A Common Fixed Point Theorem for a Pair of Nonself Multi-valued Mappings

M. Imdad and Ladlay Khan

Abstract

A common fixed point theorem for a pair of nonself multi-valued mappings in complete metrically convex metric spaces is proved which generalizes some earlier known results due to Khan et al. [9], Bianchini [2], Chatterjea [3], Khan et al. [10] and others. An illustrative example is also discussed.

Keywords : Metrically convex metric spaces, multi-valued mappings, fixed point. 2000 Mathematics Subject Classification : $54 \mathrm{H} 25,47 \mathrm{H} 10$.

1 Introduction

The study of fixed point theorems for nonself multi-valued contractions on metrically convex metric spaces was initiated by Assad and Kirk [1]. In recent years, several fixed point theorems for such maps were proved which include relevant results due to Rhoades [12, 13], Hadžic̀ and Gajic [4], Iséki [5], Itoh [6], Khan [8] and others.

The purpose of this paper is to extend a fixed point theorem due to Khan et al. [9] proved for nonself single valued mappings to a pair of multi-valued nonself mappings. For the sake of completeness, we state Theorem 1 due to Khan et al. [9].

Theorem 1.1 Let (X, d) be a complete metrically convex metric space and $K a$ nonempty closed subset of X. Let $T: K \rightarrow X$ be a mapping satisfying the inequality

$$
\begin{equation*}
d(T x, T y) \leq a \max \{d(x, T x), d(y, T y)\}+b\{d(x, T y)+d(y, T x)\} \tag{1}
\end{equation*}
$$

for every $x, y \in K$, where a and b are non-negative reals such that

$$
\max \left\{\frac{a+b}{1-b}, \frac{b}{1-a-b}\right\}=h>0, \max \left\{\frac{1+a+b}{1-b} h, \frac{1+b}{1-a-b} h\right\}=h^{\prime},
$$

and

$$
\max \left\{h, h^{\prime}\right\}=h^{\prime \prime}<1 .
$$

Further, if for every $x \in \delta K, T x \in K$, then T has a unique fixed point in K.

2 Preliminaries

Let (X, d) be a metric space. Then following Nadler[11], we recall
(i) $C B(X)=\{A: A$ is nonempty closed and bounded subset of $X\}$,
(ii) $C(X)=\{A: A$ is nonempty compact subset of $X\}$.
(iii) For nonempty subsets A, B of X,

$$
H(A, B)=\max \{(\sup d(a, B): a \in A),(\sup d(A, b): b \in B)\}
$$

It is well known (cf. Kuratowski [7]) that $C B(X)$ is a metric space with the distance H which is known as Hausdorff-Pompeiu metric on X.

Before proving our main result, we collect the relevant definitions and lemmas for our subsequent discussion.

Definition 2.1 Let (X, d) be a metric space and K a nonempty subset of X. Let $F, T: K \rightarrow C B(X)$ satisfy the condition

$$
\begin{equation*}
H(F x, T y) \leq a \max \left\{\frac{1}{2} d(x, y), d(x, F x), d(y, T y)\right\}+b\{d(x, T y)+d(y, F x)\} \tag{2}
\end{equation*}
$$

for all $x, y \in K$ with $x \neq y, a, b \geq 0$ such that $2 a+3 b<1$. Then F is called generalized T-contraction mapping on K.

Definition 2.2 A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$ there exists a point $z \in X, x \neq z \neq y$ such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

Lemma 2.3 ([1]) Let K be a nonempty closed subset of a metrically convex metric space (X, d). If $x \in K$ and $y \notin K$ then there exists a point $z \in \delta K$ (the boundary of K) such that $d(x, z)+d(z, y)=d(x, y)$.

Lemma 2.4 ([11]) Let $A, B \in C B(X)$. Then for all $\epsilon>0$ and $a \in A$ there exists $b \in B$ such that $d(a, b) \leq H(A, B)+\epsilon$. If $A, B \in C(X)$, then one can choose $b \in B$ such that $d(a, b) \leq H(A, B)$.

3 Main result

In an attempt to extend Theorem 1.1 for a pair of multi-valued nonself mappings, we prove the following.

Theorem 3.1 Let (X, d) be a complete metrically convex metric space and $K a$ nonempty closed subset of X. If F is generalized T-contraction mapping of K into X satisfying
(iv) $x \in \delta K \Rightarrow F x \subseteq K, T x \subseteq K$.

Then there exists $z \in K$ such that $z \in F z$ and $z \in T z$.
Proof. Firstly, we proceed to construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in the following way.

Assume $\alpha=h(1+h)$, let $x_{\circ} \in \delta K$ and $x_{1}=y_{1} \in F\left(x_{0}\right)$. Using Lemma 2.4, one can choose $y_{2} \in T\left(x_{1}\right)$ such that

$$
d\left(y_{1}, y_{2}\right) \leq H\left(F\left(x_{0}\right), T\left(x_{1}\right)\right)+\alpha
$$

Suppose $y_{2} \in K$, then set $y_{2}=x_{2}$. In case $y_{2} \notin K$ then (due to Lemma 2.1) there exists a point $x_{2} \in \delta K$ such that

$$
d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{2}\right)=d\left(x_{1}, y_{2}\right)
$$

Thus, repeating the foregoing arguments, one obtains two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that
(v) $y_{n} \in F\left(x_{n-1}\right)$, if n is odd and
(vi) $y_{n} \in T\left(x_{n-1}\right)$, if n is even
(vii) $y_{n} \in K \Rightarrow y_{n}=x_{n}$ or $y_{n} \notin K \Rightarrow x_{n} \in \delta K$ and

$$
d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, y_{n}\right)=d\left(x_{n-1}, y_{n}\right)
$$

(viii) $d\left(y_{n}, y_{n+1}\right) \leq H\left(F\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\alpha^{n}$ if n is odd
(ix) $d\left(y_{n}, y_{n+1}\right) \leq H\left(T\left(x_{n-1}\right), F\left(x_{n}\right)\right)+\alpha^{n}$ if n is even.

We denote

$$
P=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i}=y_{i}\right\}, Q=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i} \neq y_{i}\right\}
$$

One can note that two consecutive terms cannot lie in Q.
Now, we distinguish the following three cases.
Case 1. If $x_{n}, x_{n+1} \in P$, then

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)= & d\left(y_{n}, y_{n+1}\right) \leq H\left(F x_{n-1}, T x_{n}\right)+\alpha^{n} \\
\leq & a \max \left\{\frac{1}{2} d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, F x_{n-1}\right), d\left(x_{n}, T x_{n}\right)\right\} \\
& +b\left\{d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, F x_{n-1}\right)\right\}+\alpha^{n} \\
\leq & a \max \left\{\frac{1}{2} d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& +b d\left(x_{n-1}, x_{n+1}\right)+\alpha^{n}
\end{aligned}
$$

which in turn yields
$d\left(x_{n}, x_{n+1}\right) \leq \begin{cases}\left(\frac{a+b}{1-b}\right) d\left(x_{n-1}, x_{n}\right)+\frac{\alpha^{n}}{1-b}, & \text { if } d\left(x_{n-1}, x_{n}\right) \geq d\left(x_{n+1}, x_{n}\right), \\ \left(\frac{b}{1-b-a}\right) d\left(x_{n-1}, x_{n}\right)+\frac{\alpha^{n}}{1-b-a}, & \text { if } d\left(x_{n-1}, x_{n}\right) \leq d\left(x_{n+1}, x_{n}\right),\end{cases}$
or

$$
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right)+\max \left\{\frac{1}{1-b}, \frac{1}{1-b-a}\right\} \alpha^{n},
$$

or

$$
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right)+\frac{\alpha^{n}}{1-b-a},
$$

where $h=\max \left\{\left(\frac{a+b}{1-b}\right),\left(\frac{b}{1-b-a}\right)\right\}<1$, since $2 a+3 b<1$.
Case 2. If $x_{n} \in P$ and $x_{n+1} \in Q$, then

$$
d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, y_{n+1}\right)=d\left(x_{n}, y_{n+1}\right),
$$

or

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, y_{n+1}\right)=d\left(y_{n}, y_{n+1}\right),
$$

and hence

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(y_{n}, y_{n+1}\right) \leq H\left(F x_{n-1}, T x_{n}\right)+\alpha^{n} .
$$

Now, proceeding as Case 1 , one can have

$$
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right)+\frac{\alpha^{n}}{1-b-a} .
$$

Case 3. If $x_{n} \in Q$ and $x_{n+1} \in P$ then $x_{n-1} \in P$. Proceeding as in Case 1, one gets

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)= & d\left(x_{n}, y_{n+1}\right) \leq d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right) \\
\leq & d\left(x_{n}, y_{n}\right)+a \max \left\{\frac{1}{2} d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, F x_{n-1}\right), d\left(x_{n}, T x_{n}\right)\right\} \\
& +b\left\{d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, F x_{n-1}\right)\right\}+\alpha^{n} \\
\leq & d\left(x_{n}, y_{n}\right)+a \max \left\{\frac{1}{2} d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, y_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& +b\left\{d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right)\right\}+\alpha^{n},
\end{aligned}
$$

which in turn yields
$d\left(x_{n}, x_{n+1}\right) \leq \begin{cases}\left(\frac{1+a+b}{1-b}\right) d\left(x_{n-1}, y_{n}\right)+\frac{\alpha^{n}}{1-b}, & \text { if } d\left(x_{n-1}, y_{n}\right) \geq d\left(x_{n+1}, x_{n}\right), \\ \left(\frac{1+b}{1-b-a}\right) d\left(x_{n-1}, y_{n}\right)+\frac{\alpha^{n}}{1-b-a}, & \text { if } d\left(x_{n-1}, y_{n}\right) \leq d\left(x_{n+1}, x_{n}\right) .\end{cases}$
Now, proceeding as earlier, one also obtains
$d\left(x_{n-1}, y_{n}\right) \leq \begin{cases}\left(\frac{a+b}{1-b}\right) d\left(x_{n-1}, x_{n-2}\right)+\frac{\alpha^{n-1}}{1-b}, & \text { if } d\left(x_{n-1}, x_{n-2}\right) \geq d\left(x_{n-1}, y_{n}\right), \\ \left(\frac{b}{1-b-a}\right) d\left(x_{n-1}, x_{n-2}\right)+\frac{\alpha^{n-1}}{1-b-a}, & \text { if } d\left(x_{n-1}, x_{n-2}\right) \leq d\left(x_{n-1}, y_{n}\right) .\end{cases}$

Therefore combining above inequalities, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n-2}\right)+\frac{\alpha^{n-1}}{1-b-a}+\frac{\alpha^{n}}{1-b-a}, \text { as } k \leq 2 a+3 b<1
$$

Thus in all the cases, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq\left\{\begin{array}{l}
h d\left(x_{n}, x_{n-1}\right)+\frac{\alpha^{n}}{1-b-a} \text { or } \\
k d\left(x_{n-2}, x_{n-1}\right)+\frac{\alpha^{n-1}}{1-b-a}+\frac{\alpha^{n}}{1-b-a}
\end{array}\right.
$$

Now, on the lines of Itoh[6], it can be shown that $\left\{x_{n}\right\}$ is Cauchy and hence converges to a point $z \in K$. Then as noted in [4], there exists at least one subsequence $\left\{x_{n_{k}}\right\}$ which is contained in P and converges to some $z \in K$. Now, using (2.1.1), one can write

$$
\begin{aligned}
d\left(x_{n_{k}}, F z\right) & \leq H\left(T x_{n_{k}-1}, F z\right) \\
& \leq a \max \left\{\frac{1}{2} d\left(x_{n_{k}-1}, z\right), d\left(x_{n_{k}-1}, T x_{n_{k}-1}\right), d(z, F z)\right\} \\
& +b\left\{d\left(x_{n_{k}-1}, F z\right)+d\left(z, T x_{n_{k}-1}\right)\right\}
\end{aligned}
$$

which on letting $k \rightarrow \infty$ reduces to

$$
d(z, F z) \leq a \max \{0,0, d(z, F z)\}+b d(z, F z)
$$

yielding thereby $z \in F z$ which shows that z is a fixed point of F. Similarly, one can show that $z \in T z$. This completes the proof.

Remark 3.2 By choosing $F=T$ in the Theorem 3.1, one deduces a multi-valued analogue of Theorem 1 due to Khan et al. [9] and Theorem 1 due to Khan et al. [10].

Remark 3.3 By setting $F=T$ and $b=0$ in Theorem 3.1, one obtains a result which can be realized as a multi-valued analogue of a result due to Bianchini [2] to nonself multi-valued mappings in metrically convex spaces.

Remark 3.4 Similarly, by restricting $F=T$ and $a=0$ in Theorem 3.1, one deduces a result which can be realized as a multi-valued analogue of a result due to Chatterjea [3] to nonself multi-valued mappings in metrically convex spaces.

The following theorem is naturally predictable.
Theorem 3.5 Let (X, d) be a complete metrically convex metric space and K a nonempty closed subset of X. Let $F, T: K \rightarrow C(X)$ be a pair of maps which satisfy (2) and (iv). Then there exists $z \in K$ such that $z \in F z \cap T z$.

4 An Illustrative Example

Since every single valued mapping can always be realized as a multi-valued mapping, therefore we adapt the following example to demonstrate Theorem 3.1.

Example 4.1 Consider $X=\mathbb{R}$ equipped with the natural distance and $K=[0,3]$. Define $F, T: K \rightarrow C B(X)$ by

$$
F x= \begin{cases}\left\{\frac{-x}{8}\right\}, & \text { if } 0<x \leq 2 \\ \{0\}, & \text { if } x \in(2,3] \cup\{0\}\end{cases}
$$

and

$$
T x= \begin{cases}\left\{\frac{-x}{12}\right\}, & \text { if } 0<x \leq 2 \\ \{0\}, & \text { if } x \in(2,3] \cup\{0\}\end{cases}
$$

Note that for boundary points ' 0 ' and ' 3 ' satisfy the required condition (iv) of Theorem 3.1 because,

$$
\begin{aligned}
& 0 \in \delta K \Rightarrow F 0=\{0\} \subseteq K, T 0=\{0\} \subseteq K \\
& 3 \in \delta K \Rightarrow F 3=\{0\} \subseteq K, T 3=\{0\} \subseteq K
\end{aligned}
$$

Moreover, for the verification of contraction condition (2.1.1), the following cases arise :
Case 1. If $x, y \in(0,2]$, then

$$
\begin{aligned}
H(F x, T y) & =d(F x, T y)=\left|\frac{-x}{8}+\frac{y}{12}\right|=\frac{1}{24}|3 x-2 y|=\frac{1}{24}|2 x+x-2 y| \\
& =\frac{1}{24}|2 x-2 y+x|=\frac{1}{24}[2 \max \{|2 x-2 y|,|x|\}]=\frac{1}{12} \max \{|2 x-2 y|,|x|\} \\
& =\max \left\{\frac{1}{6}|x-y|, \frac{1}{12}|x|\right\} \leq \max \left[\frac{1}{3}\left\{\frac{1}{2}|x-y|\right\}, \frac{1}{3}\left(\frac{9}{8}|x|\right)\right] \\
& \leq \frac{1}{3} \max \left\{\frac{1}{2} d(x, y), d(x, F x), d(y, T y)\right\}+b\{d(x, T y)+d(y, F x)\}
\end{aligned}
$$

Case 2. If $0<x \leq 2$ and $y \in(2,3] \cup\{0\}$, then

$$
\begin{aligned}
H(F x, T y) & =d(F x, T y)=\left|\frac{-x}{8}-0\right|=\frac{1}{8}|x|=\frac{1}{9}\left(\frac{9}{8}|x|\right)<\frac{1}{3}\left(\frac{9}{8}|x|\right) \\
& <\frac{1}{3} \max \left\{\frac{1}{2} d(x, y), d(x, F x), d(y, T y)\right\}+b\{d(x, T y)+d(y, F x)\}
\end{aligned}
$$

Thus the contraction condition (2.1.1) is satisfied for $a=\frac{1}{3}$ and $0<b<\frac{1}{9}$ which completes the verification of all the conditions of the Theorem 3.1. Note that ' 0 ' is the common fixed point of (F, T).

References

[1] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43(3)(1972), 553-562.
[2] R. M. Bianchini, Su un problema dis Reich riguardante lateoria dei punti fissi, Boll. Un. Mat. ital., 5(1972), 103-108.
[3] S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulgare Sci., 25(1972), 727-730.
[4] O. Hadžic̀ and Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces, Univ. U. Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 16(1)(1986), 13-25.
[5] K. Iséki, Multi-valued contraction mappings in complete metric spaces, Math. Seminar Notes, Kobe University, 2(1974), 45-49.
[6] S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comment Math. Univ. Carolinae, 18(1977), 247-258.
[7] K. Kuratowski, Topology, Vol(I), Academic Press, 1966.
[8] M. S. Khan, Common fixed point theorems for multi-valued mappings, Pacific J. Math., 95(2)(1981), 337-347.
[9] M. S. Khan, H. K. Pathak and M. D. Khan, Some fixed point theorems in metrically convex spaces, Georgian Math. J., 7(3)(2000), 523-530.
[10] M. D. Khan and R. Bharadwaj, A fixed point theorem in metrically convex space, Indian J. Math., 43(3)(2001), 373-379.
[11] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30(2)(1969), 475-488.
[12] B. E. Rhoades, A fixed point theorem for some nonself mappings, Math. Japonica, 23(4)(1978), 457-459.
[13] B. E. Rhoades, A fixed point theorem for nonself set-valued mappings, Internat. J. Math. Math. Sci., 20(1)(1997), 9-12.
(Received 19 September 2005)
M. Imdad and Ladlay Khan

Department of Mathematics
Aligarh Muslim University
Aligarh 202 002, India.
e-mail : mhimdad@yahoo.co.in, k_ladlay@yahoo.com

