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In this paper, we prove the general solution of a mixed-type quadratic
and cubic functional equation

f(x + 3y) − 3f(x + 2y) + 3f(x + y) − f(x) = 3f(y) − 3f(−y)

and investigate its general stability.
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1 Introduction

The stability problem was originated in 1940 by S.M. Ulam [5]. He proposed
the following famous question concerning the stability of homomorphisms:

Let G1 be a group and let G2 be a metric group with metric d.
Given ε > 0, does there exist a δ > 0 such that if f : G1 → G2

satisfies the inequality

d (f(xy), f(x)f(y)) < δ for all x, y ∈ G1,

then there exists a homomorphism H : G1 → G2 with

d (f(x),H(x)) < ε for all x ∈ G1?

After that, in 1941, D.H. Hyers [3] published a theorem affirming an exis-
tence in the Ulam’s problem for the case of approximately additive function
f : G1 → G2 where G1 and G2 are Banach spaces:
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Assume that E1 and E2 are Banach spaces. If a function f :
E1 → E2 satisfies the inequality

‖f(x + y) − f(x) − f(y)‖ ≤ ε

for some ε ≥ 0 for all x, y ∈ E1, then the limit

a(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ E1 and a : E1 → E2 is the unique additive
function such that

‖f(x) − a(x)‖ ≤ ε

for any x ∈ E1. Moreover, if f(tx) is continuous in t for each
fixed x ∈ E1, then a is linear.

In 1950, T. Aoki [1] gave the generalized Hyers’ theorem. Afterwards, in
1978, Th.M. Rassias [4] published the following stability theorem:

If a function f : E1 → E2 between Banach spaces satisfies the
inequality

‖f(x + y) − f(x) − f(y)‖ ≤ θ (‖x‖p + ‖y‖p)

for some θ ≥ 0 and 0 ≤ p < 1 for all x, y ∈ E1, then there exists
an additive function a : E1 → E2 such that

‖f(x) − a(x)‖ ≤
2θ

2 − 2p
‖x‖p

for any x ∈ E1. Moreover, if f(tx) is continuous in t for each
fixed x ∈ E1, then a is linear.

This theorem stimulated a number of authors to investigate stability prob-
lems of various functional equations.

In this paper, we will determine the general solution of a mixed-type
quadratic and cubic functional equation,

f(x + 3y) − 3f(x + 2y) + 3f(x + y) − f(x) = 3f(y) − 3f(−y),

and will also investigate its general stability.
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2 Preliminaries

In this section, we will introduce generalized polynomial functions. For
further details, please refer to the book authored by S. Czerwik [2].

Let X and Y be linear spaces over the field Q of rational numbers, and
let s = 0, 1, 2, . . .. A function f : X → Y is called a polynomial function of
order s if f satisfies the functional equation

s+1∑

i=0

(−1)s+1−i

(
s + 1

i

)

f(x + iy) = 0 (2.1)

for all x, y ∈ X. For instance when s = 1, a function f fulfilling the
functional equation

f(x + 2y) − 2f(x + y) + f(x) = 0 (2.2)

is a polynomial function of order 1. The following theorem gives a formula
of the general solution of the polynomial functions.

Theorem 2.1. Let n = 0, 1, 2, . . .. A function f : X → Y is a polynomial
function of order n if and only if there exist k-additive symmetric functions
Ak : Xk → Y, k = 0, 1, 2, . . . , n such that

f(x) = A0(x) + A1(x) + A2(x) + . . . + An(x)

for all x ∈ X where Ak : X → Y, k = 0, 1, 2, . . . , n is the diagonalization of
Ak and is defined by

Ak(x) = Ak(x, ..., x
︸ ︷︷ ︸

k

), for all x ∈ X.

By the above theorem, a function f satisfying (2.2) take the form of
f(x) = A0(x) + A1(x). Let us consider a k-additive symmetric function
Ak(x1, ..., xk) for x1, x2, . . . , xk ∈ X and its diagonalization, Ak(x). It can
be proven that the additivity of Ak in the ith variable leads us to

Ak(x1, . . . , xi−1, rxi, xi+1, . . . , xk) = rAk(x1, . . . , xk) for each r ∈ Q.

Thus Ak(rx) = rkAk(x). In particular, Ak(−x) = (−1)kAk(x). Since the
function A1 satisfies the additive functional equation

A1(x + y) = A1(x) + A1(y)
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for all x ∈ X, A1(x) will also be called an additive function. In addition, the
functional equation A2(x) and A3(x) will be referred a quadratic function
and a cubic function, respectively.

In this paper, we will call a function f : X → Y given by

f(x) = A0(x) + A2(x) + A3(x)

for all x ∈ X a mixed-type quadratic and cubic function.

3 Main Results

3.1 The general solution

Theorem 3.1. Let X and Y be vector spaces. A function f : X → Y

satisfies the functional equation

f(x + 3y) − 3f(x + 2y) + 3f(x + y) − f(x) = 3f(y) − 3f(−y), (3.1)

for all x, y ∈ X if and only if there exist a quadratic function A2 : X → Y ,
a cubic function A3 : X → Y and a constant A0 such that

f(x) = A0 + A2(x) + A3(x) (3.2)

for all x ∈ X.

Proof. Assume that a function f : X → Y satisfies (3.1). Replacing x by
x + y in (3.1) and taking the difference of the previous result and (3.1), we
then obtain

f(x + 4y) − 4f(x + 3y) + 6f(x + 2y) − 4f(x + y) + f(x) = 0. (3.3)

Hence, by the Theorem 2.1 of the preliminaries section, f is a polynomial
function of order 3 and take the form of

f(x) = A0 + A1(x) + A2(x) + A3(x) (3.4)

for all x ∈ X. Substituting (3.4) into (3.1), one get that

6A3(y) = 6A1(y) + 6A3(y).

Thus, it yields A1(y) = 0 for all y ∈ X.
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3.2 The General Stability

In this section, the stability of the functional equation will be investigated.
Define

Df(x, y) = f(x + 3y) − 3f(x + 2y) + 3f(x + y) − f(x) − 3f(y) + 3f(−y).

Theorem 3.2. Let X be a real vector space, Y be a Banach space. Let
φ : X2 → [0,∞) be an even function with respect to each variable such that







∞∑

i=0

2−iφ(2iy, 2iy) converges for all y ∈ X,and

lim
s→∞

2−sφ(2sx, 2sy) = 0 for all x, y ∈ X,

(3.5)

or 





∞∑

i=1

8iφ(2−iy, 2−iy) converges for all y ∈ X,and

lim
s→∞

8sφ(2−sx, 2−sy) = 0 for all x, y ∈ X.

(3.6)

If a function f : X → Y satisfies the inequality

‖Df(x, y)‖ ≤ φ(x, y) (3.7)

for all x, y ∈ X and f(0) = 0 when (3.6) holds, then there exists a unique
function T : X → Y that satisfies (3.1) and, for all x ∈ X,

‖f(x) − T (x)‖ ≤







1

4

∞∑

i=0

4−iφ(2ix, 2ix) +
1

8

∞∑

i=0

8−iφ(2ix, 2ix) + 2 ‖f(0)‖ if (3.5) holds

1

4

∞∑

i=1

4iφ(2−ix, 2−ix) +
1

8

∞∑

i=1

8iφ(2−ix, 2−ix) if (3.6) holds.

(3.8)
The function T is given by

T (x) =







lim
s→∞

4−sfe(2
sx) + 8−sfo(2

sx) if (3.5) holds

lim
s→∞

4sfe(2
−sx) + 8sfo(2

−sx) if (3.6) holds

for all x ∈ X.

Proof. Let F be a function on X defined by F (x) = f(x) − f(0) for all
x ∈ X. Then we have F (0) = 0. (3.7) can be rewritten as

‖F (x + 3y) − 3F (x + 2y) + 3F (x + y) − F (x) − 3F (y) + 3F (−y)‖ ≤ φ(x, y).
(3.9)
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Putting x = −y in (3.9), we get

‖F (2y) − 3F (y) + 3F (0) − F (−y) − 3F (y) + 3F (−y)‖ ≤ φ(−y, y).

Simplifying the above equation yields

‖F (2y) − 6F (y) + 2F (−y)‖ ≤ φ(y, y). (3.10)

Reversing the sign of y in (3.10) and realising that φ is even, we have

‖F (−2y) − 6F (−y) + 2F (y)‖ ≤ φ(y, y). (3.11)

Define the even part and the odd part of function f by

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x) − f(−x)

2
,

respectively. We apply triangle inequality with (3.10) and (3.11) to obtain
that

‖2Fe(2y) − 8Fe(y)‖ ≤ 2φ(y, y)

and
‖2Fo(2y) − 16Fo(y)‖ ≤ 2φ(y, y)

which is simplified to

∥
∥Fe(y) − 4−1Fe(2y)

∥
∥ ≤

1

4
φ(y, y) (3.12)

and
∥
∥Fo(y) − 8−1Fo(2y)

∥
∥ ≤

1

8
φ(y, y). (3.13)

For each positive integer s, we obtain

∥
∥Fe(y) − 4−sFe(2

sy)
∥
∥ =

∥
∥
∥
∥
∥

s−1∑

i=0

(

4−iFe(2
iy) − 4−(i+1)Fe(2

(i+1)y)
)
∥
∥
∥
∥
∥

≤

s−1∑

i=0

4−i
∥
∥Fe(2

iy) − 4−1Fe(2 · 2iy)
∥
∥

≤
1

4

s−1∑

i=0

4−iφ(2iy, 2iy). (3.14)

Similarly, for each positive integer s,

∥
∥Fo(y) − 8−sFo(2

sy)
∥
∥ ≤

1

8

s−1∑

i=0

8−iφ(2iy, 2iy).
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In order to prove the convergence of the sequence {4−sFe(2
sy)}

∞

s=1, we
divide inequality (3.14) by 4−t and also replace y by 2ty to get that for
every positive integer s and t,

∥
∥
∥4−tFe(2

ty) − 4−(s+t)Fe(2
s+ty)

∥
∥
∥ = 4−t

∥
∥Fe(2

ty) − 4−sFe(2
s+ty)

∥
∥

≤ 4−(t+1)
s−1∑

i=0

4−iφ(2i+ty, 2i+ty)

≤
1

4

∞∑

i=0

4−(i+t)φ(2i+ty, 2i+ty).

According to the condition (3.5), the convergence of
∑

∞

i=0 2−iφ(2iy, 2iy)
implies that

∑
∞

i=0 4−(i+t)φ(2i+ty, 2i+ty) approaches zero as s → ∞. There-
fore, {4−sFe(2

sy)}
∞

s=1 is a Cauchy sequence in a Banach space. We may
define a function Te : X → Y as

Te(y) = lim
s→∞

4−sFe(2
sy) = lim

s→∞

4−sfe(2
sy)

for all y ∈ X. By taking s → ∞ in (3.14), we arrive at the inequality

‖Fe(y) − Te(y)‖ ≤
1

4

∞∑

i=0

4−iφ(2iy, 2iy).

Moreover, by the definition of Fe, one get that

‖fe(y) − Te(y)‖ ≤ ‖Fe(y) + f(0) − Te(y)‖

≤ ‖Fe(y) − Te(y)‖ + ‖f(0)‖

≤
1

4

∞∑

i=0

4−iφ(2iy, 2iy) + ‖f(0)‖ .

In a similar manner, {8−sFo(2
sy)}

∞

s=1 is proved to be a convergent sequence
in the Banach space. Define a function To : X → Y by

To(y) = lim
s→∞

8−sFo(2
sy) = lim

s→∞

8−sfo(2
sy)

for all y ∈ X. Then

‖fo(y) − To(y)‖ ≤
1

8

∞∑

i=0

8−iφ(2iy, 2iy) + ‖f(0)‖ .
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Define a function T : X → Y by

T (y) = Te(y) + To(y)

for all y ∈ X. Thus it follow from the previous relations that

‖f(y) − T (y)‖ ≤ ‖fe(y) − Te(y)‖ + ‖fo(y) − To(y)‖

≤
1

4

∞∑

i=0

4−iφ(2iy, 2iy) +
1

8

∞∑

i=0

8−iφ(2iy, 2iy)

+2 ‖f(0)‖ (3.15)

for all y ∈ X. Next, we will prove that T satisfies (3.1). We define the even
part and odd part of Df by Dfe(x, y) = 1

2 (Df(x, y) + Df(−x,−y)) and
Dfo(x, y) = 1

2 (Df(x, y) − Df(−x,−y)). For a positive integer s, putting
(x, y) = (2sx, 2sy) into the above equations to obtain the relations

‖Dfe(2
sx, 2sy)‖ ≤ φ(2sx, 2sy) and ‖Dfo(2

sx, 2sy)‖ ≤ φ(2sx, 2sy).

Dividing the above results by 4s and 8s, respectively, and taking the limit
as s → ∞. We then have DTe(x, y) = 0 and DTo(x, y) = 0 for all x, y ∈ X.
Hence, T = Te +To satisfies (3.1). It only remains to show that T is unique.
Suppose that there exists another function T ′ : X → Y such that T ′ satisfies
(3.1) and (3.8). From Theorem 3.1, we notice that Te = A0 + A2(x) where
A2(x) satisfies the quadratic functional equation and A0 is a constant, and
To satisfies the cubic functional equation; therefore, A2(rx) = r2A2(x) and
To(rx) = r3To(x) for every rational number r and for every x ∈ X. Thus,

∥
∥T (x) − T ′(x)

∥
∥ ≤

∥
∥Te(x) − T ′

e(x)
∥
∥ +

∥
∥To(x) − T ′

o(x)
∥
∥ .

For any positive integer s and for each x ∈ X,

∥
∥Te(x) − T ′

e(x)
∥
∥ =

∥
∥A0 + A2(x) − A0 − A′2(x)

∥
∥

= 4−s
∥
∥A2(2sx) − A′2(2sx)

∥
∥

= 4−s
∥
∥Te(2

sx) − T ′

e(2
sx)

∥
∥

≤ 4−s ‖fe(2
sx) − Te(2

sx)‖ + 4−s
∥
∥fe(2

sx) − T ′

e(2
sx)

∥
∥

≤
1

2

∞∑

i=0

4−(i+s)φ(2i+sx) + 2 · 4−s ‖f(0)‖ .

Taking the limit as s → ∞, we have ‖Te(x) − T ′

e(x)‖ ≤ 0. Thus Te(x) =
T ′

e(x) for all x ∈ X. Similarly, we can show that To(x) = T ′

o(x) for all
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x ∈ X. Hence T (x) = T ′(x) for all x ∈ X.
For the case when the condition (3.6) holds, The proof can be stated in

a similar manner. We start the proof by substituting (x, y) by (−y
2 , y

2 ) in
(3.7) and by f(0) = 0 to get that

∥
∥
∥
∥
f(y) − 6f

(y

2

)

+ 2f

(
−y

2

)∥
∥
∥
∥
≤ φ(

y

2
,
y

2
).

Applying the definitions of fe and fo to the previous equation. It yields

∥
∥
∥fe(y) − 4fe

(y

2

)∥
∥
∥ ≤ φ(

y

2
,
y

2
)

and
∥
∥
∥fo(y) − 8fe

(y

2

)∥
∥
∥ ≤ φ(

y

2
,
y

2
).

We extend the two inequalities to

∥
∥fe(y) − 4sfe(2

−sy)
∥
∥ ≤

1

4

s∑

i=1

4iφ(2−iy, 2−iy)

and

∥
∥fo(y) − 8sfo(2

−sy)
∥
∥ ≤

1

8

s∑

i=1

2iφ(2−iy, 2−iy).

for a positive integer s and for all y ∈ X. The rest of the proof can be
produced in a similar fashion.

Corollary 3.3. If a function f : X → Y satisfies

‖Df(x, y)‖ ≤ ε, (3.16)

for all x, y ∈ X and for some ε > 0, then there exists a unique function
T : X → Y that satisfies (3.1) and

‖f(y) − T (y)‖ ≤
10

27
ε + 2 ‖f(0)‖ (3.17)

for all y ∈ X.
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Proof. We can follow the proof as the Theorem 3.2 by letting φ(x, y) = ε for
all x, y ∈ X. According to the condition (3.5), it follows from the theorem
that there exists a unique function T ;X → Y such that

‖f(y) − T (y)‖ ≤ ‖fe(y) − Te(y)‖ + ‖fo(y) − To(y)‖

≤
1

4

∞∑

i=0

4−iε +
1

8

∞∑

i=0

8−iε + 2 ‖f(0)‖

≤
ε

3
+

ε

7
+ 2 ‖f(0)‖

=
10

27
ε + 2 ‖f(0)‖

for all y ∈ X.

Corollary 3.4. If a function f : X → Y satisfies

‖Df(x, y)‖ ≤ ε (‖x‖p + ‖y‖p) (3.18)

for all x, y ∈ X and for some ε > 0 where p is a positive real number with
p < 1 or p > 3, then there exists a unique function T : X → Y that satisfies
(3.1) and

‖f(y) − T (y)‖ ≤
4ε |6 − 2p|

|4 − 2p| |8 − 2p|
‖y‖p + 2 ‖f(0)‖ (3.19)

for all y ∈ X.

Proof. From the Theorem 3.2, let φ(x, y) = ε (‖x‖p + ‖y‖p) for all x, y ∈ X.
If p < 1, then the condition (3.5) holds. Applying the theorem 3.2, we then
get

‖f(y) − T (y)‖ ≤
1

4

∞∑

i=0

4−i · 2ε
∥
∥2iy

∥
∥

p
+

1

8

∞∑

i=0

8−i · 2ε
∥
∥2iy

∥
∥

p
+ 2 ‖f(0)‖

=
2ε ‖y‖p

4 − 2p
+

2ε ‖y‖p

8 − 2p
+ 2 ‖f(0)‖

=
4ε(6 − 2p)

(4 − 2p)(8 − 2p)
‖y‖p + 2 ‖f(0)‖

for all y ∈ X. It can be checked that for p > 3, the condition (3.6) holds.
We therefore obtain a similar result.
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