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Planar m-Bubbles
with m-1 Equal Highest Pressures
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Abstract : The planar soap bubble problem asks for the least-perimeter way to
enclose and separate open regions R1, R2, . . . , Rm of m given areas on the plane.
In this work, we study properties for minimizing bubbles in case that the pressure
of Rm is lower than the equal pressures of R1, R2, . . . and Rm−1. For m = 4,
we show that a minimizing bubble with nonnegative pressures and without empty
chambers has at most one internal component of the region R4.
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1 Introduction

It is convincing that the soap bubble is the best way, using the least surface
area, to enclose and separate the given volumes of air. The ancient Greeks believed
that the circle can enclose and separate a single given area on the plane using the
least perimeter but the rigorous proof appeared in the late nineteenth century.
The planar soap bubble problem arks for the least-perimeter way to enclose and
separate open regions R1, R2, . . . , Rm of given areas A1, A2, . . . , Am on the plane.
Intuitively, we believe that the problem have natural solutions which keep each
region in a single connected component. For m = 2, the problem was solved,
in 1993, by Foisy, Alfaro, Brock, Hodges and Zimba [4]. In 1998, Vaughn [11]
solved the problem for three areas in case equal pressures and no empty chambers.
The problem for three areas was solved completely by Wichilamala [12, 13] in
2002. For m = 4, 5 and 6, the problems in case equal pressures and no empty
chambers was solved by Sroysang and Wichiramala [9, 10]. The problem for four
areas in other cases was considered firstly by Keawkhao and Wichiramala [5, 6].
In addition, for the case of three equal highest pressures and no empty chambers,
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if the lower-pressure region R4 is connected, then it is external. In [8], we ignore
above assumption and show that a minimizing bubble B must have at least one
external component of R4. Now, we will show a new result that B has at most
one internal component of R4.

2 Preliminaries

Definition 2.1. A set E on R
2 is called an enclosure of areas A1, A2, . . . , Am

if E is closed and bounded with finite one-dimensional Hausdorff measure and

R
2\E contains open regions R1, R2, . . . , Rm of areas A1, A2, . . . , Am, respectively.

The set R
2\R1 ∪ . . . ∪ Rm is called the exterior region, denoted by R0. Each

connected component of a region is called a component. A component is external

if it meets R0 and is internal if not. A bounded component of R0 is called an

empty chamber.

Definition 2.2. An enclosure E is minimizing if E has least Haussdorf measure

among enclosures of given areas, and E is standard if every region is connected

and every two regions may meet at most once along a single edge.

Theorem 2.3. [1, 3, 7] For A1, A2, . . . , Am > 0, there is a minimizing enclosure

of areas A1, A2, . . . , Am. Let E be a minimizing enclosure. Then

(1) E is composed of finitely many circular/straight edges separating different

regions and meeting only in threes at 120◦ angles,

(2) all edges in E form a connected graph, and

(3) there are p1, p2, . . . , pm ∈ R, which will be called the pressures of the

region Ri, such that every edge between Ri and Rj has curvature |pi − pj | (bulges

into the lower pressure region) where the pressure p0 of the the region R0 is set to

be zero.

An enclosure of m regions with properties (1), (2) and (3) is called an m-
bubble.

Proposition 2.4. [2] For a minimizing bubble, any two components may meet at

most once, along a single edge.

Corollary 2.5. [4] For m ≥ 3, a minimizing m-bubble has no 2-sided component.

Definition 2.6. The sign of curvature of a directed edge is considered posi-

tive[negative] if the edge is turning left [right ]. The turning angle of a directed

edge of a component is the product of its signed curvature and its length.

Lemma 2.7. [12, 13] The sum of turning angles of all edges in an n-sided compo-

nent of a bubble is 6−n
3

π if the component is bounded, and −6−n
3

π if the component

is unbounded.

Definition 2.8. A component is convex if all edges have nonnegative curvatures.
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Theorem 2.9. [12, 13] A minimizing m-bubble has at most m − 1 disjoint non-

hexagonal convex components and a convex component away from them.

Theorem 2.10. [5, 6] In a minimizing 4-bubble with pressures p1 = p2 = p3 >
p4 ≥ 0 and without empty chambers, if R4 is connected then it is external.

Theorem 2.11. [5, 6] In a minimizing 4-bubble with pressures p1 = p2 = p3 >
p4 ≥ 0 and without empty chambers, every component of R4 has at most nine

sides.

Theorem 2.12. [8] A minimizing 4-bubble with pressures p1 = p2 = p3 > p4 ≥ 0
and without empty chambers must have at least one external component of the

region R4.

In [5, 6], the components (a), (b) and (c) in Figure 1 are called according to
their absolute turning angles of the circular edges, a π-cell , a 2π

3
-cell and a π

3
-cell ,

respectively. Moreover, the the 4-sided components (d) and (e) in Figure 1 are
called a parallel component and a nonparallel component , respectively. Note
that the circular edges of a nonparallel component is cocircular if their curvatures
are the same. In a 4-bubble with pressures p1 = p2 = p3 > p4, an internal
nonhexagonal component of each highest pressure region is of a type in Figure 1.

(a) (b) (c) (d) (e) (f)

Figure 1: A π-cell, a 2π

3
-cell, a π

3
-cell, a parallel component, a nonparallel

component and a 5-sided component.

3 Main Results

In this section, we present some properties of m-bubbles with pressures p1 =
p2 = . . . = pm−1 > pm and then show that a minimizing 4-bubble with pressures
p1 = p2 = p3 > p4 ≥ 0 and without empty chambers has at most one internal
component of the region R4.

Theorem 3.1. Assume that an m-bubble with pressures p1 = p2 = . . . = pm−1 >
pm has an internal component C of the region Rm where m ≥ 4. Let n be the

number of sides of C and let t1, t2, . . . , tn be the turning angles of all edges of C.

Then n > 6

(

|ti|

π
+ 1

)

for all i.
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Proof. Since p1 = p2 = . . . = pm−1 > pm, it follows that ti < 0 for all i. By

Lemma 2.7,
6 − n

3
π =

n
∑

i=1

ti < 0. We scale the bubble so that all edges of C have

curvature one. For each i, the edge of C with turning angle ti has length |ti|. Note
that the length of an edge of C is less than the sum of the length of other edges of

C. For each i, we obtain that |ti| <

n
∑

j=1

j 6=i

|tj | = −|ti| +

n
∑

j=1

|tj | = −|ti| +

∣

∣

∣

∣

∣

∣

n
∑

j=1

tj

∣

∣

∣

∣

∣

∣

=

−|ti|+

∣

∣

∣

∣

6 − n

3
π

∣

∣

∣

∣

= −|ti|+
n − 6

3
π, and then 2|ti| <

n − 6

3
π. Thus 6

(

|ti|

π
+ 1

)

< n

for all i.

Corollary 3.2. Assume that an 4-bubble with pressures p1 = p2 = p3 > p4 has an

internal component C of the region R4. Let n be the number of sides of C. Then

(1) if n = 7, then all edges of C have absolute turning angle less than π
6
,

(2) if n = 8, then all edges of C have absolute turning angle less than π
3
, and

(3) if n = 9, then all edges of C have absolute turning angle less than π
2
.

Theorem 3.3. Assume that a minimizing m-bubble with pressures p1 = p2 =
. . . = pm−1 > pm has an internal 5-sided component D adjacent to two components

of the region Rm where m ≥ 4. For each i ∈ {1, 2, ..., m− 1}, if D is adjacent

to a nonparallel component of the region Ri, then D is not adjacent to another

component of Ri.

Proof. Let i ∈ {1, 2, ..., m− 1}. Assume that D is adjacent to a nonparallel com-
ponent E of the region Ri. Since p1 = p2 = . . . = pm−1 > pm, it follows that the
circular edges of E have the same positive curvature. Thus the circular edges of
E are cocircular and then the circular edges of D are also cocircular as in Figure
2. In fact, both circles have the same radius.

Figure 2: D is adjacent to a nonparallel component E of the region Ri.

Suppose that D is adjacent to other component of Ri. There are two possibil-
ities shown in Figure 3. Note that e and e′ are of the same length.

For each possibility, we may move the edge e as shown in Figure 4 and then
create an enclosure preserving both the length and the areas.

By Theorem 2.3, the new enclosure is not minimizing and hence the original
bubble is not minimizing, a contradiction.
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Figure 3: Two possibilities of components D and E.

Figure 4: New enclosures preserving both the length and the areas.

Theorem 3.4. Assume that the region R4 of a minimizing 4-bubble with pressures

p1 = p2 = p3 > p4 ≥ 0 has at least two internal components C and C′. Each

internal component adjacent to both C and C′ must be 5-sided.

Proof. Suppose the contrary that there is a 4-sided internal component adjacent
to both C and C′. By Theorem 2.3, there are a 5-sided internal component D and
a 4-sided internal component E such that they are adjacent to both C and C′. By
Theorem 3.3, E must be a parallel component as in Figure 5.

Figure 5: A parallel component E adjacent to D.

Note that the edge between C and E has turning angle π
3
. By Theorem 2.10

and Corollary 3.2, we obtain that C has nine sides. Since p1 = p2 = p3 > p4 ≥ 0, it
follows that all components around C or around C′ are nonhexagonal and convex.
Hence we have five nonhexagonal convex components G, G2, G3, G4 and E as in
Figure 6.

By Lemma 2.7 and Corollary 3.2, F must have five sides. Then G1 and G2

are disjoint. Since all the nine components around C are convex, the convex
components G2, G3, G4 and E are disjoint. Similarly, G1 and E are disjoint. Hence
we have five disjoint nonhexagonal convex components as in Figure 6, contradicting
Theorem 2.9.
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Figure 6: Five disjoint nonhexagonal convex components.

Theorem 3.5. A minimizing 4-bubble with pressures p1 = p2 = p3 > p4 ≥ 0 and

without empty chambers has at most one internal component of the region R4.

Proof. Suppose that a minimizing bubble has at least two internal components of
R4. By Lemma 2.7 and Theorem 2.11, each internal component of R4 has seven,
eight or nine sides. Let C1 and C2 be internal components of R4.

Case 1. There is a component adjacent to both C1 and C2.
Note that each component adjacent to both C1 and C2 is internal. By Theorem

3.4, each internal component adjacent to both C1 and C2 has five sides. Thus there
is only one possibility shown in Figure 7.

Figure 7: The possibility of a component between two internal components
of R4.

Hence we have five nonhexagonal convex components as in Figure 8. By Corol-
lary 3.2, E1 and E2 must be 5-sided. Then D1 and D2 are disjoint. Similarly, F1

and F2 are disjoint. Therefore we have five disjoint nonhexagonal convex compo-
nents, contradicting Theorem 2.9.

Figure 8: The convex components around C1 and C2.

Case 2. There is no component adjacent to both C1 and C2.
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If each component adjacent to C1 does not meet a components adjacent to C2,
then we have at least six disjoint nonhexagonal convex components, contradicting
Theorem 2.9. Thus there are a component D1 adjacent to C1 and a component
D2 adjacent to C2 such that D1 is adjacent to D2 as in Figure 9.

Figure 9: D1 is adjacent to D2.

Since D2 is not adjacent to C1, it follows that D1 has at least four sides.
Similarly, D2 has at least four sides. Now, we consider all possibilities for D1 and
D2 as in Figure 10.

(a) (b) (c)

(d) (e)

Figure 10: The possibilities for D1 and D2.

Configurations (a), (b), (d) and (e) in Figure 10 are impossible as each of
them has a component E between C1 and C2. Thus D1 and D2 are π

3
-cells as

configuration (c) in Figure 10. By Theorem 2.10 and Corollary 3.2, we obtain
that C1 and C2 has nine sides. Hence C2 is surrounded by nine nonhexagonal
convex components. Therefore there exist four of the nine components that are
disjoint and do not meet D1. In total, we have five disjoint nonhexagonal convex
components, contradicting Theorem 2.9.

Corollary 3.6. A minimizing 4-bubble with pressures p1 = p2 = p3 > p4 ≥ 0 and

without empty chambers must have at least one external component of the region

R4 and at most one internal component of R4.
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