Thai Journal of Mathematics Volume 9 (2011) Number 1 : 1–10

Online ISSN 1686-0209

www.math.science.cmu.ac.th/thaijournal

A Fixed Point Theorem of Generalized Weakly Contractive Maps

in Orbitally Complete Metric Spaces

G.V.R. Babu[†] and P.D. Sailaja[‡]

[†]Department of Mathematics, Andhra University, Visakhapatnam-530 003, India e-mail : gvr_babu@hotmail.com [‡]Department of Mathematics, Lendi Institute of Engineering and Technology, Vizianagaram-535 005, India e-mail : sailajadurga@yahoo.com

Abstract : We prove the existence of fixed points of a generalized weakly contractive map in T-orbitally complete metric spaces. This result generalizes the results of Babu and Alemayehu [1] and Rhoades [2] when the space under consideration is bounded.

Keywords : Weakly contractive maps; Generalized weakly contractive maps; Fixed point; *T*-orbitally complete metric spaces.

2010 Mathematics Subject Classification : 47H10; 54H25.

1 Introduction

In 1997, Alber and Guerre-Delabriere [3] introduced the concept of weakly contractive maps in Hilbert spaces and proved the existence of fixed points. Rhoades [2] extended this concept to Banach spaces and established the existence of fixed points.

Throughout this paper, (X, d) is a metric space which we denote simply by X and $T: X \to X$ a selfmap of X. We denote $R^+ = [0, \infty)$, N, the set of all natural numbers and R, the set of all real numbers. We write

Copyright $\odot\,$ 2011 by the Mathematical Association of Thailand. All rights reserved.

 $\Phi = \{\varphi : [0,\infty) \to [0,\infty)/(i) \varphi \text{ is continuous (ii) } \varphi \text{ is non-decreasing} \\ (iii) \varphi(t) > 0 \text{ for } t > 0 \text{ and (iv) } \varphi(0) = 0 \}.$

A selfmap $T: X \to X$ is said to be a *weakly contractive map* if there exists a $\varphi \in \Phi$ with $\lim_{t\to\infty} \varphi(t) = \infty$ such that

$$d(Tx, Ty) \le d(x, y) - \varphi(d(x, y)) \text{ for all } x, y \in X.$$
(1)

Here we observe that every contraction map T on X with contraction constant k is a weakly contractive map with $\phi(t) = (1-k)t$, $t \ge 0$. But its converse need not be true.

Theorem 1.1. (Rhoades [2]) Let (X, d) be a complete metric space and T a weakly contractive map. Then T has a unique fixed point in X.

A selfmap $T: X \to X$ is said to be a generalized weakly contractive map if there exists a $\varphi \in \Phi$ such that

$$d(Tx, Ty) \le M(x, y) - \varphi(M(x, y)) \text{ for all } x, y \in X,$$
(2)

where $M(x,y) = \max \left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} [d(x,Ty) + d(y,Tx)] \right\}.$

Remark 1.2. (Babu and Alemayehu [1]) Every weakly contractive map defined on a bounded metric space with a positive diameter is a generalized weakly contractive map, but it's converse need not be true.

Theorem 1.3. (Babu and Alemayehu [1]) Let (X, d) be a complete metric space and $T: X \to X$ be a selfmap. If T is a generalized weakly contractive map on X, then T has a unique fixed point in X.

If X is a complete metric space which is bounded, then by Remark 1.2, Theorem 1.1 follows as a corollary to Theorem 1.3. In fact in this case, Theorem 1.3 is a generalization of Theorem 1.1 (Example 3.2 of Babu and Alemayehu, [1]).

For $x_0 \in X, O(x_0) = \{T^n x_0 / n = 0, 1, 2, ...\}$ is called the *orbit of* x_0 , where $T^0 = I$, I the identity map of X.

A metric space X is said to be T-orbitally complete if every Cauchy sequence which is contained in O(x) for all x in X converges to a point of X.

Here we note that every complete metric space is T- orbitally complete for any T, but a T- orbitally complete metric space need not be a complete metric space. For more details, we refer Turkoglu, Ozer and Fisher [4].

In this paper, we prove the existence of fixed points of a generalized weakly contractive map in T-orbitally complete metric spaces. Our theorems generalize the results of Babu and Alemayehu [1] and Rhoades [2].

We use the following lemma to prove our main result, whose proof is well known. But for completeness sake we present it's proof.

Lemma 1.4. Suppose (X, d) is a metric space. Let $\{x_n\}$ be a sequence in X such that $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$. If $\{x_n\}$ is not a Cauchy sequence then there exist an $\epsilon > 0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with m(k) > n(k) > k such that $d(x_m(k), x_n(k)) \ge \epsilon, d(x_m(k)-1, x_n(k)) < \epsilon$ and

A Fixed Point Theorems of Generalized Weakly Contractive Maps ...

- (i) $\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) = \epsilon;$
- (*ii*) $\lim_{k\to\infty} d(x_{m(k)}, x_{n(k)}) = \epsilon;$
- (*iii*) $\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) = \epsilon.$

Proof. If $\{x_n\}$ is not a Cauchy sequence then there exists an $\epsilon > 0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ such that m(k) > n(k) > k satisfying

$$d(x_{m(k)}, x_{n(k)}) \ge \epsilon. \tag{1.4.1}$$

We choose m(k), the least positive integer satisfying (1.4.1). Then we have

$$m(k) > n(k) > k$$
 with $d(x_{m(k)}, x_{n(k)}) \ge \epsilon$ and $d(x_{m(k)-1}, x_{n(k)}) < \epsilon$. (1.4.2)

We now prove (i).

(i) By using the triangle inequality, we have

$$\epsilon \le d(x_{m(k)}, x_{n(k)}) \le d(x_{m(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{n(k)+1}) + d(x_{n(k)+1}, x_{n(k)}).$$

By taking limit inferior as $k \to \infty$, we get

$$\begin{aligned} \epsilon &\leq \liminf_{k \to \infty} d(x_{m(k)}, x_{m(k)-1}) &+ \liminf_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) \\ &+ \liminf_{k \to \infty} d(x_{n(k)+1}, x_{n(k)}). \end{aligned}$$

Now, on using $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$, we get

$$\epsilon \le \liminf_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}).$$
(1.4.3)

Now,

$$\begin{aligned} d(x_{m(k)-1}, x_{n(k)+1}) &\leq d(x_{m(k)-1}, x_{n(k)}) + d(x_{n(k)}, x_{n(k)+1}) \\ &< \epsilon + d(x_{n(k)}, x_{n(k)+1}). \end{aligned}$$

Now taking limit superior as $k \to \infty$, we get

$$\limsup_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) \le \epsilon + \limsup_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) = \epsilon.$$

Therefore,

$$\limsup_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) \le \epsilon.$$
(1.4.4)

From (1.4.3) and (1.4.4), we get

$$\liminf_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) = \limsup_{k \to \infty} d(x_{n(k)}, x_{n(k)+1}) = \epsilon,$$

so that

$$\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) \text{ exists and } \lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) = \epsilon$$

Hence (i) holds.

(ii) We have, $d(x_{m(k)}, x_{n(k)}) \geq \epsilon$, and hence

$$\epsilon \le \liminf_{k \to \infty} d(x_{m(k)}, x_{n(k)}). \tag{1.4.5}$$

Now,

$$\begin{aligned} d(x_{m(k)}, x_{n(k)}) &\leq d(x_{m(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{n(k)}) \\ &\leq d(x_{m(k)}, x_{m(k)-1}) + \epsilon. \end{aligned}$$

This implies,

$$\limsup_{k \to \infty} d(x_{m(k)}, x_{n(k)}) \le \limsup_{k \to \infty} d(x_{m(k)}, x_{m(k)-1}) + \epsilon,$$

so that

$$\limsup_{k \to \infty} d(x_{m(k)}, x_{n(k)}) \le \epsilon.$$
(1.4.6)

From (1.4.5) and (1.4.6), we get

$$\epsilon \le \liminf_{k \to \infty} d(x_{m(k)}, x_{n(k)}) \le \limsup_{k \to \infty} d(x_{m(k)}, x_{n(k)}) \le \epsilon$$

Therefore, $\lim_{k\to\infty} d(x_{m(k)}, x_{n(k)}) = \epsilon$. Hence (ii) holds. (iii) We have, $d(x_{m(k)-1}, x_{n(k)}) < \epsilon$. Hence

$$\limsup_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) \le \epsilon.$$
(1.4.7)

Now,

$$\epsilon \le d(x_{m(k)}, x_{n(k)}) \le d(x_{m(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{n(k)}).$$

Hence

$$\epsilon \leq \liminf_{k \to \infty} d(x_{m(k)}, x_{m(k)-1}) + \liminf_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}).$$

Thus by using the property $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$ we have

$$\epsilon \le \liminf_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}). \tag{1.4.8}$$

From (1.4.7) and (1.4.8), we get

$$\epsilon \le \liminf_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) \le \limsup_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) \le \epsilon.$$

Hence, $\lim_{k\to\infty} d(x_{m(k)-1}, x_{n(k)}) = \epsilon$. Hence (iii) holds. This completes the proof of the lemma.

4

2 Main Result

Theorem 2.1. Let (X, d) be a *T*-orbitally complete metric space. Assume that for some $x_0 \in X$, there exists a $\varphi_{x_0} \in \Phi$ such that

$$d(Tx, Ty) \le M(x, y) - \varphi_{x_0}(M(x, y)) \quad \text{for all } x, y \in \overline{O(x_0)}, \tag{2.1.1}$$

where $M(x, y) = \max \{ d(x, y), d(x, Tx), d(y, Ty), \frac{1}{2}[d(x, Ty) + d(y, Tx)] \}$. Then the sequence $\{T^n x_0\}$ is Cauchy in X, $\lim_{n\to\infty} T^n x_0 = z$, $z \in X$ and z is a fixed point of T. Further, z is unique in the sense that $O(x_0)$ contains one and only one fixed point of T.

Proof. If M(x,y) = 0 for some $x, y \in \overline{O(x_0)}$, then we are through. Suppose $M(x,y) \neq 0$ for all $x, y \in \overline{O(x_0)}$. We define a sequence $\{x_n\}$ by $x_n = T^n x_0$ for $n = 0, 1, 2, \ldots$. If $x_n = x_{n+1}$ for some n, then the conclusion of the theorem follows trivially. So, without loss of generality, we assume that $x_n \neq x_{n+1}$ for all $n = 0, 1, 2, \ldots$. Let $\alpha_n = d(x_n, x_{n+1})$ for $n = 0, 1, 2, \ldots$. Note that $\alpha_n > 0$ for all $n = 0, 1, 2, \ldots$. Now by using (2.1.1), we have

$$\begin{aligned} \alpha_{n+1} &= d(x_{n+1}, x_{n+2}) = d(Tx_n, Tx_{n+1}) \\ &\leq M(x_n, x_{n+1}) - \varphi_{x_0}(M(x_n, x_{n+1})) \\ &< M(x_n, x_{n+1}) \\ &= \max\{d(x_n, x_{n+1}), d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \\ &\frac{1}{2} [d(x_n, x_{n+2}) + d(x_{n+1}, x_{n+1})]\} \\ &= \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \\ &\frac{1}{2} [d(x_n, x_{n+2})]\} \\ &\leq \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \\ &\frac{1}{2} [d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})]\} \\ &= \max\{d(x_n, \alpha_{n+1}, \frac{1}{2}(\alpha_n + \alpha_{n+1}))\} \\ &= \max\{\alpha_n, \alpha_{n+1}, \frac{1}{2}(\alpha_n + \alpha_{n+1})\} \end{aligned}$$

Hence it follows that $\alpha_{n+1} < \alpha_n$ for all $n = 0, 1, 2, \dots$. So, $\{\alpha_n\}$ is a strictly decreasing sequence of real numbers. Let $\lim_{n\to\infty}\alpha_n = \alpha, \alpha \in \mathbb{R}$ and $\alpha \ge 0$. Now, from (2.1.3), we have

$$\alpha_{n+1} < M(x_n, x_{n+1}) \le \alpha_n$$
 for all $n = 0, 1, 2, \dots$

On letting $n \to \infty$, we get $\lim_{n\to\infty} M(x_n, x_{n+1}) = \alpha$. Let $\alpha > 0$. From (2.1.2), we have

$$\alpha_{n+1} \leq M(x_n, x_{n+1}) - \varphi_{x_0}(M(x_n, x_{n+1}))$$
 for each $n = 0, 1, 2, \dots$

On taking limits as $n \to \infty$, we get $\alpha \leq \alpha - \varphi_{x_0}(\alpha)$, a contradiction. So $\alpha = 0$.

We now show that the sequence $\{x_n\} \subset O(x_0)$ is Cauchy. Otherwise, there exists an $\epsilon > 0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with m(k) > n(k) > k such that $d(x_{m(k)}, x_{n(k)}) \ge \epsilon$, $d(x_{m(k)-1}, x_{n(k)}) < \epsilon$ and from Lemma 1.4 we have

$$\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) = \epsilon, \ \lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}) = \epsilon$$

and

$$\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) = \epsilon \tag{2.1.5}$$

Hence,

$$\begin{split} \epsilon \leq d(x_{m(k)}, x_{n(k)}) &\leq d(x_{m(k)}, x_{n(k)+1}) + d(x_{n(k)+1}, x_{n(k)}) \\ &= d(Tx_{m(k)-1}, Tx_{n(k)}) + d(x_{n(k)+1}, x_{n(k)}) \\ \leq & M(x_{m(k)-1}, x_{n(k)}) - \varphi_{x_0}(M(x_{m(k)-1}, x_{n(k)})) \\ &+ d(x_{n(k)+1}, x_{n(k)}) \\ &= & \max\{d(x_{m(k)-1}, x_{n(k)}), d(x_{m(k)-1}, x_{m(k)}), d(x_{n(k)}, x_{n(k)+1}), \\ & \frac{1}{2}[d(x_{m(k)-1}, x_{n(k)+1}) + d(x_{n(k)}, x_{m(k)})]\} \\ &- \varphi_{x_0}(\max\{d(x_{m(k)-1}, x_{n(k)}), d(x_{m(k)-1}, x_{m(k)}), d(x_{n(k)}, x_{m(k)})]\}) \\ &+ d(x_{n(k)}, x_{n(k)+1}), \frac{1}{2}[d(x_{m(k)-1}, x_{n(k)+1}) + d(x_{n(k)}, x_{m(k)})]\}) \\ &+ d(x_{n(k)+1}, x_{n(k)}) \\ < & \max\{\epsilon, d(x_{m(k)-1}, x_{n(k)}), d(x_{m(k)}, x_{n(k)+1}), \\ & \frac{1}{2}[d(x_{m(k)-1}, x_{n(k)}), d(x_{m(k)-1}, x_{m(k)}), d(x_{m(k)-1}, x_{m(k)})]\} \\ &- \varphi_{x_0}(\max\{d(x_{m(k)-1}, x_{n(k)}), d(x_{m(k)-1}, x_{m(k)}), d(x_{m(k)-1}, x_{m(k)}), d(x_{m(k)-1}, x_{m(k)}), d(x_{n(k)}, x_{m(k)})]\}) \\ &+ d(x_{n(k)+1}, x_{n(k)}). \end{split}$$

Now on taking limits as $k \to \infty$ and using (2.1.5), we have

$$\epsilon \le \max\{\epsilon, 0, 0, \epsilon\} - \varphi_{x_0}(\max\{\epsilon, 0, 0, \epsilon\}) = \epsilon - \varphi_{x_0}(\epsilon) < \epsilon,$$

a contradiction. Therefore, $\{x_n\} \subset O(x_0)$ is Cauchy. Since X is T-orbitally complete, $\lim_{n\to\infty} x_n = z$ (say), $z \in X$.

We now show that Tz = z. Suppose $Tz \neq z$. We consider,

$$d(Tx_n, Tz) \leq M(x_n, z) - \varphi_{x_0}(M(x_n, z))$$

= $\max\{d(x_n, z), d(x_n, x_{n+1}), d(z, Tz), \frac{1}{2}[d(x_n, Tz) + d(z, x_{n+1})]\}$
 $-\varphi_{x_0}(\max\{d(x_n, z), d(x_n, x_{n+1}), d(z, Tz), \frac{1}{2}[d(x_n, Tz) + d(z, x_{n+1})]\}).$

On letting $n \to \infty$, it follows that $d(z,Tz) \leq d(z,Tz) - \varphi_{x_0}(d(z,Tz))$, a contradiction. Hence Tz = z. Uniqueness of z follows trivially from the inequality (2.1.1).

Corollary 2.2. Let (X, d) be a *T*-orbitally complete bounded metric space. Assume that for some $x_0 \in X$, there exists $\varphi_{x_0} \in \Phi$ such that

$$d(Tx, Ty) \le d(x, y) - \varphi_{x_0}((d(x, y)) \text{ for all } x, y \in \overline{O(x_0)}.$$
(2.2.1)

Then the sequence $\{T^n x_0\}$ is Cauchy in X, $\lim_{n\to\infty} T^n x_0 = z, z \in X$ and z is a fixed point of T. Further, z is unique in the sense that $\overline{O(x_0)}$ contains one and only one fixed point of T.

Proof. By Remark 1.2 we have that the inequality (2.2.1) implies the inequality (2.1.1). Thus the conclusion of the corollary follows from Theorem 2.1.

Remark 2.3.

- (i) If X is bounded then Theorem 1.1 follows as a corollary to Corollary 2.2.
- (ii) Theorem 1.3 follows as a corollary to Theorem 2.1.
- (iii) The following example shows that Corollary 2.2 is a generalization of Theorem 1.1 and Theorem 2.1 is a generalization of Theorem 1.3, when the space X is bounded.

Example 2.4. Let X = [0,1] with the usual metric. We define $T: X \to X$ by

$$Tx = \begin{cases} \frac{x}{2}, & if \ x \in [0, \frac{1}{2}] \\ x, & if \ x \in (\frac{1}{2}, 1]. \end{cases}$$

Let $x_0 = \frac{1}{2}$, then $O(x_0) = \left\{\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \ldots\right\}$ and $\overline{O(x_0)} = O(x_0) \cup \{0\}$. X is Torbitally complete and satisfies the inequality (2.2.1) with $\varphi_{x_0} : [0, \infty) \to [0, \infty)$ defined by

$$\varphi_{x_0}(t) = \begin{cases} \frac{t}{2}, & if \quad 0 \le t \le 1\\ \\ \frac{1}{2}, & if \quad t \ge 1. \end{cases}$$

Since the inequality (1) fails to hold for any $x, y \in (\frac{1}{2}, 1]$ with $x \neq y$ and for any $\varphi \in \Phi$, T is not a weakly contractive map on X.

Also, we observe that T is not a generalized weakly contractive map on X, for let $x, y \in (\frac{1}{2}, 1]$ with $x \neq y$. Then M(x, y) = |x - y|, so that for any $\varphi \in \Phi$, T fails to satisfy (2).

Thus T is neither a weakly contractive map nor a generalized weakly contractive map on X, and hence Theorem 1.1 and <u>Theorem 1.3</u> are not applicable. But, T satisfies the inequality (2.2.1). Since $\overline{O(x_0)}$ is bounded, by Remark 1.2, the inequality (2.1.1) holds so that T <u>satisfies</u> all the hypotheses of Theorem 2.1; and 0 is the unique fixed point of T in $\overline{O(x_0)}$. **Remark 2.5.** Under the hypotheses of Theorem 2.1, T may have more than one fixed point in X. It is illustrated in the following example.

Example 2.6. Let X = R with the usual metric. We define $T : X \to X$ by T(x) = [x]. For any $x_0 \in X, O(x_0) = \{x_0, [x_0], [x_0], ...\}$ and $\overline{O(x_0)} = O(x_0)$. Then T satisfies all the conditions of Theorem 2.1 with $\varphi_{x_0}(t) = t, t \ge 0$ and T has a unique fixed point $[x_0]$ in $\overline{O(x_0)}$, but T has more than one fixed point in X. In fact, T has infinitely many fixed points in X.

The following example shows that if the inequality (2.1.1) holds in $O(x_0)$ instead of $\overline{O(x_0)}$ for some x_0 in X, then T may not have a fixed point.

Example 2.7. Let $X = \{0,1\} \cup \{\frac{1}{2^n} : n \in N\} \cup \{1 + \frac{1}{2^{n+1}} : n \in N\}$ with the usual metric. We define $T: X \to X$ by $T0 = 1, T1 = 0, T(\frac{1}{2^n}) = \frac{1}{2^{n+1}}$ and $T(1 + \frac{1}{2^n}) = 1 + \frac{1}{2^{n+1}}$. Let $x_0 = 1 + \frac{1}{2}, O(x_0) = \{1 + \frac{1}{2}, 1 + \frac{1}{2^2}, 1 + \frac{1}{2^3}, \dots\}$ and $\overline{O(x_0)} = O(x_0) \cup \{1\}$. Then the inequality (2.1.1) holds for all x, y in $O(x_0)$ with $\varphi_{x_0}(t) = \frac{t}{2}, t \ge 0$. But the inequality (2.1.1) fails to hold in $\overline{O(x_0)}$ for any $\varphi \in \Phi$. For, at x = 1 and $y = 1 + \frac{1}{2}$, we have $d(Tx, Ty) = 1 + \frac{1}{2^2} = \frac{5}{4}$, and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2}[d(x,Ty) + d(y,Tx)] \right\}$$
$$= \max\left\{ \frac{1}{2}, 1, \frac{1}{2^2}, \frac{1}{2} \left[\frac{1}{2^2} + 1 + \frac{1}{2} \right] \right\}$$
$$= \max\left\{ \frac{1}{2}, 1, \frac{1}{4}, \frac{7}{8} \right\} = 1.$$

Therefore, $d(Tx, Ty) = \frac{5}{4} \nleq 1 - \varphi(1) = M(x, y) - \varphi((M(x, y)) \text{ for any } \varphi \in \Phi.$ Further, for x = 0 and y = 1, $d(Tx, Ty) = 1 \nleq 1 - \varphi(1) = M(x, y) - \varphi((M(x, y)))$ for any $\varphi \in \Phi$. Thus the inequality (2.1.1) fails to hold on $\overline{O(x_0)}$ for $x_0 = 1 + \frac{1}{2}$ and T has no fixed points in X.

The following is an example in support of Theorem 2.1.

Example 2.8. Let $X = \{0, 1, 2\} \cup \{\sum_{i=0}^{n} \frac{1}{2^{i}} : n \in N\}$ with the usual metric. We define $T: X \to X$ by T0 = 1, T1 = 0, T2 = 2 and $T(\sum_{i=0}^{n} \frac{1}{2^{i}}) = \sum_{i=0}^{n+1} \frac{1}{2^{i}}$. Let $x_0 = 1 + \frac{1}{2}$, then $O(x_0) = \{\sum_{i=0}^{n} \frac{1}{2^{i}} : n \in N\}$ and $\overline{O(x_0)} = O(x_0) \cup \{2\}$. We define $\varphi_{x_0}: R^+ \to R^+$ by $\varphi_{x_0}(t) = \frac{t}{2}, t \geq 0$. Let $x, y \in \overline{O(x_0)}$.

$$\begin{split} \varphi_{x_0} &: R^+ \to R^+ \ by \ \varphi_{x_0}(t) = \frac{t}{2}, \ t \ge 0. \ Let \ x, y \in \overline{O(x_0)}, \ c(x_0) \in (2], \ we upmertexponent \\ Case (i): \ x = \sum_{i=0}^n \frac{1}{2^i}, \ y = \sum_{i=0}^m \frac{1}{2^i} \ and \ n > m. \ In \ this \ case, \ |Tx-Ty| = \frac{1}{2} \sum_{i=m+1}^n \frac{1}{2^i}, \ |x-y| = \sum_{i=m+1}^n \frac{1}{2^i}, \ |x-Tx| = \frac{1}{2^{n+1}}, \ |y-Ty| = \frac{1}{2^{m+1}}, \ |x-Ty| = \sum_{i=m+1}^n \frac{1}{2^i}. \ Therefore, \end{split}$$

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} \left[d(x,Ty) + d(y,Tx) \right] \right\}$$
$$= \sum_{i=m+1}^{n+1} \frac{1}{2^{i}}$$

and $M(x,y) - \varphi_{x_0}((M(x,y)) = \frac{1}{2} \sum_{i=m+1}^{n+1} \frac{1}{2^i}$, so that $|Tx - Ty| < M(x,y) - \varphi_{x_0}((M(x,y)) \text{ holds.}$

 $\begin{aligned} & Case\ (\text{in}): x = 2, y = \sum_{i=0}^{n} \frac{1}{2^{i}}. \ Now, \ |Tx - Ty| = |2 - \sum_{i=0}^{n+1} \frac{1}{2^{i}}| = \frac{1}{2^{n+1}}, \ |x - y| \\ &= |2 - \sum_{i=0}^{n} \frac{1}{2^{i}}| = \frac{1}{2^{n}}, \ |x - Tx| = 0, \ |y - Ty| = \frac{1}{2^{n+1}}, \ |y - Tx| = |\sum_{i=0}^{n} \frac{1}{2^{i}} - 2| = \frac{1}{2^{n}}. \ M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{1}{2}[d(x, Ty) + d(y, Tx)]\} = \frac{1}{2^{n}} \ and \ M(x, y) - \varphi_{x_{0}}((M(x, y))) = \frac{1}{2^{n}} - \frac{1}{2}\frac{1}{2^{n}} = \frac{1}{2^{n+1}}. \ Hence, \ |Tx - Ty| = M(x, y) - \varphi_{x_{0}}((M(x, y))) \ holds. \end{aligned}$

Thus, from case (i) and case (ii), we have T is a weakly contractive map on $\overline{O(x_0)}$ with $\varphi_{x_0}(t) = \frac{t}{2}, t \ge 0$. Therefore, T satisfies all the conditions of Theorem 2.1. Further, the sequence $\{T^n x_0\}$ converges to 2 and 2 is the unique fixed point of T in $\overline{O(x_0)}$.

The following is an example in support of Corollary 2.2, in abstract spaces.

Example 2.9. Let $C_0 = \{y = \{y_n\}_{n=0}^{\infty} / y_n \to 0 \text{ as } n \to \infty\}$ with the metric d, defined by $d(x, y) = ||x - y|| = \sup\{|x_n - y_n|/n \in N\}$, where $x = \{x_n\}_{n=0}^{\infty}$ and $y = \{y_n\}_{n=0}^{\infty}$ in C_0 . With this metric d on C_0, C_0 is a complete metric space. Let $x_0 = (0, 0, 0, ...), x_1 = (1, \frac{1}{2}, \frac{1}{3}, ...), x_2 = (0, \frac{1}{2}, \frac{1}{3}, ...), x_3 = (0, 0, \frac{1}{3}, \frac{1}{4}, ...), ..., x_n = (0, 0, 0, ..., \frac{1}{n}, \frac{1}{n+1}, ...), ...$ Now, let $X = \{x_0, x_1, x_2, ..., x_n, ...\}$. We define T on X by $Tx_0 = x_0$ and $Tx_n = x_{n+1}$ for n = 1, 2, Then $O(x_1) = \{x_1, x_2, x_3, ...\}$ and $\overline{O(x_1)} = O(x_1) \cup \{x_0\}$. Since the sequence $O(x_1)$ converges to x_0 , every Cauchy sequence in $O(x_1)$ converges to x_0 . Hence X is T-orbitally complete. We define $\varphi_{x_1} : R^+ \to R^+$ by $\varphi_{x_1}(t) = \frac{t^2}{1+t}, t \ge 0$. Then $\varphi_{x_1} \in \Phi$. Let $x_n = (0, 0, 0, ..., \frac{1}{n}, \frac{1}{n+1}, ...)$ and $x_{n+k} = (0, 0, 0, ..., \frac{1}{n+k+1}, \frac{1}{n+k+1}, ...)$ be in $\overline{O(x_1)}$. Now, $d(Tx_n, Tx_{n+k}) = d(x_{n+1}, x_{n+k+1}) = ||x_{n+1} - x_{n+k+1}|| = \frac{1}{n+1}$ and $d(Tx_0, Tx_n) = d(x_0, x_{n+1}) = ||x_0 - x_{n+1}|| = \frac{1}{n+1}$. Now, $d(x_n, x_{n+k}) = ||x_n - x_{n+k}|| = \frac{1}{n}$ and $d(x_0, x_n) = ||x_0 - x_n|| = \frac{1}{n}$. Since, $\frac{1}{n+1} = \frac{1}{n} - [\frac{1}{n} - \frac{1}{n(n+1)}] = \frac{1}{n} - \frac{(1/n)^2}{1+\frac{1}{n}}$, we have $d(Tx_n, Tx_{n+k}) = d(x_n, x_{n+k}) - \varphi_{x_1}(d(x_n, x_{n+k}))$. Thus, T satisfies the inequality (2.2.1) and all the hypotheses of Corollary 2.2 with $T^n x_1 \to x_0$ as $n \to \infty$ and T has a unique fixed point x_0 in $\overline{O(x_1)}$. Here we observe that T is not a contraction. For, if T is a contraction, then there exists a $q \in (0, 1)$, such that $d(Tx_n, Tx_{n+k}) \leq q.d(x_n, x_{n+k})$. This implies $\frac{1}{n+1} \leq q.\frac{1}{n}$, i.e., $\frac{n}{n+1} \leq q$. Now as $n \to \infty$, we have $\lim_{n\to\infty} \frac{n}{n+1} \leq q$, i.e., $1 \leq q$, a contradiction. Thus, Corollary 2.2 is a generalization of Banach contraction principle, when the space under consideration is bounded.

Acknowledgements : The authors sincerely thank Prof. K.P.R. Sastry for his valuable suggestions in the preparation of this paper.

References

 G.V.R. Babu, G.N. Alemayehu, Point of coincidence and common fixed points of a pair of generalized weakly contractive maps, Journal of Advanced Research in Pure Mathematics 2 (2010) 89–106.

- [2] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis 47 (2001) 2683–2693.
- [3] Ya.I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advances and Appl., 98, Birkhäuser, Basel, 1997, 7–22.
- [4] D. Turkoglu, O. Ozer, B. Fisher, Fixed point theorems for *T*-orbitally complete metric spaces, Mathematica Nr. 9 (1999) 211–218.

(Received 26 March 2010) (Accepted 20 October 2010)

 $T{\rm HAI}~J.~M{\rm ATH}.~Online~@$ http://www.math.science.cmu.ac.th/thaijournal