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Abstract : In this paper we study the problem of estimation of the scale para-
meter (θ) of the 2-parameter exponential distribution with prior information (θ0).

The estimators of θ are maximum likelihood estimator (θ̂1 = 1
n

n
∑

i=1

(xi − x(1))) and

shrinkage estimator (θ̂(p) = θ0+α(p)(θ̂−θ0), where p = ±1, ±2). The comparison
is based on the Multiple Criteria Decision Making (MCDM) procedure to obtain

the best estimator. The results reveal that the best estimators of θ is θ̂(1).
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1 Introduction

The 2-parameter exponential distribution has been used frequently in lifetime
testing and reliability theory. It is formulated as :

f(x; θ, γ) =
1

θ
e−

x−γ
θ ; for x > γ, θ > 0,

where θ is the scale aparmeter and γ is the location parameter. The location
parameter is interpreted as the minimum (or guaranteed) time before which no
failure occurs, the scale parameter is the mean life, measured from the location
parameter. The parameter estimation is an interesting problem in the statistical
inference. Kourouklis [3] proposed a class of shrinkage estimators θ̂(p) for the scale
parameter and the population mean of the 2-parameter exponential distribution,
given a prior estimate of the scale parameter (θ0). These estimators had been
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motivated by the work of Jani [2].
In the 2-parameter exponential distribution,the maximum likelihood estimator

(MLE) of θ is formulated as :

θ̂1 =
1

n

n
∑

i=1

(xi − x(1)), where x(1) is minimum order statistic,

and the class of shrinkage estimators for θ is θ̂(p) = θ0 + α(p)(θ̂ − θ0), where

α(p) = Γ(n−1−p)
Γ(n−1−2p)(n−1)p ; for p ∈ (−∞, 1

2 (n − 1))

In this article these estimators are compared wherein p = -2, -1, 1 and 2 as
described above on the basis of the mean square errors (MSEs) using the Multiple
Criteria Decision Making (MCDM) method for ranking those estimators from the
best to the worst. This method is briefly described in section 2. Section 3 describes
the main results of this paper.

2 A brief description of MCDM procedure

Multiple Criteria Decision Making (MCDM) is a technique that can be used
for assessments and decision making where the multiple criteria are presented.
A typical MCDM problem involves a number of alternatives to be selected and a
number of criterions or indicators for assessing these alternatives. Each alternative
has a value for each indicator and can be selected based on its values. Lertprapai
et al. [4] presented a comprehensive review on the MCDM procedure as follows:

For a ’discrete’ data matrix X = (xij) : K×N where x′

ijs represents the risk of
ith source for jth category, it is necessary to compare the K rows simultaneously
with respect to all the N columns, MCDM is a novel statistical procedure to
integrate the multiple risks (xi1, xi2, ..., xiN ), i = 1, 2, ..., K for the ith alternative
into a single meaningful and overall risk factor [1] and [5]. The K estimators are
then compared on the basis of these integrated risk factors. If M is the number of
positive meaning criterions.The risk integration is done by defining an ideal row
(IDR) with the best observed value for each column as:

IDR = (min
i

xi1,..., min
i

xiM , min
i

xiM+1..., min
i

xiN ) = (u1, ..., uN ),

and a negative-ideal row (NIDR) with the worst observed value for each column
as:

NIDR = (max
i

xi1, ..., max
i

xiM , max
i

xiM+1, ..., max
i

xiN ) = (v1, ..., vN ).

For any given row i, now the distance of each row is computed from the ideal
row and from the negative ideal row based on a suitably chosen norm. It is
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computed under L1-norm [7] as:

L1(i, IDR) =

N
∑

j=1

|uj − xij |wj

K
∑

i=1

|xij |

L1(i, NIDR) =

N
∑

j=1

|vj − xij |wj

K
∑

i=1

|xij |

where wjs is appropriate weight. The various rows are now compared based on
the overall index which is computed as:

L1(Indexi) =
L1(i, IDR)

L1(i, IDR) + L1(i, NIDR)
, i = 1, ..., K (2.1)

Similarly, under  L2 -norm ,

L2(i, IDR) =









N
∑

j=1

[xij − uj ]
2
w2

j

K
∑

i=1

x2
ij









1/2

L2(i, NIDR) =









N
∑

j=1

[vj − xij ]
2
w2

j

K
∑

i=1

x2
ij









1/2

and the rows are compared based on :

L2(Indexi) =
L2(i, IDR)

L2(i, IDR) + L2(i, NIDR)
, i = 1, ..., K. (2.2)

A ’continuous’ version of this setup would involve x′

ijs where the index j
would vary continuously. In the context of this problem five estimators of the
scale parameter (θ) in the 2-parameter exponential distribution are compared (see
section 3). In this cases, obviously K = 5, so x′

ijs is chosen to represent the mean

square of errors of the five estimators for various values of r = (θ0−θ)
θ , -1 < r < 1.

In this case, L1 and L2-norm would be redefined as:

L1(i, IDR) =

1
∫

−1

|xi(r) − u(r)|w(r)dr (2.3)

L1(i, NIDR) =

1
∫

−1

|v(r) − xi(r)|w(r)dr (2.4)
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L2(i, IDR) =

√

√

√

√

√

1
∫

−1

[xi(r) − u(r)]
2
[w(r)]2dr (2.5)

L2(i, NIDR) =

√

√

√

√

√

1
∫

−1

[v(r) − xi(r)]
2
[w(r)]2dr (2.6)

where u(r) = min
i
{xi(r)} and v(r) = max

i
{xi(r)}.

3 Main Results

3.1 Mean Square Errors (MSEs)

With reference to Kourouklis [3], the MSEs of θ̂1 and θ̂(p) are presented in
details as follows:

MSE(θ̂1; θ) = E(θ̂1 − θ)2 = θ2

n ,

MSE(θ̂(p); θ) = E(θ̂(p) − θ)2 =
[

(1 − α(p))2 · r2 + α2(p)
n−1

]

· θ2; r ≡ θ0

θ − 1.

In term of MSE(θ̂), a common term (θ2 ) is ignored, so the results are in the

form : MSE(θ̂1) = 1
n , MSE(θ̂(p); r) = (1 − α(p))2 · r2 + α2(p)

n−1 .

Let p = ±2, ± 1, the value of α is formulated as α(p) = Γ(n−1−p)
Γ(n−1−2p)(n−1)p .

Therefore we have

α(−2) = (n−1)2

(n+1)(n+2) , α(−1) = n−1
n , α(+1) = n−3

n−1 , α(+2) = (n−4)(n+5)
(n−1)2 .

We now let θ̂1, θ̂(−2), θ̂(−1),θ̂(1) and θ̂(2) as T1, T2, T3, T4 and T5 respectively.
In this paper, MSEs of each estimator are computed and compared based on the
MCDM method. The range −1 < r < 1 when n = 10 and 15 are considered.
Case I : n = 10

MSE(T1) = 1
10 , MSE(T2) = 289

1936r2 + 81
1936 , MSE(T3) = 1

100r2 + 9
100 ,

MSE(T4) = 4
81r2 + 49

729 , MSE(T5) = 289
729r2 + 100

6561 .
Their graphical patterns for n = 10 are presented in Figure 1.

Case II : n = 15
MSE(T1) = 1

15 , MSE(T2) = 361
4624r2 + 343

9248 , MSE(T3) = 1
225r2 + 14

225 ,
MSE(T4) = 1

49r2 + 18
343 , MSE(T5) = 1849

9604r2 + 3025
134456 .

Their graphical patterns for n = 15 are presented in Figure 2.
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Figure 1 : Graphical illustration of MSE of θ̂ for n = 10.

Figure 2 : Graphical illustration of MSE of θ̂ for n = 15.

3.2 Analysis IDR and NIDR

For −1 < r < 1, the intersection of the five graphs can separate the interval of r
into 20 intervals as :

−1 < c
′

9 < c
′

8 < c
′

7 < c
′

6 < c
′

5 < c
′

4 < c
′

3 < c
′

2 < c
′

1 < 0 < c1 < c2 < c3 < c4 <
c5 < c6 < c7 < c8 < c9 < 1.

Since these graphs are symmetry at r = 0, so the ideal row (uj(r)) and the
negative-ideal row (vj(r)) are demonstrated only the positive intervals (0 < r < 1)
are shown in Table 1.

Table 1 : The IDR and NIDR for each interval for n = 10 and 15.
n 0 < r < c1 c1 < r < c2 c2 < r < c3 c3 < r < c4 c4 < r < c5

u1 v1 u2 v2 u3 v3 u4 v4 u5 v5

10 T5 T1 T2 T1 T2 T1 T2 T1 T2 T5

15 T5 T1 T2 T1 T2 T1 T2 T1 T2 T5

Table 1 (continued) : The IDR and NIDR for each interval for n = 10 and 15.
n c5 < r < c6 c6 < r < c7 c7 < r < c8 c8 < r < c9 c9 < r < 1

u6 v6 u7 v7 u8 v8 u9 v9 u10 v10

10 T4 T5 T4 T5 T4 T5 T3 T5 T3 T5

15 T4 T5 T4 T5 T4 T5 T3 T5 T3 T5
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3.2.1 Analysis based on the L1-norm

For i = 1, 2, 3, 4 and 5, applying equations (2.3) and (2.4), we get

L1(i, IDR) =2{

∫ c1

0

[xi(r) − u1(r)]w(r)dr +

∫ c2

c1

[xi(r) − u2(r)]w(r)dr+

∫ c3

c2

[xi(r) − u3(r)]w(r)dr

+

∫ c4

c3

[xi(r) − u4(r)]w(r)dr+

∫ c5

c4

[xi(r) − u5(r)]w(r)dr+

∫ c6

c5

[xi(r) − u6(r)]w(r)dr

+

∫ c7

c6

[xi(r) − u7(r)]w(r)dr+

∫ c8

c7

[xi(r) − u8(r)]w(r)dr+

∫ c9

c8

[xi(r) − u9(r)]w(r)dr

+

∫ 1

c9

[xi(r) − u10(r)]w(r)dr} and

L1(i, NIDR) =2{

∫ c1

0

[v1(r) − xi(r)]w(r)dr +

∫ c2

c1

[v2(r) − xi(r)]w(r)dr+

∫ c3

c2

[v3(r) − xi(r)]w(r)dr

+

∫ c4

c3

[v4(r) − xi(r)]w(r)dr+

∫ c5

c4

[v5(r) − ui(r)]w(r)dr+

∫ c6

c5

[v6(r) − xi(r)]w(r)dr

+

∫ c7

c6

[v7(r) − xi(r)]w(r)dr+

∫ c8

c7

[v8(r) − xi(r)]w(r)dr+

∫ c9

c8

[v9(r) − xi(r)]w(r)dr

+

∫ 1

c9

[v10(r) − xi(r)]w(r)dr}.

The overall index then can be computed from equation (2.1).

3.2.2 Analysis based on the L2-norm

For i = 1, 2, 3, 4 and 5, applying equations 2.5 and 2.6, we get

L2(i, IDR) =

√

√

√

√

√

√

√

√

√

√

2{
∫ c1

0 [xi(r) − u1(r)]2[w(r)]2dr +
∫ c2

c1

[xi(r) − u2(r)]2[w(r)]2dr

+
∫ c3

c2

[xi(r) − u3(r)]2[w(r)]2dr +
∫ c4

c3

[xi(r) − u4(r)]2[w(r)]2dr

+
∫ c5

c4

[xi(r) − u5(r)]2[w(r)]2dr+
∫ c6

c5

[xi(r) − u6(r)]2[w(r)]2dr

+
∫ c7

c6

[xi(r) − u7(r)]2[w(r)]2dr+
∫ c8

c7

[xi(r) − u8(r)]2w(r)dr

+
∫ c9

c8

[xi(r) − u9(r)]2[w(r)]2dr +
∫ 1

c9

[xi(r) − u10(r)]2[w(r)]2dr}
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and

L2(i, NIDR) =

√

√

√

√

√

√

√

√

√

√

2{
∫ c1

0
[v1(r) − xi(r)]2[w(r)]2dr +

∫ c2

c1

[v2(r) − xi(r)]2[w(r)]2)dr

+
∫ c3

c2

[v3(r) − xi(r)]2[w(r)]2dr +
∫ c4

c3

[v4(r) − xi(r)]2[w(r)]2dr

+
∫ c5

c4

[v5(r) − ui(r)]2[w(r)]2dr +
∫ c6

c5

[v6(r) − xi(r)]2[w(r)]2dr

+
∫ c7

c6

[v7(r) − xi(r)]2[w(r)]2drr +
∫ c8

c7

[v8(r) − xi(r)]2[w(r)]2r

+
∫ c9

c8

[v9(r) − xi(r)]2[w(r)]2dr +
∫ 1

c9

[v10(r) − xi(r)]2[w(r)]2dr}

.

Under L2-norm, the overall index can also be computed from equation (2.2.)

3.3 Choice of Weight Function

There are three choices of weight function. The first weight function is defined by
w1(r) = 1. Refer to Filar et al [1], the second one denoted by w2(r) , is based on
the notion of entropy among x1(r), x2(r), x3(r), x4(r) and x5(r) for various values
of r, and the third one, denoted by w3(r), is based on the coefficient of varia-
tion of x1(r), x2(r), x3(r), x4(r) and x5(r) for various values of r. It turns out that

w2(r) = 1−φ(r)
1R

−1

(1−φ(r))dr

, where φ(r) = −
5

∑

i=1

[

xi(r)/
5

∑

i=1

xi(r) · ln

(

xi(r)/
5
∑

i=1

xi(r)

)]

/[ln 5]

and

w3 = sd/x̄, where sd =

√

√

√

√

[

5
∑

i=1

x2
i (r) − 5

(

5
∑

i=1

xi/5

)2
]

/4 and x̄ =
5
∑

i=1

xi/5.

3.4 Comparison of the estimators

The ranks of the five estimators of θ based on L1 and L2-norm using the weight
function w1(r), w2(r), and w3(r), for n = 10, 15 are shown in Table 2.

Table 2 : The ranking of estimators of θ using weights w1(r), w2(r) and w3(r)∗

n T L1-norm L2-norm
w1(r) w2(r) w3(r) w1(r) w2(r) w3(r)

10 T1 4 3 3 4 3 3
T2 2 4 4 3 4 4
T3 3 2 2 2 2 2
T4 1 1 1 1 1 1
T5 5 5 5 5 5 5

15 T1 4 3 3 3 3 3
T2 2 4 4 4 4 4
T3 3 2 2 2 2 2
T4 1 1 1 1 1 1
T5 5 5 5 5 5 5

* 1 = best, 5 = worst
In Table 2 shows that most of all, T4 is the best in any weight function while
T3, T1, T2 and T5 are lower in rank respectively.
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The average of L1 and L2-norm with of three weight functions and the ranks
of the five estimators are shown in Table 3.
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Table 3 : Conclusion of the ranking of estimators of theta for n = 10 and 15∗.
n T L1(index) L2(index) Average Rank

w1(r) w2(r) w3(r) w1(r) w2(r) w3(r)
10 T1 0.3070 0.2320 0.2405 0.2672 0.2152 0.2128 0.2458 3

T2 0.2278 0.2621 0.2498 0.258 0.2767 0.2706 0.2576 4
T3 0.2441 0.1926 0.1951 0.2337 0.1923 0.1886 0.2077 2
T4 0.1531 0.1499 0.1416 0.1671 0.1480 0.1421 0.1503 1
T5 0.7537 0.7857 0.7901 0.7453 0.7864 0.7904 0.7753 5

15 T1 0.3301 0.1993 0.2398 0.2886 0.2339 0.2079 0.2499 3
T2 0.2604 0.2969 0.2850 0.2922 0.3120 0.3065 0.2922 4
T3 0.2720 0.1689 0.2007 0.2587 0.1580 0.1877 0.2077 2
T4 0.1851 0.1406 0.1541 0.2006 0.1286 0.1502 0.1599 1
T5 0.7230 0.8153 0.7855 0.7215 0.8269 0.7946 0.7778 5

* 1 = best, 5 = worst

In Table 3, we found that T4 is the best while T3, T1, T2 and T5 are lower in
rank respectively.

4 Conclusion

MCDM method is used for comparing the estimators of scale parameter in 2
- parameter exponential distribution with prior information. Based on L1 and L2

- norm, we conclude that the shrinkage estimator where p = 1 is quite preferable
while the worst one is the shrinkage estimator where p = 2 under the three weights
w1(r), w2(r), and w3(r).
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