leq n}\left|X_{i}\right|>b_{n}\right)+P\left(\max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} X_{i 1}\right|>\varepsilon b_{n}\right) \\
& \quad \leq P\left(\max _{1 \leq i \leq n}\left|X_{i}\right|>b_{n}\right)+P\left(\max _{1 \leq j \leq n}\left|S_{j 1}\right|>\varepsilon b_{n}-\max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} E X_{i 1}\right|\right) \\
& \quad \leq \sum_{i=1}^{n} P\left(\left|X_{i}\right|>b_{n}\right)+P\left(\max _{1 \leq j \leq n}\left|S_{j 1}\right|>\varepsilon b_{n} / 2\right) .
\end{aligned}
$$

Thus, we need only to prove that

$$
\begin{gather*}
I:=\sum_{n=1}^{\infty} n^{-1} \sum_{i=1}^{n} P\left(\left|X_{i}\right|>b_{n}\right)<\infty, \\
I I:=\sum_{n=1}^{\infty} n^{-1} P\left(\max _{1 \leq j \leq n}\left|S_{j 1}\right|>\varepsilon b_{n} / 2\right)<\infty . \tag{2.10}
\end{gather*}
$$

By Markov inequality, it follows that

$$
I=\sum_{n=1}^{\infty} n^{-1} \sum_{i=1}^{n} P\left(\left|X_{i}\right|>b_{n}\right) \leq \sum_{n=1}^{\infty} n^{-1} \sum_{i=1}^{n} b_{n}^{-v} E\left|X_{i}\right|^{v} \ll \sum_{n=1}^{\infty} b_{n}^{-v}<\infty
$$

By Theorem 1.4, we have

$$
\begin{aligned}
I I & =\sum_{n=1}^{\infty} n^{-1} P\left(\max _{1 \leq j \leq n}\left|S_{j 1}\right|>\varepsilon b_{n} / 2\right) \\
& \leq C \sum_{n=2}^{\infty} n^{-1} b_{n}^{-2} E \max _{1 \leq j \leq n}\left|S_{j 1}\right|^{2} \\
& \leq C \sum_{n=2}^{\infty} n^{-1} b_{n}^{-2} \log ^{2}(2 n) \sum_{i=1}^{n}\left\|X_{i 1}\right\|_{2+\eta}^{2} \\
& \leq C \sum_{n=2}^{\infty} n^{-1} b_{n}^{-2} \log ^{2} n \sum_{i=1}^{n}\left(E\left|X_{i}\right|^{2+\eta} I\left(\left|X_{i}\right| \leq b_{n}\right)\right)^{2 /(2+\eta)} \\
& =C \sum_{n=2}^{\infty} n^{-1} b_{n}^{-2} \log ^{2} n \sum_{i=1}^{n}\left(b_{n}^{2+\eta} E\left(\left|X_{i}\right|^{2+\eta} / b_{n}^{2+\eta}\right) I\left(\left|X_{i}\right| \leq b_{n}\right)\right)^{2 /(2+\eta)} \\
& \leq C \sum_{n=2}^{\infty} n^{-1} b_{n}^{-2} \log ^{2} n \sum_{i=1}^{n}\left(b_{n}^{2+\eta} E\left(\left|X_{i}\right|^{v+\eta_{1}} / b_{n}^{v+\eta_{1}}\right) I\left(\left|X_{i}\right| \leq b_{n}\right)\right)^{2 /(2+\eta)} \\
& =C \sum_{n=2}^{\infty} n^{-1} b_{n}^{-2} \log ^{2} n \sum_{i=1}^{n}\left(b_{n}^{2+\eta-v-\eta_{1}} E\left|X_{i}\right|^{v+\eta_{1}} I\left(\left|X_{i}\right| \leq b_{n}\right)\right)^{2 /(2+\eta)} \\
& \leq C \sum_{n=2}^{\infty} b_{n}^{-v} \log ^{2} n \\
& <\infty .
\end{aligned}
$$

Now we complete the proof of Theorem 2.2.
Remark 2.3. For the case $v=2$, we can obtain that the almost sure convergence rate of S_{n} / n is $n^{-1 / 2}(\log \log n)^{1 / \xi} \log ^{3 / 2} n$ with any $0<\xi<2$, which closes to the optimal rate obtained under the iterated logarithm for independent random variables.

3 Proofs

Let $k=\left[(n / 2)^{\lambda}\right]$ and $m=\left[(n / 2)^{1-\lambda}\right]$, where $0<\lambda<1$ which will be given later on. Obviously,

$$
\begin{equation*}
n<2(m+1) k, C n^{\lambda}<k<2 n^{\lambda}, m<2 n^{1-\lambda} \tag{3.1}
\end{equation*}
$$

Fix n and redefine X_{i} as $X_{i}=X_{i}$ for $1 \leq i \leq n$ and $X_{i}=0$ for $i>n$. For $l=1,2, \ldots,\left[\frac{j}{2 k}\right]+1(1 \leq j \leq n)$, put

$$
Y_{l}=\sum_{2(l-1) k+1}^{j \wedge(2 l-1) k} X_{i}, Z_{l}=\sum_{(2 l-1) k+1}^{j \wedge 2 l k} X_{i}
$$

and $S_{1, l}=\sum_{i=1}^{l} Y_{i}, S_{2, l}=\sum_{i=1}^{l} Z_{i}$.

Lemma 3.1.

$$
\begin{equation*}
\max _{1 \leq j \leq n}\left|S_{j}\right|^{r} \leq C\left\{\max _{1 \leq l \leq m+1}\left|S_{1, l}\right|^{r}+\max _{1 \leq l \leq m+1}\left|S_{2, l}\right|^{r}\right\} \tag{3.2}
\end{equation*}
$$

Proof. By (3.1) and so-called C_{r} inequality, we immediately get (3.2). It is easy to observe that

$$
\begin{equation*}
\max _{1 \leq l \leq m+1}\left|S_{1, l}\right|^{r} \leq 2^{r-1}\left|\max _{1 \leq l \leq m+1} S_{1, l}\right|^{r}+2^{r-1}\left|\max _{1 \leq l \leq m+1}\left(-S_{1, l}\right)\right|^{r} . \tag{3.3}
\end{equation*}
$$

Let $M_{l}, N_{l}, \widetilde{M}_{l}, \tilde{N}_{l}$ be as in Xing et al. [7]. Then, by the proof of Lemma 3.1 in Xing et al. [7], we have the following lemma.

Lemma 3.2. If $\theta>r(r+\delta) /(2 \delta)$, then for any $\tau>0$, there exist positive constants $C_{\tau}=C(\tau, r, \delta, \theta)<\infty$ and $C_{r}=C(r)<\infty$ such that

$$
\begin{align*}
& \sum_{l=1}^{m+1} E\left(Y_{l} M_{l}^{r-1}\right) \leq C_{\tau}\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}+\tau C_{r} E \max _{1 \leq l \leq m+1}\left|S_{1, l}\right|^{r}, \tag{3.4}\\
& \sum_{l=1}^{m+1} E\left(Y_{l} \widetilde{M}_{l}^{r-1}\right) \leq C_{\tau}\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}+\tau C_{r} E \max _{1 \leq l \leq m+1}\left|S_{1, l}\right|^{r} . \tag{3.5}
\end{align*}
$$

Lemma 3.3. If $\theta>r(r+\delta) /(2 \delta)$, then

$$
\begin{align*}
& E \max _{1 \leq l \leq m+1}\left|S_{1, l}\right|^{r} \leq C\left\{\sum_{l=1}^{m+1} E\left|Y_{l}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\}, \tag{3.6}\\
& E \max _{1 \leq l \leq m+1}\left|S_{2, l}\right|^{r} \leq C\left\{\sum_{l=1}^{m+1} E\left|Z_{l}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\} . \tag{3.7}
\end{align*}
$$

Proof. From the proof of Lemma 3.2 in Xing et al. [7] and Lemma 3.2, we can get the desired results and so the details are omitted here.

Proof of Theorem 1.2. It follows from Lemma 3.1 and Lemma 3.3,

$$
\begin{equation*}
E_{1 \leq j \leq n} \max _{j} \mid S^{r} \leq C\left\{\sum_{l=1}^{2(m+1)}\left(E\left|Y_{l}\right|^{r}+E\left|Z_{l}\right|^{r}\right)+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\} . \tag{3.8}
\end{equation*}
$$

Using so-called Cr-inequality for $E\left|Y_{l}\right|^{r}, E\left|Z_{l}\right|^{r}$ mentioned above, and noting (3.3), we have

$$
\begin{aligned}
E \max _{1 \leq j \leq n}\left|S_{j}\right|^{r} & \leq C\left\{k^{r-1} \sum_{i=1}^{n} E\left|X_{i}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\} \\
& \leq C\left\{n^{\lambda(r-1)} \sum_{i=1}^{n} E\left|X_{i}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\} .
\end{aligned}
$$

Applying the result to $E\left|Y_{l}\right|^{r}, E\left|Z_{l}\right|^{r}$ in (3.8),

$$
\begin{aligned}
E \max _{1 \leq j \leq n}\left|S_{j}\right|^{r} & \leq C\left\{k^{\lambda(r-1)} \sum_{i=1}^{n} E\left|X_{i}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\} \\
& \leq C\left\{n^{\lambda^{2}(r-1)} \sum_{i=1}^{n} E\left|X_{i}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\} .
\end{aligned}
$$

Repeating t times in this way for $E\left|Y_{l}\right|^{r}, E\left|Z_{l}\right|^{r}$ in (3.8), we obtain

$$
E \max _{1 \leq j \leq n}\left|S_{j}\right|^{r} \leq C\left\{n^{\lambda^{t}(r-1)} \sum_{i=1}^{n} E\left|X_{i}\right|^{r}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{r+\delta}^{2}\right)^{r / 2}\right\}
$$

for integer $t \geq 1$. Since $0<\lambda<1, \lambda^{t}(r-1)<\varepsilon$ for some $t>1$. Hence (1.2) holds. The proof is completed.

In order to prove Theorem 1.4, we need
Lemma 3.4. (Stout [9]) Let $S_{n}=\sum_{i=1}^{n} X_{i}$. If $E S_{k}^{2} \leq C \sum_{i=1}^{k}\left\|X_{i}\right\|_{u}^{2}$ for some $u>2$, then

$$
E \max _{1 \leq j \leq n}\left|S_{j}\right|^{2} \leq C \log ^{2}(2 n) \sum_{i=1}^{n}\left\|X_{i}\right\|_{u}^{2}
$$

Proof of Theorem 1.4. By Theorem 7.3 in Roussas and Ioannidies [10] and the condition (1.3), we have

$$
E S_{n}^{2} \leq C \sum_{i=1}^{n}\left\|X_{i}\right\|_{u}^{2}
$$

which, together with Lemma 3.4, yields the desired result (1.4).
Acknowledgements : The authors are grateful to an anonymous referee for his/her careful reading and providing detailed lists of comments and suggestions which greatly improved the presentation of the paper.

References

[1] M. Rosenblatt, A Central Limit Theorem and a Strong Mixing Condition, Proc. N. A. S. 42 (1956) 43-47.
[2] K.C. Chanda, Strong mixing properties of linear stochastic processes, J. Appl. Probability 11 (1974) 401-408.
[3] V.V. Gorodetskii, On the Strong Mixing Properties for Linear Processes. Theory of Probability and its Applications 22 (1977) 441-413.
[4] C.S. Withers, Conditions for Linear Processes to be Strong Mixing, Z. Wahrsch. Verw. Crebiete. 57 (1981) 477-480.
[5] H. Liang, D. Li, Y. Qi, Strong convergence in nonparametric regression with truncated dependent data, Journal of Multivariate Analysis 100 (2009) 162174.
[6] H.Y. Liang, J. Uña-Álvarez, A Berry-Esseen bound in kernel density estimation for strong mixing censored samples, Journal of Multivariate Analysis 100 (2009) 1219-1231.
[7] G. Xing, S. Yang, A. Chen, . A maximal moment inequality for $\alpha-$ mixing sequences and its applications. Statistics and Probability Letters 79 (2009) 1429-1437.
[8] J. Huang, G. Xing, A moment inequality for α-mixing sequences and its application. Journal of Jiangxi Normal University (Natural Sciences Edition) 32 (2009) 585-588.
[9] W.F. Stout, Almost sure convergence. Academic press, New York, 1974.
[10] G.G. Roussas, D.A. Ioannidies, Moment inequalities for mixing sequences of random variables, Stochastic Anal. Appl. 5 (1987) 61-120.
(Received 8 April 2010)
(Accepted 8 November 2010)

Thai J. Math. Online @ http://www.math.science.cmu.ac.th/thaijournal

[^0]: ${ }^{1}$ Supported by the National Foundation of China (No.11061007)
 Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.

