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A Common Fixed Point Theorem for a Pair
of Nonself Multi-valued Mappings
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Abstract : A common fixed point theorem for a pair of nonself multi-valued
mappings in complete metrically convex metric spaces is proved which generalizes
some earlier known results due to Khan et al. [9], Bianchini [2], Chatterjea [3],
Khan et al. [10] and others. An illustrative example is also discussed.
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1 Introduction

The study of fixed point theorems for nonself multi-valued contractions on
metrically convex metric spaces was initiated by Assad and Kirk [1]. In recent
years, several fixed point theorems for such maps were proved which include rele-
vant results due to Rhoades [12, 13], Hadžic̀ and Gajic [4], Iséki [5], Itoh [6], Khan
[8] and others.

The purpose of this paper is to extend a fixed point theorem due to Khan et
al. [9] proved for nonself single valued mappings to a pair of multi-valued nonself
mappings. For the sake of completeness, we state Theorem 1 due to Khan et al.
[9].

Theorem 1.1 Let (X, d) be a complete metrically convex metric space and K a
nonempty closed subset of X. Let T : K → X be a mapping satisfying the inequality

d(Tx, Ty) ≤ a max{d(x, Tx), d(y, Ty)}+ b {d(x, Ty) + d(y, Tx)} (1)

for every x, y ∈ K, where a and b are non-negative reals such that

max
{

a + b

1− b
,

b

1− a− b

}
= h > 0,max

{
1 + a + b

1− b
h,

1 + b

1− a− b
h

}
= h′,

and
max{h, h′} = h′′ < 1.

Further, if for every x ∈ δK, Tx ∈ K, then T has a unique fixed point in K.
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2 Preliminaries

Let (X, d) be a metric space. Then following Nadler[11], we recall

(i) CB(X) =
{

A : A is nonempty closed and bounded subset of X
}

,

(ii) C(X) =
{

A : A is nonempty compact subset of X
}

.

(iii) For nonempty subsets A,B of X,

H(A,B) = max {(sup d(a,B) : a ∈ A), (sup d(A, b) : b ∈ B)} .

It is well known (cf. Kuratowski [7]) that CB(X) is a metric space with the dis-
tance H which is known as Hausdorff-Pompeiu metric on X.

Before proving our main result, we collect the relevant definitions and lemmas
for our subsequent discussion.

Definition 2.1 Let (X, d) be a metric space and K a nonempty subset of X. Let
F, T : K → CB(X) satisfy the condition

H(Fx, Ty) ≤ a max
{1

2
d(x, y), d(x, Fx), d(y, Ty)

}
+b

{
d(x, Ty)+d(y, Fx)

}
(2)

for all x, y ∈ K with x 6= y, a, b ≥ 0 such that 2a + 3b < 1. Then F is called
generalized T -contraction mapping on K.

Definition 2.2 A metric space (X, d) is said to be metrically convex if for any
x, y ∈ X with x 6= y there exists a point z ∈ X, x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).

Lemma 2.3 ([1]) Let K be a nonempty closed subset of a metrically convex metric
space (X, d). If x ∈ K and y /∈ K then there exists a point z ∈ δK (the boundary
of K) such that d(x, z) + d(z, y) = d(x, y).

Lemma 2.4 ([11]) Let A,B ∈ CB(X). Then for all ε > 0 and a ∈ A there exists
b ∈ B such that d(a, b) ≤ H(A,B)+ ε. If A,B ∈ C(X), then one can choose b ∈ B
such that d(a, b) ≤ H(A,B).

3 Main result

In an attempt to extend Theorem 1.1 for a pair of multi-valued nonself map-
pings, we prove the following.

Theorem 3.1 Let (X, d) be a complete metrically convex metric space and K a
nonempty closed subset of X. If F is generalized T -contraction mapping of K into
X satisfying
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(iv) x ∈ δK ⇒ Fx ⊆ K, Tx ⊆ K.

Then there exists z ∈ K such that z ∈ Fz and z ∈ Tz.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the fol-
lowing way.

Assume α = h(1 + h), let x◦ ∈ δK and x1 = y1 ∈ F (x0). Using Lemma 2.4,
one can choose y2 ∈ T (x1) such that

d(y1, y2) ≤ H(F (x0), T (x1)) + α.

Suppose y2 ∈ K, then set y2 = x2. In case y2 /∈ K then (due to Lemma 2.1) there
exists a point x2 ∈ δK such that

d(x1, x2) + d(x2, y2) = d(x1, y2).

Thus, repeating the foregoing arguments, one obtains two sequences {xn} and
{yn} such that

(v) yn ∈ F (xn−1), if n is odd and

(vi) yn ∈ T (xn−1), if n is even

(vii) yn ∈ K ⇒ yn = xn or yn /∈ K ⇒ xn ∈ δK and

d(xn−1, xn) + d(xn, yn) = d(xn−1, yn),

(viii) d(yn, yn+1) ≤ H(F (xn−1), T (xn)) + αn if n is odd

(ix) d(yn, yn+1) ≤ H(T (xn−1), F (xn)) + αn if n is even.

We denote

P =
{

xi ∈ {xn} : xi = yi

}
, Q =

{
xi ∈ {xn} : xi 6= yi

}
.

One can note that two consecutive terms cannot lie in Q.
Now, we distinguish the following three cases.

Case 1. If xn, xn+1 ∈ P, then

d(xn, xn+1) = d(yn, yn+1) ≤ H(Fxn−1, Txn) + αn

≤ a max
{1

2
d(xn−1, xn), d(xn−1, Fxn−1), d(xn, Txn)

}
+ b

{
d(xn−1, Txn) + d(xn, Fxn−1)

}
+ αn

≤ a max
{1

2
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)

}
+ b d(xn−1, xn+1) + αn,

which in turn yields

d(xn, xn+1) ≤


(

a+b
1−b

)
d(xn−1, xn) + αn

1−b , if d(xn−1, xn) ≥ d(xn+1, xn),

(
b

1−b−a

)
d(xn−1, xn) + αn

1−b−a , if d(xn−1, xn) ≤ d(xn+1, xn),
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or

d(xn, xn+1) ≤ h d(xn−1, xn) + max
{

1
1− b

,
1

1− b− a

}
αn,

or
d(xn, xn+1) ≤ h d(xn−1, xn) +

αn

1− b− a
,

where h = max
{

(a+b
1−b ), ( b

1−b−a )
}

< 1, since 2a + 3b < 1.

Case 2. If xn ∈ P and xn+1 ∈ Q, then

d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1),

or
d(xn, xn+1) ≤ d(xn, yn+1) = d(yn, yn+1),

and hence
d(xn, xn+1) ≤ d(yn, yn+1) ≤ H(Fxn−1, Txn) + αn.

Now, proceeding as Case 1, one can have

d(xn, xn+1) ≤ h d(xn−1, xn) +
αn

1− b− a
.

Case 3. If xn ∈ Q and xn+1 ∈ P then xn−1 ∈ P. Proceeding as in Case 1, one
gets

d(xn, xn+1) = d(xn, yn+1) ≤ d(xn, yn) + d(yn, yn+1)

≤ d(xn, yn) + a max
{1

2
d(xn−1, xn), d(xn−1, Fxn−1), d(xn, Txn)

}
+ b

{
d(xn−1, Txn) + d(xn, Fxn−1)

}
+ αn

≤ d(xn, yn) + a max
{1

2
d(xn−1, xn), d(xn−1, yn), d(xn, xn+1)

}
+ b {d(xn−1, xn+1) + d(xn, yn)}+ αn,

which in turn yields

d(xn, xn+1) ≤


(

1+a+b
1−b

)
d(xn−1, yn) + αn

1−b , if d(xn−1, yn) ≥ d(xn+1, xn),

(
1+b

1−b−a

)
d(xn−1, yn) + αn

1−b−a , if d(xn−1, yn) ≤ d(xn+1, xn).

Now, proceeding as earlier, one also obtains

d(xn−1, yn) ≤


(

a+b
1−b

)
d(xn−1, xn−2) + αn−1

1−b , if d(xn−1, xn−2) ≥ d(xn−1, yn),

(
b

1−b−a

)
d(xn−1, xn−2) + αn−1

1−b−a , if d(xn−1, xn−2) ≤ d(xn−1, yn).



A Common Fixed Point Theorem for a Pair of Nonself Multi-valued Mappings197

Therefore combining above inequalities, we have

d(xn, xn+1) ≤ k d(xn−1, xn−2) +
αn−1

1− b− a
+

αn

1− b− a
, as k ≤ 2a + 3b < 1.

Thus in all the cases, we have

d(xn, xn+1) ≤


h d(xn, xn−1) + αn

1−b−a or

k d(xn−2, xn−1) + αn−1

1−b−a + αn

1−b−a .

Now, on the lines of Itoh[6], it can be shown that {xn} is Cauchy and hence
converges to a point z ∈ K. Then as noted in [4], there exists at least one subse-
quence {xnk

} which is contained in P and converges to some z ∈ K. Now, using
(2.1.1), one can write

d(xnk
, F z) ≤ H(Txnk−1, F z)

≤ a max
{1

2
d(xnk−1, z), d(xnk−1, Txnk−1), d(z, Fz)

}
+ b

{
d(xnk−1, F z) + d(z, Txnk−1)

}
,

which on letting k →∞ reduces to

d(z, Fz) ≤ a max{0, 0, d(z, Fz)}+ b d(z, Fz),

yielding thereby z ∈ Fz which shows that z is a fixed point of F. Similarly, one
can show that z ∈ Tz. This completes the proof. �

Remark 3.2 By choosing F = T in the Theorem 3.1, one deduces a multi-valued
analogue of Theorem 1 due to Khan et al. [9] and Theorem 1 due to Khan et al.
[10].

Remark 3.3 By setting F = T and b = 0 in Theorem 3.1, one obtains a result
which can be realized as a multi-valued analogue of a result due to Bianchini [2]
to nonself multi-valued mappings in metrically convex spaces.

Remark 3.4 Similarly, by restricting F = T and a = 0 in Theorem 3.1, one
deduces a result which can be realized as a multi-valued analogue of a result due
to Chatterjea [3] to nonself multi-valued mappings in metrically convex spaces.

The following theorem is naturally predictable.

Theorem 3.5 Let (X, d) be a complete metrically convex metric space and K a
nonempty closed subset of X. Let F, T : K → C(X) be a pair of maps which satisfy
(2) and (iv). Then there exists z ∈ K such that z ∈ Fz ∩ Tz.
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4 An Illustrative Example

Since every single valued mapping can always be realized as a multi-valued
mapping, therefore we adapt the following example to demonstrate Theorem 3.1.

Example 4.1 Consider X = R equipped with the natural distance and K = [0, 3].
Define F, T : K → CB(X) by

Fx =

 {−x
8 }, if 0 < x ≤ 2,

{0}, if x ∈ (2, 3] ∪ {0},

and

Tx =

 {−x
12 }, if 0 < x ≤ 2,

{0}, if x ∈ (2, 3] ∪ {0}.

Note that for boundary points ‘0’ and ‘3’ satisfy the required condition (iv)
of Theorem 3.1 because,

0 ∈ δK ⇒ F0 = {0} ⊆ K, T0 = {0} ⊆ K,

3 ∈ δK ⇒ F3 = {0} ⊆ K, T3 = {0} ⊆ K.

Moreover, for the verification of contraction condition (2.1.1), the following cases
arise :
Case 1. If x, y ∈ (0, 2], then

H(Fx, Ty) = d(Fx, Ty) =
∣∣∣∣−x

8
+

y

12

∣∣∣∣ =
1
24
|3x− 2y| = 1

24
|2x + x− 2y|

=
1
24
|2x− 2y + x| = 1

24

[
2 max

{
|2x− 2y|, |x|

}]
=

1
12

max
{
|2x− 2y|, |x|

}
= max

{1
6
|x− y|, 1

12
|x|

}
≤ max

[1
3

{1
2
|x− y|

}
,
1
3

(9
8
|x|

)]
≤ 1

3
max

{1
2
d(x, y), d(x, Fx), d(y, Ty)

}
+ b

{
d(x, Ty) + d(y, Fx)

}
.

Case 2. If 0 < x ≤ 2 and y ∈ (2, 3] ∪ {0}, then

H(Fx, Ty) = d(Fx, Ty) =
∣∣∣∣−x

8
− 0

∣∣∣∣ =
1
8
|x| = 1

9

(
9
8
|x|

)
<

1
3

(
9
8
|x|

)
<

1
3

max
{1

2
d(x, y), d(x, Fx), d(y, Ty)

}
+ b

{
d(x, Ty) + d(y, Fx)

}
.

Thus the contraction condition (2.1.1) is satisfied for a = 1
3 and 0 < b < 1

9 which
completes the verification of all the conditions of the Theorem 3.1. Note that ‘0’
is the common fixed point of (F, T ).
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