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Variational Iteration Method for Solving

Eighth-Order Boundary Value Problems
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Abstract : The variational iteration method (VIM), which is a powerful tool, is
applied to numerical solution of eighth-order boundary value problems. The VIM
usually gives a solution in the form of a rapidly convergent series of a correction
functional. The correction functional is constructed by using generalized Lagrange
multipliers and the calculus of variations. Analytical results are given for several
examples to illustrate the implementation and efficiency of the method. A com-
parison of the results obtained by the present method with results obtained by the
modified decomposition method and the homotopy perturbation method reveals
that the present method is very effective and convenient.
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1 Introduction

Consider the general eighth-order boundary value problems of the type:

y(viii)(x) = f(x, y
′

, y
′′

, y(3), y(iv), y(v), y(vi), y(vii)), a ≤ x ≤ b (1.1)

with conditions

y(a) = A1, y
′

(a) = A2, y
′′

(a) = A3, y(3)(a) = A4

y(iv)(a) = A5, y(v)(a) = A6, y(b) = B1, y
′

(b) = B2,

where f is a differentiable function as required for a ≤ x ≤ b and Ai, i = 1, 2, ..., 6
and Bi, i = 1, 2 are real constants. Eighth-order boundary value problems are
known to arise in the mathematics, physic and engineering sciences [18]. Several
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numerical methods including spectral Galerkin and collocation [16], sixth B-spline,
decomposition [19], spline collocation approximation [20], Chow-Yorke algorithm
[21],and homotopy perturbation [22] have been developed for solving the problem
[1]. The variational iteration method (VIM) was first proposed by Professor Ji-
Huan He for solving a wide range of problems whose mathematical models yield
differential equation or system of differential equations [2].The idea of VIM is to
construct a correction functional using a general Lagrange multiplier which we
can then identify by variational theory. The multiplier in the functional should be
chosen such that its correction solution is superior to an initial approximation (a
trial function) and is the best within the flexibility of the trial function. The initial
approximation can be freely chosen with possible unknowns, which can be deter-
mined by imposing the boundary/initial conditions. The method gives rapidly
convergent successive approximations to the exact solution if such a solution ex-
ists. VIM has successfully been applied to many problems. For example, Wazwaz
[3] used VIM to solve linear and nonlinear Schrodinger equations. Dehghan and
Shakeri [4] applied VIM to solve the Cauchy reaction-diffusion problem. Jinbo and
Jiang [5] used VIM to solve an inverse parabolic equation. Ramos [6] applied VIM
to solve nonlinear differential equations. Das [7] used VIM to obtain the solution of
a fractional diffusion equation. Assas [8] applied VIM to solve coupled-KdV equa-
tions. Inc [9] used VIM to solve space- and time-fractional Burgers equations with
initial conditions. Javidi and Jalilian [10] applied VIM to obtain wave solution
of Boussinesq equation. Wazwaz [11] applied VIM to some linear and nonlinear
systems of PDEs. Batiha et al. [12] used VIM to solve systems of PDEs. In
this paper, we apply the variational iteration method to solve eighth-order bound-
ary value problems. By using a suitable transformation, the variational iteration
method can be used to show that eighth-order boundary value problems are equiv-
alent to a system of integral equations . This technique has been developed by
Noor and Mohyud-Din [13]. We apply this technique to solve eighth-order bound-
ary value problems. We compare the results from the variational iteration method
with exact solutions.

2 Variational iteration method

We consider the following differential equation

Lu(x) + Nu(x) = g(x) (2.1)

where L is a linear operator, N is a nonlinear operator and g(x) is the forcing
term. In the variational iteration method, a correctional functional is constructed
as follows [23]

un+1(x) = un(x) +

∫

x

0

λ(Lun(s) + Nun(s) − g(s))ds, (2.2)

where λ is a Lagrange multiplier [25], which can be identified optimally via the
variational theory by using the stationary conditions, the subscript n denotes nth
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-order approximation, un is considered as a restricted variation [24], i.e., δũ = 0.
The principles of the variational iteration method and examples of its application
for numerical solution of various kinds of differential equations are given in [?].
We consider the following system of differential equations:

x
′

i = fi(t, xi), i = 1, 2, 3, ..., n (2.3)

subject to the conditions:

xi(0) = ci, i = 1, 2, 3, ..., n

Following the variational iteration method for solving the system of differential
equations, we rewrite system (2.3) in the following form: subject to the boundary
conditions: xi(0) = ci, i = 1, 2, 3, ..., n where gi is defined as in (2.1). The correc-
tional functional for the system of differential equations (2.3) can be approximated
as

x
(k+1)
1 (t) = x

(0)
1 (t) +

∫ t

0

λ1

(

x
′(k)
1 (s), f1(x̃

′(k)
1 (s), ..., x̃

′(k)
n (s)) − g1(s)

)

ds,

x
(k+1)
2 (t) = x

(0)
2 (t) +

∫ t

0

λ2

(

x
′(k)
1 (s), f2(x̃

′(k)
1 (s), ..., x̃

′(k)
n (s)) − g2(s)

)

ds,

... (2.4)

x(k+1)
n (t) = x(0)

n (t) +

∫ t

0

λn

(

x
′(k)
n (s), fn(x̃

′(k)
1 (s), ..., x̃

′(k)
n (s)) − gn(s)

)

ds,

where λi = ±1, i = 1, 2, 3, ..., n are Lagrange multipliers, and x̃1, x̃2, x̃3, ..., x̃n de-
note the restricted variations. The approximation can be completely determined.
If the series of approximate solutions converges to the exact solution, we can obtain
the exact solution as:

xi(t) = lim
k→∞

x
(k)
i

(t), i = 1, 2, 3, ..., n

A finite number of terms from this series will give an approximate solution.

3 Applications

In this section, we apply the VIM to obtain approximate solutions for some
eight-order linear and nonlinear initial-value and boundary-value problems.

Example 3.1. Consider the following eighth-order linear problem

y(viii)(x) = y(x), 0 ≤ x ≤ 1 (3.1)

with the following initial conditions

y(i)(0) = 1, i = 1, 2, 3, ..., 7.
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The exact solution of this problem is

y(x) = ex. (3.2)

Using the transformation, we can rewrite the eight-order initial-value problem as
a system of first-order differential equations as follows. We let

dy

dx
= q(x),

dq

dx
= f(x).

df

dx
= s(x),

ds

dx
= t(x),

dt

dx
= z(x),

dz

dx
= w(x).

dw

dx
= k(x),

dk

dx
= y(x),

with y0(0) = q0(0) = f0(0) = s0(0) = t0(0) = z0(0) = w0(0) = k0(0) = 1. Using
the VIM, we can rewrite the above system of differential equations as a system of
integral equations with Lagrange multipliers λi = 1, i = 1, 2, 3, ..., n

ym+1(x) = 1 +

∫ x

0

qm(s)ds, qm+1(x) = 1 +

∫ x

0

fm(s)ds,

fm+1(x) = 1 +

∫ x

0

sm(s)ds, sm+1(x) = 1 +

∫ x

0

tm(s)ds,

tm+1(x) = 1 +

∫

x

0

zm(s)ds, zm+1(x) = 1 +

∫

x

0

wm(s)ds,

wm+1(x) = 1 +

∫ x

0

km(s)ds, km+1(x) = 1 +

∫ x

0

ym(s)ds,

with y0(x) = q0(x) = f0(x) = s0(x) = t0(x) = z0(x) = w0(x) = k0(x) = 1
Consequently, the VIM obtains the following approximations

y1(x) = 1 + x,

y2(x) = 1 + x +
x2

2!

y3(x) = 1 + x +
x3

3!

y4(x) = 1 + x +
x3

3!
+

x4

4!
...

ym(x) = 1 + x +
x2

3!
+

x4

4!
+ ... +

xm

m!

The approximation can be completely determined as

y(x) = lim
m→∞

ym(x) = lim
m→∞

(

1 + x +
x2

3!
+

x4

4!
+ ... +

xm

m!

)

= ex

which is the same as the exact solution of (3.2).
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Example 3.2. Consider the eighth-order nonlinear boundary-value problem [19,22]

y(viii)(x) = 8ex + y(x), 0 ≤ x ≤ 1

with the initial and boundary conditions

y(0) = 1, y′(0) = 0, y
′′

(0) = −1, y(iii)(0) = −2

y(iv)(0) = −3, y(v)(0) = −4, y(vi)(1) = −e, y(vii)(1) = −2e,

The exact solution is

y(x) = (1 − x)ex, i = 1, 2, 3, ..., 7. (3.3)

Using the transformation, the problem can be written as the system of first-order
differential equations

dy

dx
= q(x),

dq

dx
= f(x).

df

dx
= s(x),

ds

dx
= t(x),

dt

dx
= z(x),

dz

dx
= w(x).

dw

dx
= k(x),

dk

dx
= y(x).

Using the VIM, we can transform the above system of differential equations into
the system of integral equations with Lagrange multipliers λi = 1, i = 1, 2, 3, ..., n

ym+1(x) = 1 +

∫

x

0

qm(s)ds,

qm+1(x) =

∫ x

0

fm(s)ds,

fm+1(x) = −1 +

∫

x

0

sm(s)ds,

sm+1(x) = −2 +

∫ x

0

tm(s)ds,

tm+1(x) = −3 +

∫ x

0

zm(s)ds, (3.4)

zm+1(x) = −4 +

∫

x

0

wm(s)ds,

wm+1(x) = A +

∫ x

0

km(s)ds,

km+1(x) = B +

∫ x

0

(−8ex + ym(s))ds,

with y0(x) = 1, q0(x) = 0, f0(x) = −1, s0(x) = −2, t0(x) = −3, z0(x) =
−4, w0(x) = A, k0(x) = B
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Consequently, the VIM obtains the following approximations

y1(x) = 1,

y2(x) = 1 −
x2

2

y3(x) = 1 −
x2

2!
−

x3

3!

y4(x) = 1 + x +
x3

3!
+

x4

4!
...

y8(x) = −8ex +
x8

40320
+

x7

630
+ B

x7

5040
+

x6

90
+ A

x6

720

+
x5

30
+ 5

x4

24
+

7

2
x2 + 8x + 9

Using the condition y(vi)(1) = −e, y(vii)(1) = −2e, to obtain the constants A and
B, we have

A = −5.0074, B = −5.9710

Then the approximate solution is given as

y8(x) = −8ex +
x8

40320
+

x7

630
− 5.0074

x7

5040
+

x6

90

−5.9710
x6

720
+

x5

30
+ 5

x4

24
+

7

2
x2 + 8x + 9

which as shown in Table 1 is a good approximation to the exact solution given
in (3.3).

x Exact solution Error VIM, N=8

0.25 0.9630190628 3.8922e-10
0.50 0.8243606355 1.1571e-7
0.75 0.5292500042 1.0479e-6
1.00 0 4.2188e-6

Table 1: Comparison of VIM solution of Example 3.2 with exact solution

4 Conclusion

The variational iteration method has been applied to obtain numerical solutions
of a linear and a nonlinear eighth-order boundary-value problem. The results
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show that the method gives rapidly converging series solutions in both cases. The
method is easy to apply and can easily be applied to similar problems that arise
in physical and engineering sciences problems.
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