A Mixed-Type Quadratic and Cubic Functional Equation and Its Stability

W. Towanlong and P. Nakmahachalasint

In this paper, we prove the general solution of a mixed-type quadratic and cubic functional equation

$$
f(x+3 y)-3 f(x+2 y)+3 f(x+y)-f(x)=3 f(y)-3 f(-y)
$$

and investigate its general stability.
Keywords : Functional Equation; Mixed-Type Quadratic and Cubic Functional Equation; Stability.
2000 Mathematics Subject Classification : 39B22; 39B52; 39B82.

1 Introduction

The stability problem was originated in 1940 by S.M. Ulam [5]. He proposed the following famous question concerning the stability of homomorphisms:

Let G_{1} be a group and let G_{2} be a metric group with metric d.
Given $\varepsilon>0$, does there exist a $\delta>0$ such that if $f: G_{1} \rightarrow G_{2}$
satisfies the inequality

$$
d(f(x y), f(x) f(y))<\delta \quad \text { for all } x, y \in G_{1},
$$

then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(f(x), H(x))<\varepsilon \quad \text { for all } x \in G_{1} ?
$$

After that, in 1941, D.H. Hyers [3] published a theorem affirming an existence in the Ulam's problem for the case of approximately additive function $f: G_{1} \rightarrow G_{2}$ where G_{1} and G_{2} are Banach spaces:

```
Copyright (c) }2010\mathrm{ by the Mathematical Association of Thailand. All rights
reserved.
```

Assume that E_{1} and E_{2} are Banach spaces. If a function f : $E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for some $\varepsilon \geq 0$ for all $x, y \in E_{1}$, then the limit

$$
a(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

exists for each $x \in E_{1}$ and $a: E_{1} \rightarrow E_{2}$ is the unique additive function such that

$$
\|f(x)-a(x)\| \leq \varepsilon
$$

for any $x \in E_{1}$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in E_{1}$, then a is linear.

In 1950, T. Aoki [1] gave the generalized Hyers' theorem. Afterwards, in 1978, Th.M. Rassias [4] published the following stability theorem:

If a function $f: E_{1} \rightarrow E_{2}$ between Banach spaces satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for some $\theta \geq 0$ and $0 \leq p<1$ for all $x, y \in E_{1}$, then there exists an additive function $a: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-a(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for any $x \in E_{1}$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in E_{1}$, then a is linear.

This theorem stimulated a number of authors to investigate stability problems of various functional equations.

In this paper, we will determine the general solution of a mixed-type quadratic and cubic functional equation,

$$
f(x+3 y)-3 f(x+2 y)+3 f(x+y)-f(x)=3 f(y)-3 f(-y),
$$

and will also investigate its general stability.

2 Preliminaries

In this section, we will introduce generalized polynomial functions. For further details, please refer to the book authored by S. Czerwik [2].

Let X and Y be linear spaces over the field \mathbb{Q} of rational numbers, and let $s=0,1,2, \ldots$ A function $f: X \rightarrow Y$ is called a polynomial function of order s if f satisfies the functional equation

$$
\begin{equation*}
\sum_{i=0}^{s+1}(-1)^{s+1-i}\binom{s+1}{i} f(x+i y)=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. For instance when $s=1$, a function f fulfilling the functional equation

$$
\begin{equation*}
f(x+2 y)-2 f(x+y)+f(x)=0 \tag{2.2}
\end{equation*}
$$

is a polynomial function of order 1. The following theorem gives a formula of the general solution of the polynomial functions.

Theorem 2.1. Let $n=0,1,2, \ldots$ A function $f: X \rightarrow Y$ is a polynomial function of order n if and only if there exist k-additive symmetric functions $A_{k}: X^{k} \rightarrow Y, k=0,1,2, \ldots, n$ such that

$$
f(x)=A^{0}(x)+A^{1}(x)+A^{2}(x)+\ldots+A^{n}(x)
$$

for all $x \in X$ where $A^{k}: X \rightarrow Y, k=0,1,2, \ldots, n$ is the diagonalization of A_{k} and is defined by

$$
A^{k}(x)=A_{k}(\underbrace{x, \ldots, x}_{k}), \text { for all } x \in X .
$$

By the above theorem, a function f satisfying (2.2) take the form of $f(x)=A^{0}(x)+A^{1}(x)$. Let us consider a k-additive symmetric function $A_{k}\left(x_{1}, \ldots, x_{k}\right)$ for $x_{1}, x_{2}, \ldots, x_{k} \in X$ and its diagonalization, $A^{k}(x)$. It can be proven that the additivity of A_{k} in the $i^{\text {th }}$ variable leads us to

$$
A_{k}\left(x_{1}, \ldots, x_{i-1}, r x_{i}, x_{i+1}, \ldots, x_{k}\right)=r A_{k}\left(x_{1}, \ldots, x_{k}\right) \text { for each } r \in \mathbb{Q}
$$

Thus $A^{k}(r x)=r^{k} A^{k}(x)$. In particular, $A^{k}(-x)=(-1)^{k} A^{k}(x)$. Since the function A^{1} satisfies the additive functional equation

$$
A^{1}(x+y)=A^{1}(x)+A^{1}(y)
$$

for all $x \in X, A^{1}(x)$ will also be called an additive function. In addition, the functional equation $A^{2}(x)$ and $A^{3}(x)$ will be referred a quadratic function and a cubic function, respectively.

In this paper, we will call a function $f: X \rightarrow Y$ given by

$$
f(x)=A^{0}(x)+A^{2}(x)+A^{3}(x)
$$

for all $x \in X$ a mixed-type quadratic and cubic function.

3 Main Results

3.1 The general solution

Theorem 3.1. Let X and Y be vector spaces. A function $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{equation*}
f(x+3 y)-3 f(x+2 y)+3 f(x+y)-f(x)=3 f(y)-3 f(-y) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$ if and only if there exist a quadratic function $A^{2}: X \rightarrow Y$, a cubic function $A^{3}: X \rightarrow Y$ and a constant A^{0} such that

$$
\begin{equation*}
f(x)=A^{0}+A^{2}(x)+A^{3}(x) \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Assume that a function $f: X \rightarrow Y$ satisfies (3.1). Replacing x by $x+y$ in (3.1) and taking the difference of the previous result and (3.1), we then obtain

$$
\begin{equation*}
f(x+4 y)-4 f(x+3 y)+6 f(x+2 y)-4 f(x+y)+f(x)=0 . \tag{3.3}
\end{equation*}
$$

Hence, by the Theorem 2.1 of the preliminaries section, f is a polynomial function of order 3 and take the form of

$$
\begin{equation*}
f(x)=A^{0}+A^{1}(x)+A^{2}(x)+A^{3}(x) \tag{3.4}
\end{equation*}
$$

for all $x \in X$. Substituting (3.4) into (3.1), one get that

$$
6 A^{3}(y)=6 A^{1}(y)+6 A^{3}(y) .
$$

Thus, it yields $A^{1}(y)=0$ for all $y \in X$.

3.2 The General Stability

In this section, the stability of the functional equation will be investigated. Define
$D f(x, y)=f(x+3 y)-3 f(x+2 y)+3 f(x+y)-f(x)-3 f(y)+3 f(-y)$.
Theorem 3.2. Let X be a real vector space, Y be a Banach space. Let $\phi: X^{2} \rightarrow[0, \infty)$ be an even function with respect to each variable such that

$$
\left\{\begin{array}{l}
\sum_{i=0}^{\infty} 2^{-i} \phi\left(2^{i} y, 2^{i} y\right) \text { converges for all } y \in X, \text { and } \tag{3.5}\\
\lim _{s \rightarrow \infty} 2^{-s} \phi\left(2^{s} x, 2^{s} y\right)=0 \text { for all } x, y \in X,
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\sum_{i=1}^{\infty} 8^{i} \phi\left(2^{-i} y, 2^{-i} y\right) \text { converges for all } y \in X, \text { and } \tag{3.6}\\
\lim _{s \rightarrow \infty} 8^{s} \phi\left(2^{-s} x, 2^{-s} y\right)=0 \text { for all } x, y \in X
\end{array}\right.
$$

If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|D f(x, y)\| \leq \phi(x, y) \tag{3.7}
\end{equation*}
$$

for all $x, y \in X$ and $f(0)=0$ when (3.6) holds, then there exists a unique function $T: X \rightarrow Y$ that satisfies (3.1) and, for all $x \in X$,

$$
\|f(x)-T(x)\| \leq \begin{cases}\frac{1}{4} \sum_{i=0}^{\infty} 4^{-i} \phi\left(2^{i} x, 2^{i} x\right)+\frac{1}{8} \sum_{i=0}^{\infty} 8^{-i} \phi\left(2^{i} x, 2^{i} x\right)+2\|f(0)\| & \text { if (3.5) holds } \tag{3.8}\\ \frac{1}{4} \sum_{i=1}^{\infty} 4^{i} \phi\left(2^{-i} x, 2^{-i} x\right)+\frac{1}{8} \sum_{i=1}^{\infty} 8^{i} \phi\left(2^{-i} x, 2^{-i} x\right) & \text { if (3.6) holds }\end{cases}
$$

The function T is given by

$$
T(x)= \begin{cases}\lim _{s \rightarrow \infty} 4^{-s} f_{e}\left(2^{s} x\right)+8^{-s} f_{o}\left(2^{s} x\right) & \text { if }(3.5) \text { holds } \\ \lim _{s \rightarrow \infty} 4^{s} f_{e}\left(2^{-s} x\right)+8^{s} f_{o}\left(2^{-s} x\right) & \text { if }(3.6) \text { holds }\end{cases}
$$

for all $x \in X$.
Proof. Let F be a function on X defined by $F(x)=f(x)-f(0)$ for all $x \in X$. Then we have $F(0)=0$. (3.7) can be rewritten as

$$
\begin{equation*}
\|F(x+3 y)-3 F(x+2 y)+3 F(x+y)-F(x)-3 F(y)+3 F(-y)\| \leq \phi(x, y) \tag{3.9}
\end{equation*}
$$

Putting $x=-y$ in (3.9), we get

$$
\|F(2 y)-3 F(y)+3 F(0)-F(-y)-3 F(y)+3 F(-y)\| \leq \phi(-y, y)
$$

Simplifying the above equation yields

$$
\begin{equation*}
\|F(2 y)-6 F(y)+2 F(-y)\| \leq \phi(y, y) \tag{3.10}
\end{equation*}
$$

Reversing the sign of y in (3.10) and realising that ϕ is even, we have

$$
\begin{equation*}
\|F(-2 y)-6 F(-y)+2 F(y)\| \leq \phi(y, y) \tag{3.11}
\end{equation*}
$$

Define the even part and the odd part of function f by

$$
f_{e}(x)=\frac{f(x)+f(-x)}{2} \quad \text { and } \quad f_{o}(x)=\frac{f(x)-f(-x)}{2}
$$

respectively. We apply triangle inequality with (3.10) and (3.11) to obtain that

$$
\left\|2 F_{e}(2 y)-8 F_{e}(y)\right\| \leq 2 \phi(y, y)
$$

and

$$
\left\|2 F_{o}(2 y)-16 F_{o}(y)\right\| \leq 2 \phi(y, y)
$$

which is simplified to

$$
\begin{equation*}
\left\|F_{e}(y)-4^{-1} F_{e}(2 y)\right\| \leq \frac{1}{4} \phi(y, y) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F_{o}(y)-8^{-1} F_{o}(2 y)\right\| \leq \frac{1}{8} \phi(y, y) \tag{3.13}
\end{equation*}
$$

For each positive integer s, we obtain

$$
\begin{align*}
\left\|F_{e}(y)-4^{-s} F_{e}\left(2^{s} y\right)\right\| & =\left\|\sum_{i=0}^{s-1}\left(4^{-i} F_{e}\left(2^{i} y\right)-4^{-(i+1)} F_{e}\left(2^{(i+1)} y\right)\right)\right\| \\
& \leq \sum_{i=0}^{s-1} 4^{-i}\left\|F_{e}\left(2^{i} y\right)-4^{-1} F_{e}\left(2 \cdot 2^{i} y\right)\right\| \\
& \leq \frac{1}{4} \sum_{i=0}^{s-1} 4^{-i} \phi\left(2^{i} y, 2^{i} y\right) \tag{3.14}
\end{align*}
$$

Similarly, for each positive integer s,

$$
\left\|F_{o}(y)-8^{-s} F_{o}\left(2^{s} y\right)\right\| \leq \frac{1}{8} \sum_{i=0}^{s-1} 8^{-i} \phi\left(2^{i} y, 2^{i} y\right)
$$

In order to prove the convergence of the sequence $\left\{4^{-s} F_{e}\left(2^{s} y\right)\right\}_{s=1}^{\infty}$, we divide inequality (3.14) by 4^{-t} and also replace y by $2^{t} y$ to get that for every positive integer s and t,

$$
\begin{aligned}
\left\|4^{-t} F_{e}\left(2^{t} y\right)-4^{-(s+t)} F_{e}\left(2^{s+t} y\right)\right\| & =4^{-t}\left\|F_{e}\left(2^{t} y\right)-4^{-s} F_{e}\left(2^{s+t} y\right)\right\| \\
& \leq 4^{-(t+1)} \sum_{i=0}^{s-1} 4^{-i} \phi\left(2^{i+t} y, 2^{i+t} y\right) \\
& \leq \frac{1}{4} \sum_{i=0}^{\infty} 4^{-(i+t)} \phi\left(2^{i+t} y, 2^{i+t} y\right)
\end{aligned}
$$

According to the condition (3.5), the convergence of $\sum_{i=0}^{\infty} 2^{-i} \phi\left(2^{i} y, 2^{i} y\right)$ implies that $\sum_{i=0}^{\infty} 4^{-(i+t)} \phi\left(2^{i+t} y, 2^{i+t} y\right)$ approaches zero as $s \rightarrow \infty$. Therefore, $\left\{4^{-s} F_{e}\left(2^{s} y\right)\right\}_{s=1}^{\infty}$ is a Cauchy sequence in a Banach space. We may define a function $T_{e}: X \rightarrow Y$ as

$$
T_{e}(y)=\lim _{s \rightarrow \infty} 4^{-s} F_{e}\left(2^{s} y\right)=\lim _{s \rightarrow \infty} 4^{-s} f_{e}\left(2^{s} y\right)
$$

for all $y \in X$. By taking $s \rightarrow \infty$ in (3.14), we arrive at the inequality

$$
\left\|F_{e}(y)-T_{e}(y)\right\| \leq \frac{1}{4} \sum_{i=0}^{\infty} 4^{-i} \phi\left(2^{i} y, 2^{i} y\right) .
$$

Moreover, by the definition of F_{e}, one get that

$$
\begin{aligned}
\left\|f_{e}(y)-T_{e}(y)\right\| & \leq\left\|F_{e}(y)+f(0)-T_{e}(y)\right\| \\
& \leq\left\|F_{e}(y)-T_{e}(y)\right\|+\|f(0)\| \\
& \leq \frac{1}{4} \sum_{i=0}^{\infty} 4^{-i} \phi\left(2^{i} y, 2^{i} y\right)+\|f(0)\| .
\end{aligned}
$$

In a similar manner, $\left\{8^{-s} F_{o}\left(2^{s} y\right)\right\}_{s=1}^{\infty}$ is proved to be a convergent sequence in the Banach space. Define a function $T_{o}: X \rightarrow Y$ by

$$
T_{o}(y)=\lim _{s \rightarrow \infty} 8^{-s} F_{o}\left(2^{s} y\right)=\lim _{s \rightarrow \infty} 8^{-s} f_{o}\left(2^{s} y\right)
$$

for all $y \in X$. Then

$$
\left\|f_{o}(y)-T_{o}(y)\right\| \leq \frac{1}{8} \sum_{i=0}^{\infty} 8^{-i} \phi\left(2^{i} y, 2^{i} y\right)+\|f(0)\| .
$$

Define a function $T: X \rightarrow Y$ by

$$
T(y)=T_{e}(y)+T_{o}(y)
$$

for all $y \in X$. Thus it follow from the previous relations that

$$
\begin{align*}
\|f(y)-T(y)\| \leq & \left\|f_{e}(y)-T_{e}(y)\right\|+\left\|f_{o}(y)-T_{o}(y)\right\| \\
\leq & \frac{1}{4} \sum_{i=0}^{\infty} 4^{-i} \phi\left(2^{i} y, 2^{i} y\right)+\frac{1}{8} \sum_{i=0}^{\infty} 8^{-i} \phi\left(2^{i} y, 2^{i} y\right) \\
& +2\|f(0)\| \tag{3.15}
\end{align*}
$$

for all $y \in X$. Next, we will prove that T satisfies (3.1). We define the even part and odd part of $D f$ by $D f_{e}(x, y)=\frac{1}{2}(D f(x, y)+D f(-x,-y))$ and $D f_{o}(x, y)=\frac{1}{2}(D f(x, y)-D f(-x,-y))$. For a positive integer s, putting $(x, y)=\left(2^{s} x, 2^{s} y\right)$ into the above equations to obtain the relations

$$
\left\|D f_{e}\left(2^{s} x, 2^{s} y\right)\right\| \leq \phi\left(2^{s} x, 2^{s} y\right) \quad \text { and } \quad\left\|D f_{o}\left(2^{s} x, 2^{s} y\right)\right\| \leq \phi\left(2^{s} x, 2^{s} y\right) .
$$

Dividing the above results by 4^{s} and 8^{s}, respectively, and taking the limit as $s \rightarrow \infty$. We then have $D T_{e}(x, y)=0$ and $D T_{o}(x, y)=0$ for all $x, y \in X$. Hence, $T=T_{e}+T_{o}$ satisfies (3.1). It only remains to show that T is unique. Suppose that there exists another function $T^{\prime}: X \rightarrow Y$ such that T^{\prime} satisfies (3.1) and (3.8). From Theorem 3.1, we notice that $T_{e}=A^{0}+A^{2}(x)$ where $A^{2}(x)$ satisfies the quadratic functional equation and A^{0} is a constant, and T_{o} satisfies the cubic functional equation; therefore, $A^{2}(r x)=r^{2} A^{2}(x)$ and $T_{o}(r x)=r^{3} T_{o}(x)$ for every rational number r and for every $x \in X$. Thus,

$$
\left\|T(x)-T^{\prime}(x)\right\| \leq\left\|T_{e}(x)-T_{e}^{\prime}(x)\right\|+\left\|T_{o}(x)-T_{o}^{\prime}(x)\right\|
$$

For any positive integer s and for each $x \in X$,

$$
\begin{aligned}
\left\|T_{e}(x)-T_{e}^{\prime}(x)\right\| & =\left\|A^{0}+A^{2}(x)-A^{0}-A^{\prime 2}(x)\right\| \\
& =4^{-s}\left\|A^{2}\left(2^{s} x\right)-A^{\prime 2}\left(2^{s} x\right)\right\| \\
& =4^{-s}\left\|T_{e}\left(2^{s} x\right)-T_{e}^{\prime}\left(2^{s} x\right)\right\| \\
& \leq 4^{-s}\left\|f_{e}\left(2^{s} x\right)-T_{e}\left(2^{s} x\right)\right\|+4^{-s}\left\|f_{e}\left(2^{s} x\right)-T_{e}^{\prime}\left(2^{s} x\right)\right\| \\
& \leq \frac{1}{2} \sum_{i=0}^{\infty} 4^{-(i+s)} \phi\left(2^{i+s} x\right)+2 \cdot 4^{-s}\|f(0)\| .
\end{aligned}
$$

Taking the limit as $s \rightarrow \infty$, we have $\left\|T_{e}(x)-T_{e}^{\prime}(x)\right\| \leq 0$. Thus $T_{e}(x)=$ $T_{e}^{\prime}(x)$ for all $x \in X$. Similarly, we can show that $T_{o}(x)=T_{o}^{\prime}(x)$ for all
$x \in X$. Hence $T(x)=T^{\prime}(x)$ for all $x \in X$.
For the case when the condition (3.6) holds, The proof can be stated in a similar manner. We start the proof by substituting (x, y) by $\left(\frac{-y}{2}, \frac{y}{2}\right)$ in (3.7) and by $f(0)=0$ to get that

$$
\left\|f(y)-6 f\left(\frac{y}{2}\right)+2 f\left(\frac{-y}{2}\right)\right\| \leq \phi\left(\frac{y}{2}, \frac{y}{2}\right) .
$$

Applying the definitions of f_{e} and f_{o} to the previous equation. It yields

$$
\left\|f_{e}(y)-4 f_{e}\left(\frac{y}{2}\right)\right\| \leq \phi\left(\frac{y}{2}, \frac{y}{2}\right)
$$

and

$$
\left\|f_{o}(y)-8 f_{e}\left(\frac{y}{2}\right)\right\| \leq \phi\left(\frac{y}{2}, \frac{y}{2}\right) .
$$

We extend the two inequalities to

$$
\left\|f_{e}(y)-4^{s} f_{e}\left(2^{-s} y\right)\right\| \leq \frac{1}{4} \sum_{i=1}^{s} 4^{i} \phi\left(2^{-i} y, 2^{-i} y\right)
$$

and

$$
\left\|f_{o}(y)-8^{s} f_{o}\left(2^{-s} y\right)\right\| \leq \frac{1}{8} \sum_{i=1}^{s} 2^{i} \phi\left(2^{-i} y, 2^{-i} y\right) .
$$

for a positive integer s and for all $y \in X$. The rest of the proof can be produced in a similar fashion.

Corollary 3.3. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|D f(x, y)\| \leq \varepsilon \tag{3.16}
\end{equation*}
$$

for all $x, y \in X$ and for some $\varepsilon>0$, then there exists a unique function $T: X \rightarrow Y$ that satisfies (3.1) and

$$
\begin{equation*}
\|f(y)-T(y)\| \leq \frac{10}{27} \varepsilon+2\|f(0)\| \tag{3.17}
\end{equation*}
$$

for all $y \in X$.

Proof. We can follow the proof as the Theorem 3.2 by letting $\phi(x, y)=\varepsilon$ for all $x, y \in X$. According to the condition (3.5), it follows from the theorem that there exists a unique function $T ; X \rightarrow Y$ such that

$$
\begin{aligned}
\|f(y)-T(y)\| & \leq\left\|f_{e}(y)-T_{e}(y)\right\|+\left\|f_{o}(y)-T_{o}(y)\right\| \\
& \leq \frac{1}{4} \sum_{i=0}^{\infty} 4^{-i} \varepsilon+\frac{1}{8} \sum_{i=0}^{\infty} 8^{-i} \varepsilon+2\|f(0)\| \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{7}+2\|f(0)\| \\
& =\frac{10}{27} \varepsilon+2\|f(0)\|
\end{aligned}
$$

for all $y \in X$.
Corollary 3.4. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|D f(x, y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.18}
\end{equation*}
$$

for all $x, y \in X$ and for some $\varepsilon>0$ where p is a positive real number with $p<1$ or $p>3$, then there exists a unique function $T: X \rightarrow Y$ that satisfies (3.1) and

$$
\begin{equation*}
\|f(y)-T(y)\| \leq \frac{4 \varepsilon\left|6-2^{p}\right|}{\left|4-2^{p}\right|\left|8-2^{p}\right|}\|y\|^{p}+2\|f(0)\| \tag{3.19}
\end{equation*}
$$

for all $y \in X$.
Proof. From the Theorem 3.2, let $\phi(x, y)=\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$. If $p<1$, then the condition (3.5) holds. Applying the theorem 3.2, we then get

$$
\begin{aligned}
\|f(y)-T(y)\| & \leq \frac{1}{4} \sum_{i=0}^{\infty} 4^{-i} \cdot 2 \varepsilon\left\|2^{i} y\right\|^{p}+\frac{1}{8} \sum_{i=0}^{\infty} 8^{-i} \cdot 2 \varepsilon\left\|2^{i} y\right\|^{p}+2\|f(0)\| \\
& =\frac{2 \varepsilon\|y\|^{p}}{4-2^{p}}+\frac{2 \varepsilon\|y\|^{p}}{8-2^{p}}+2\|f(0)\| \\
& =\frac{4 \varepsilon\left(6-2^{p}\right)}{\left(4-2^{p}\right)\left(8-2^{p}\right)}\|y\|^{p}+2\|f(0)\|
\end{aligned}
$$

for all $y \in X$. It can be checked that for $p>3$, the condition (3.6) holds. We therefore obtain a similar result.

References

[1] T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan., 2(1950), 64-66.
[2] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.
[3] D.H. Hyers, On the Stability of the Linear Functional Equations, Proc. Natl. Acad. Sci., 27(1941), 222-224.
[4] Th.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[5] S. M. Ulam, Problems in Modern Mathematics, Chapter 6, John Wiley \& Sons, New York, NY, USA, 1964.

Wanchitra Towanlong
Department of Mathematics, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10140 , THAILAND.
e-mail : wanchitra_ohm@hotmail.com

Paisan Nakmahachalasint
Department of Mathematics, Faculty of Science,
Chulalongkorn University, Pathumwan, Bangkok 10140, THAILAND.
e-mail : paisan.n@chula.ac.th

