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1 Introduction and Inequalities

Definition 1.1. Assume that {Xi : i ∈ Z} is a real-valued random variable se-
quence on a probability space (Ω B P ). Let ℜn

m denote the σ-algebra generated by
(Xi : m ≤ i ≤ n). Set

α(n) = sup
m≥1

sup
A∈ℜm

−∞
,B∈ℜ∞

m+n

{|P (AB) − P (A)P (B)|}
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The sequence {Xi} is said to be strong mixing if α(n) → 0 as n → ∞.

Since Rosenblatt [1] introduced the strong mixing coefficient, one has been
recognizing its importance more and more. One can refer to Chanda [2], Gorodeskii
[3], Withers [4], Liang et al. [5], Liang and Uña-Álvarez [6] and Xing et al. [7] for
further understanding.

In this paper, we’ll prove the following maximal inequalities for strong mixing
sequences.

Theorem 1.2. Let 1 < r ≤ 2, δ > 0 and {Xi, i ≥ 1} be a strong mixing sequence
of random variables with zero mean. Assume that

α(n) ≤ Cn−θ for some C > 0 and θ > r(r + δ)/(2δ). (1.1)

Then, for any ε > 0, there exists a positive constant K = K(ε, r, δ, θ, C) such that

E max
1≤j≤n

|Sj|
r ≤ K



nε

n∑

i=1

E|Xi|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2


 . (1.2)

Remark 1.3.

(1) Although the mixing coefficient condition of Theorem 1.2 in this paper is
stronger than that of Theorem 1.2 of Xing et al. [7], the bound of the result
(1.2) is smaller than that of Theorem 1.1 of Xing et al. [7].

(2) Since the result (1.2) holds without the assumption that E|Xi|
r+δ < ∞,

Theorem 1.1 improves Theorem 1 in Huang and Xing [8].

(3) Since the up-boundary of the inequality (1.2) contains the information of
moment summations, it may be of much efficiency in exploring the asymp-
totical property of weighted sums.

Theorem 1.4. Let {Xi, i ≥ 1} be a strong mixing sequence of random variables
with zero mean and α(i) satisfy

∞∑

i=1

α(i)(u−2)/u < ∞ (1.3)

for some u > 2. Then, we have

E max
1≤j≤n

|Sj |
2 ≤ C log2(2n)

n∑

i=1

‖Xi‖
2
u. (1.4)

To illustrate the applications of the inequalities above, we explore the strong
consistency of Gasser-Müller estimator of fixed design regression estimate under
strong mixing errors by Theorem 1.2 and obtain the almost sure convergence rate
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n−1/2(log log n)1/ξ log3/2 n with any 0 < ξ < 2 for strong mixing sequences by The-
orem 1.2, which closes to the optimal achievable convergence rate for independent
random variables under an iterated logarithm.

Throughout this paper, we always suppose that C denotes constant which
only depends on some given numbers and may vary from one appearance to the
next, an = O(bn) represents an ≤ Cbn, an ≪ bn means an = O(bn), [x] denotes
the integer part of x, ‖X‖r = (E|X |r)1/r and a ∧ b = min{a, b}. The paper
is organized as following. Section 2 contains the applications of the maximal
inequalities, section 3 provides the proofs of the maximal inequalities.

2 Applications

In this section, we’ll show the applications of Theorem 1.2 and Theorem 1.4.
Firstly, let us investigate the strong consistency of Gasser-Müller estimator of fixed
design regression estimate. Let A be a compact set in R. Consider observations

Yi = g(xni) + εi, i = 1, 2, ..., n

where xn1, xn2, ..., xnn ∈ A are fixed points, g is a bounded real valued function
on A and ε1, ε2, ..., εn are random errors with Eεi = 0, i = 1, 2, ..., n. The general
linear smooth estimate is defined by the formula

gn(x) =

n∑

i=1

ωni(x)Yi, x ∈ A ⊂ R

where weight functions ωni, i = 1, 2, ..., n, depend on the fixed design points
xn1, xn2, ..., xnn and the number of observations n. Assume

ωni(x) =
K
(

x−xni

hn

)

n∑
j=1

K
(

x−xnj

hn

) ,

where 0 = xn0 ≤ xn1 ≤ · · · ≤ xnn = 1, 0 < hn → 0, K(·) is a probability
density function and g(·) is bounded and integrable in [0, 1]. Denote Gasser-Müller
estimator by

gn(x) =
n∑

i=1

ωni(x)Yi. (2.1)

By the proof of Theorem 2.3 in Xing et al. [7] and Theorem 1.2, we can obtain
the following theorem.

Theorem 2.1. Let 2 ≥ r > p ≥ 1 and {εi} be a strong mixing sequence of random
variables. Assume

(i) Eεi = 0, supi≥1 E|εi|
r < ∞. (2.2)
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(ii) α(n) ≤ Cn−θ for some θ > rp/(2(r − p)). (2.3)

(iii) K(u) is continuous almost everywhere in R, nonincreasing in [0,∞), non-
decreasing in (−∞, 0) and lim|u|→∞ |u|K(u) = 0. There exists a majorcant
H(u) which is bounded, symmetric, nonincreasing in [0,∞) and integrable
over R, such that K(u) ≤ H(u) for u ∈ R.

(iv) There exists two constants C1 and C2 such that C1

n ≤ xni − xn,i−1 ≤ C2

n for
i = 1, 2, ..., n.

(v) (nhn)−1 = O(n−1/p). (2.4)

Then at every continuous point x ∈ A of the function g, we obtain

gn(x) → g(x), a.s. (2.5)

Next, we will investigate almost sure convergence rate for α-mixng sequeces
by Theorem 1.4. The result is

Theorem 2.2. Let {Xi, i ≥ 1} be a strong mixing sequence of random variables
with EXi = 0, the mixing coefficient α(i) satisfying

∞∑

i=1

α(i)η/(2+η) < ∞ (2.6)

for some η > 0 and supi≥1 E|Xi|
v+η1 < ∞ for some 1 ≤ v ≤ 2 and η1 = vη/2.

Let Sn =
∑n

i=1 Xi. Then, we have, for any 0 < ξ < 2,

Sn/(n(log log n)2/ξ log3 n)1/v → 0 a.s. (2.7)

Proof. Set bn = (n(log log n)2/ξ log3 n)1/v, Xi1 = XiI(|Xi| ≤ bn) and Sj1 =∑j
i=1(Xi1 − EXi1). By subsequence method, it is sufficient to prove that

∞∑

n=1

n−1P ( max
1≤j≤n

|Sj | > εbn) < ∞ (2.8)

for any ε > 0. We first show that

b−1
n max

1≤j≤n

∣∣∣∣∣

j∑

i=1

EXi1

∣∣∣∣∣→ 0. (2.9)

Since E|Xi|I(|Xi| > bn) ≤ b1−v−η1
n E|Xi|

v+η1I(|Xi| > bn) ≪ b1−v−η1
n , we can get

n∑

i=1

E|Xi|I(|Xi| > bn) ≪ nb1−v−η1

n .
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By this and EXi = 0, we have

b−1
n max

1≤j≤n

∣∣∣∣∣

j∑

i=1

EXi1

∣∣∣∣∣ = b−1
n max

1≤j≤n

∣∣∣∣∣

j∑

i=1

EXiI(|Xi| ≤ bn)

∣∣∣∣∣

= b−1
n max

1≤j≤n

∣∣∣∣∣

j∑

i=1

EXiI(|Xi| > bn)

∣∣∣∣∣

≤ b−1
n

n∑

i=1

E|Xi|I(|Xi| > bn)

≤ nb−v−η1

n → 0.

Hence, (2.9) holds. From (2.9), it follows that for sufficiently large n,

P

(
max

1≤j≤n
|Sj | > εbn

)

= P

(
max

1≤j≤n
|Sj| > εbn, ∃|Xi| > bn

)
+ P

(
max

1≤j≤n
|Sj | > εbn, ∀|Xi| ≤ bn

)

≤ P

(
max

1≤i≤n
|Xi| > bn

)
+ P

(
max

1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi1

∣∣∣∣∣ > εbn

)

≤ P

(
max

1≤i≤n
|Xi| > bn

)
+ P

(
max

1≤j≤n
|Sj1| > εbn − max

1≤j≤n

∣∣∣∣∣

j∑

i=1

EXi1

∣∣∣∣∣

)

≤

n∑

i=1

P (|Xi| > bn) + P

(
max

1≤j≤n
|Sj1| > εbn/2

)
.

Thus, we need only to prove that

I :=

∞∑

n=1

n−1
n∑

i=1

P (|Xi| > bn) < ∞,

II :=

∞∑

n=1

n−1P

(
max

1≤j≤n
|Sj1| > εbn/2

)
< ∞. (2.10)

By Markov inequality, it follows that

I =

∞∑

n=1

n−1
n∑

i=1

P (|Xi| > bn) ≤

∞∑

n=1

n−1
n∑

i=1

b−v
n E|Xi|

v ≪

∞∑

n=1

b−v
n < ∞.
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By Theorem 1.4, we have

II =

∞∑

n=1

n−1P

(
max

1≤j≤n
|Sj1| > εbn/2

)

≤ C

∞∑

n=2

n−1b−2
n E max

1≤j≤n
|Sj1|

2

≤ C

∞∑

n=2

n−1b−2
n log2(2n)

n∑

i=1

‖Xi1‖
2
2+η

≤ C

∞∑

n=2

n−1b−2
n log2 n

n∑

i=1

(
E|Xi|

2+ηI(|Xi| ≤ bn)
)2/(2+η)

= C
∞∑

n=2

n−1b−2
n log2 n

n∑

i=1

(
b2+η
n E

(
|Xi|

2+η/b2+η
n

)
I(|Xi| ≤ bn)

)2/(2+η)

≤ C
∞∑

n=2

n−1b−2
n log2 n

n∑

i=1

(
b2+η
n E

(
|Xi|

v+η1/bv+η1

n

)
I(|Xi| ≤ bn)

)2/(2+η)

= C

∞∑

n=2

n−1b−2
n log2 n

n∑

i=1

(
b2+η−v−η1

n E|Xi|
v+η1I(|Xi| ≤ bn)

)2/(2+η)

≤ C

∞∑

n=2

b−v
n log2 n

< ∞.

Now we complete the proof of Theorem 2.2.

Remark 2.3. For the case v = 2, we can obtain that the almost sure convergence
rate of Sn/n is n−1/2(log log n)1/ξ log3/2 n with any 0 < ξ < 2, which closes to
the optimal rate obtained under the iterated logarithm for independent random
variables.

3 Proofs

Let k = [(n/2)λ] and m = [(n/2)1−λ], where 0 < λ < 1 which will be given
later on. Obviously,

n < 2(m + 1)k, Cnλ < k < 2nλ, m < 2n1−λ (3.1)

Fix n and redefine Xi as Xi = Xi for 1 ≤ i ≤ n and Xi = 0 for i > n. For
l = 1, 2, ..., [ j

2k ] + 1(1 ≤ j ≤ n), put

Yl =

j∧(2l−1)k∑

2(l−1)k+1

Xi, Zl =

j∧2lk∑

(2l−1)k+1

Xi
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and S1,l =
∑l

i=1 Yi, S2,l =
∑l

i=1 Zi.

Lemma 3.1.

max
1≤j≤n

|Sj |
r ≤ C

{
max

1≤l≤m+1
|S1,l|

r + max
1≤l≤m+1

|S2,l|
r

}
(3.2)

Proof. By (3.1) and so-called Cr inequality, we immediately get (3.2). It is easy
to observe that

max
1≤l≤m+1

|S1,l|
r ≤ 2r−1

∣∣∣∣ max
1≤l≤m+1

S1,l

∣∣∣∣
r

+ 2r−1

∣∣∣∣ max
1≤l≤m+1

(−S1,l)

∣∣∣∣
r

. (3.3)

Let Ml, Nl, M̃l, Ñl be as in Xing et al. [7]. Then, by the proof of Lemma 3.1
in Xing et al. [7], we have the following lemma.

Lemma 3.2. If θ > r(r + δ)/(2δ), then for any τ > 0, there exist positive con-
stants Cτ = C(τ, r, δ, θ) < ∞ and Cr = C(r) < ∞ such that

m+1∑

l=1

E
(
YlM

r−1
l

)
≤ Cτ

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2

+ τCrE max
1≤l≤m+1

|S1,l|
r, (3.4)

m+1∑

l=1

E
(
YlM̃l

r−1
)
≤ Cτ

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2

+ τCrE max
1≤l≤m+1

|S1,l|
r. (3.5)

Lemma 3.3. If θ > r(r + δ)/(2δ), then

E max
1≤l≤m+1

|S1,l|
r ≤ C





m+1∑

l=1

E|Yl|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2


 , (3.6)

E max
1≤l≤m+1

|S2,l|
r ≤ C





m+1∑

l=1

E|Zl|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2


 . (3.7)

Proof. From the proof of Lemma 3.2 in Xing et al. [7] and Lemma 3.2, we can get
the desired results and so the details are omitted here.

Proof of Theorem 1.2. It follows from Lemma 3.1 and Lemma 3.3,

E max
1≤j≤n

|Sj |
r ≤ C





2(m+1)∑

l=1

(E|Yl|
r + E|Zl|

r) +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2


 . (3.8)
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Using so-called Cr-inequality for E|Yl|
r, E|Zl|

r mentioned above, and noting (3.3),
we have

E max
1≤j≤n

|Sj |
r ≤ C



kr−1

n∑

i=1

E|Xi|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2




≤ C



nλ(r−1)

n∑

i=1

E|Xi|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2


 .

Applying the result to E|Yl|
r, E|Zl|

r in (3.8),

E max
1≤j≤n

|Sj |
r ≤ C



kλ(r−1)

n∑

i=1

E|Xi|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2




≤ C



nλ2(r−1)

n∑

i=1

E|Xi|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2


 .

Repeating t times in this way for E|Yl|
r, E|Zl|

r in (3.8), we obtain

E max
1≤j≤n

|Sj |
r ≤ C



nλt(r−1)

n∑

i=1

E|Xi|
r +

(
n∑

i=1

‖Xi‖
2
r+δ

)r/2




for integer t ≥ 1. Since 0 < λ < 1, λt(r− 1) < ε for some t > 1. Hence (1.2) holds.
The proof is completed.

In order to prove Theorem 1.4, we need

Lemma 3.4. (Stout [9]) Let Sn =
∑n

i=1 Xi. If ES2
k ≤ C

∑k
i=1 ‖Xi‖

2
u for some

u > 2, then

E max
1≤j≤n

|Sj |
2 ≤ C log2(2n)

n∑

i=1

‖Xi‖
2
u.

Proof of Theorem 1.4. By Theorem 7.3 in Roussas and Ioannidies [10] and the
condition (1.3), we have

ES2
n ≤ C

n∑

i=1

‖Xi‖
2
u,

which, together with Lemma 3.4, yields the desired result (1.4).
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