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Abstract : To evaluate series of Legendre polynomials of the form
∑

∞

n=0 anPn(z),
we find closed forms for Legendre polynomials that are good approximations for
large n and are suitable for calculations on a personal computer of medium capac-
ity. The convergence of an infinite series of Legendre polynomials is discussed.

Keywords : Legendre polynomial; Closed form; Infinite series; Approximation.
2010 Mathematics Subject Classification : 33E20; 33C47; 41A30.

1 Introduction

The analytical solutions of many problems in physics are frequently given in
the form of infinite series. In particular, the use of series of Legendre polynomials
∑

∞

n=0 anPn(z) are often used in electricity problems. Since the numerical calcula-
tion of infinite series is tedious and inconvenient, especially for slowly convergent
series, a high-performance computer may be needed for this purpose. Alterna-
tively, an efficient method may reduce the computer task. In this paper, we will
develop a technique of calculating the sum of an infinite series of Legendre poly-
nomials by looking for specific closed forms that are good approximations for
high-order Legendre polynomials.

2 Solution of Legendre Equation

Consider the Legendre equation

(1 − z2)y′′ − 2zy′ + n(n + 1)y = 0 (2.1)

where n is nonnegative integer and z is complex number. Solving (2.1) by em-
ploying Frobenius’s method, we find that the solution is in the form of Legendre
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polynomials Pn(z) and Legendre functions of the second kind Qn(z), namely

y = AnPn(z) + BnQn(z). (2.2)

Since the main purpose of this paper is to study Legendre polynomials, we will
omit Qn(z) and restrict our attention to Pn(z) which can be written in the form

Pn(z) =

p
∑

r=0

(−1)r(2n − 2r)!zn−2r

2n(n − r)!r!(n − 2r)!
(2.3)

where p = n/2 when n is an even number and p = (n − 1)/2 when n is an odd
number and the sum exists for all z . In addition, we can obtain another form of
Pn(z) from the generating function given by

(1 − 2hz + h2)−
1

2 =

∞
∑

n=0

hnPn(z) (2.4)

where |2hz − h2| < 1. For |z| < 1, this condition is satisfied for |h| < 1. When
|z| > 1 we let z = cosh t and then the condition is satisfied if |h| < e−t < 1 for
t > 0. Consequently,

Pn(1) = 1, Pn(−1) = (−1)n, P2n+1(0) = 0, P2n(0) =
(−1)n(2n)!

22n(n!)2
. (2.5)

Finally, we consider Laplace’s integral for Legendre polynomial, Pn(z), which
is in the form

Pn(z) =
1

π

∫ π

0

{z + (z2 − 1)1/2 cosφ}ndφ. (2.6)

3 Closed Form of Legendre Polynomial for Large

n

In this section, we first develop the formulae of Pn(z) obtained from the gen-
erating function and the Laplace’s integral for Legendre polynomials for |z| < 1.
Finally, we will discuss the process to obtain closed forms of Pn(z) for both |z| < 1
and |z| > 1 that are useful for calculating Pn(z) when n is large.
Pn(z) derived from Generating Function
We can find a form of Pn(cos θ) by substituting z = cos θ in (2.4) and obtain

Pn(cos θ) =
(2n)!

22n+1(n!)2
{2 cosnθ +

1(2n)

2(2n − 1)
2 cos(n − 2)θ

+
1 · 3(2n)(2n− 2)

2 · 4(2n − 1)(2n − 3)
2 cos(n − 4)θ + . . .}. (3.1)
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Pn(z) derived from Laplace’s integral
On substituting z = cos θ in equation (2.6) we obtain

Pn(cos θ) = cosn θ{1 − n(n − 1)

22
tan2 θ +

n(n − 1)(n − 2)(n − 3)

22 · 42
tan4 θ + . . .}.

(3.2)

3.1 Closed Form for |z| < 1

If we calculate a numerical solution of
∑

∞

n=0 anPn(z) which is slowly convergent
by using a medium capacity computer, we find that the computer may or may not
give us a value of Pn(z) when n is large (see Table 1). Therefore, we find a closed
form for large n that can be used in summing this kind of slowly convergent series.

Consider the generating function (2.4) with z = cos θ where 0 < θ < π. We
find that

∞
∑

n=0

hnPn(cos θ) = (1 − 2h cos θ + h2)−1/2

=

∞
∑

r=0

(−1

2
, r)

(e−iθ − h)r−1/2

(2 sin θ)r+1/2
where |e−iθ − h| < 2 sin θ

(3.3)

and where (α, r) =
Γ(α + 1)

r!Γ(α + 1 − r)
. In addition, we find that

∞
∑

n=0

hnPn(cos θ) = (1 − 2h cos θ + h2)−1/2

=

∞
∑

r=0

(−1

2
, r)

(eiθ − h)r− 1

2

(−2i sin θ)r+1/2
where |eiθ − h| < 2 sin θ.

(3.4)

Consequently, we note from equations (3.3)-(3.4) that the conditions for conver-
gence are satisfied for |h| < 1.

After adding equation (3.3) to (3.4), we obtain

2Pn(cos θ) =
2(−1)n

(2 sin θ)1/2

∞
∑

r=0

(−1

2
, r)(r − 1

2
, n)

cos(n + 1/2 − r)θ − π/4 − rπ/2

(2 sin θ)r

(3.5)
where

(−1

2
, r)(r−1

2
, n) =

Γ(−1
2 + 1)Γ(r − 1

2 + 1)

r!Γ(−1
2 + 1 − r)n!Γ(r − 1

2 + 1 − n)
=

Γ(1
2 )Γ(r + 1

2 )

r!Γ(1
2 − r)n!Γ(r + 1

2 − n)
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or

Pn(cos θ) =
(−1)n

√
π cos((n + 1

2 )θ − π
4 )

n!(2 sin θ)
1

2 Γ(1
2 − n)

+
(−1)n

(2 sin θ)
1

2

∞
∑

r=1

(−1)r{Γ(r + 1
2 )}2 cos((n + 1

2 − r)θ − π
4 − rπ

2 )√
πr!n!Γ(1

2 + r − n)(2 sin θ)r
.

(3.6)

The formula on the right is difficult and time-consuming to calculate numerically.
However, we have found that a good approximation can be obtained as follows.
We use Stirling’s formula to approximate the Gamma functions in the first term
of equation (3.6). We then write

Pn(cos θ) = v(n, θ)(1 + K(n, θ)), (3.7)

where

v(n, θ) =
1√

2nπ sin θ
cos((n + 1

2 )θ − π
4 ) (3.8)

is obtained from the Stirling’s formula approximation. We then compared the
values of Pn(cos θ) with the values of v(n, θ) and found that the values of 1+K(n, θ)
were approximately equal to 2 with an error of approximately 1% or less.

Therefore, a closed form approximation of a Legendre Polynomial can be ex-
pressed by

Pn(cos θ) ≈ 2v(n, θ) = (
2

nπ sin θ
)1/2 cos((n+1/2)θ−π/4) where 0 < θ < π. (3.9)

We observe from Tables 1 and 2 that the formulae for Legendre polynomials
in equations (2.3), (3.1) developed from the generating function, and in (3.2)
developed from the Laplace’s integral may give undetermined values for some
large values of n. We note here that NaN from MATLAB represents the results
of mathematically undefined operations like 0/0 and inf -inf where inf is positive
infinity that are produced by operations such as dividing by zero or from overflow.
The formula from (3.9) gives good approximate values of Legendre Polynomials
when compared with other formulae.

3.2 Closed Form for |z| > 1

We start by finding a closed form for |z| > 1 from the generating function for the
Legendre Polynomials by substituting z = cosh t where t > 0 into (2.4). We find
that

∞
∑

n=0

hnPn(cosh t) =
∞
∑

n=0

{hn
∞
∑

r=0

(−1

2
, r)(r − 1

2
, n)(−1)n e(n−r+ 1

2
)t

(2 sinh t)r+ 1

2

}

where |h| < e−t < 1 (3.10)
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Table 1: Values of Pn(z) when z = cos 3π/8 calculated from MATLAB,
equations (2.3), (3.1), (3.2), and (3.9), respectively

n MATLAB eq.(2.3) eq.(3.1) eq.(3.2) eq.(3.9)

5 0.2918 0.2918 0.2918 0.2918 0.3087*
10 0.1412 0.1412 0.1412 0.1412 0.1458*
15 0.0404 0.0404 0.0404 0.0404 0.0418*
20 -0.0362 -0.0362 -0.0362 -0.0362 -0.0362
.. ...... ...... ...... ...... ......
85 0.0746 0.0749 0.0746 0.0746 0.0749
90 0.0484 NaN NaN 0.0484 0.0486
.. ...... ...... ...... ...... ......

400 0.0407 NaN NaN 1.2705e+028 0.0407
405 0.0343 NaN NaN NaN 0.0343

* The closed form formulae are not accurate for small values of n as Stir-
ling’s formula is not a good approximation to the Gamma function for small
n.

or

Pn(cosh t) =
(−1)nπe(n+ 1

2
)t

n!
√

2π sinh t Γ(1
2 − n)

+
(−1)ne(n+ 1

2
)t

n!
√

2π sinh t

∞
∑

r=1

Γ(r + 1
2 )Γ(r + 1

2 )

r!Γ(r − n + 1
2 )

( −e−t

2 sinh t

)r

. (3.11)

We can obtain an approximate closed form for Pn(cosh t) by a similar method to
the method we used to obtain an approximate closed for Pn(cos θ) in equation (3.6).
We use Stirling’s formula to approximate the Gamma functions in the first term
of equation (3.11). We then write

Pn(cosh t) = v(n, t)(1 + K(n, t)), (3.12)

where

v(n, t) =
e(n+ 1

2
)t

√
2nπ sinh t

(3.13)

is obtained from the Stirling’s formula approximation. We then compared the
values of Pn(cosh t) with the values of v(n, t) and found that the values of 1 +
K(n, t) were approximately equal to 1 with an error of approximately 1% or less.

Therefore, a closed form approximation of a Legendre Polynomial can be ex-
pressed by

Pn(cosh t) ≈ v(n, t) =
e(n+ 1

2
)t

√
2nπ sinh t

where t > 0. (3.14)
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Table 2: Values of Pn(z) when z = cosh 3π/8 calculated from equations
(2.3)and (3.14), respectively

n eq.(2.3) eq.(3.14)

5 9.4090e+001 9.5889e+001
10 2.4280e+004 2.4517e+004
15 7.1910e+006 7.2380e+006
20 2.2554e+009 2.2665e+009
.. ...... ......
85 1.9830e+042 1.9853e+042
90 NaN 6.9764e+044
.. ...... ......

400 NaN 1.3442e+203
405 NaN 4.8304e+205

Since MATLAB only computes values for Pn(z) for |z| < 1 the formulae we
compare for calculating Pn(z) for |z| > 1 are from equation (2.3) and the closed
form of (3.14). The results are shown in Table 2.

To calculate
∑

∞

n=0 anPn(z), it is necessary for us to examine convergence of
the series as follows.

3.3 Convergence of
∑

∞

n=0
a

n
P

n
(z)

Since

∞
∑

n=0

anPn(z) ≤
∞
∑

n=0

|an| when |z| < 1 or z = cos θ where 0 < θ < π, we

can conclude that the series converges when
∑

∞

n=0 |an| converges. For |z| > 1
or z = cosh t where t > 0, we find the condition of convergence of the series by
considering

∞
∑

n=0

anPn(cosh t) =
N−1
∑

n=0

anPn(cosh t) +
∞
∑

N

an
e(n+1/2)t

√
2nπ sinh t

. (3.15)

Note that the series of the left hand side converges when

∞
∑

N

an
e(n+1/2)t

√
2nπ sinh t

con-

verges. Hence, the condition of convergence is 1 < z < 1
2 (L + 1

L) where L =

lim
n→∞

|an+1

an
|.

To find
∞
∑

n=0

anPn(z) when the series is slowly convergent, we need to calculate

many terms of anPn(z). As shown in the previous section, the formulae obtained
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from (2.3), (3.1) and (3.2) may not give efficient results while MATLAB is limited
by the condition |z| < 1. In this section we shall employ the closed forms of
Legendre polynomial in (3.9) for |z| < 1 and (3.14) for |z| > 1 when n is large.

We next designate
∑

∞

n=0 anPn(z) as

∞
∑

n=0

anPn(z) =
N

∑

n=0

anPn(z) +
∞
∑

N+1

anPn(z). (3.16)

In equation (3.16), for |z| < 1 we may use formulae of Pn(z) from MATLAB, or
from equations (2.3), (3.1), (3.2) to calculate the first part of the right hand side
in which n is small. For the second part, where n is large, we use the closed form
in equation ( 3.9) to compute Pn(z).

Similarly, for |z| > 1 we will calculate Pn(z) in the first part, where n is small,
by using (2.3) and in the second part, where n is large, by using the closed form
of (3.14).

In Tables 3 and 4, we show examples of calculations of the
∑

∞

n=0 anPn(z) by
using N = 19 and (2.3) for the first part and (3.9) for |z| < 1 and (3.14)for |z| > 1
for the second part.

Table 3: Values of
∑

∞

n=0
anPn(z) when an = 25n

n
2+5n+1

and z = 0.1

n anPn(z)
∑

∞

n=0
anPn(z) |anPn(z) − an−1Pn−1(z)|

0 0 0 0
1 0.3571 0.3571 0.3571
2 -1.6167 -1.2595 1.9738
.. ...... ...... ......
19 -0.1746 -0.9498 0.2309
20 -0.0828 -1.0326 0.0918
.. ...... ...... ......

918 0.0004 -0.9072 0.0010
919 0.0006 -0.9066 0.0002

4 Advantages of Using Closed Forms of Legendre

Polynomial

As mentioned earlier, MATLAB only provides a command to find Pn(z) when
|z| < 1. Therefore, in the case of |z| > 1 it is necessary for us to use the closed form
of Pn(z) given in (3.14). In addition, we find that a drawback incurred from using
MATLAB is that MATLAB requires considerable amount of memory and time to
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Table 4: Values of
∑

∞

n=0
anPn(z) when an = n2/2n and z = 1.235

n anPn(z)
∑

∞

n=0
anPn(z) |anPn(z) − an−1Pn−1(z)|

0 0 0 0
1 0.6175 0.6175 0.6175
2 1.7878 2.4053 1.1703
.. ...... ...... ......
19 3.6850 3.3226e+002 2.1751
20 3.9063 3.7132e+002 2.2129
.. ...... ...... ......

591 5.6595e-002 1.4770e+004 1.0166e-003
592 5.5596e-002 1.4770e+004 9.9890e-004

finish evaluating the data. For the computations in Table 1, for instance, MATLAB
takes about 0.4056 seconds to calculate Pn(z) while Pn(z) can be calculated from
our closed form of (3.9) in 0.0312 seconds. In particular, MATLAB does not seem
to be appropriate for finding the sum of a slowly converging series

∑

∞

n=0 anPn(z).

5 Conclusion

In this paper, we have derived approximate closed forms of Legendre polyno-
mials that can be easily calculated in comparison with the original forms. It is
expected to be an advantage in several algorithm designs to be able to efficiently
sum infinite series of this polynomial. In particular, numerical calculation of the
sums of slowly converging series can be easily performed on a medium performance
computer.

Moreover, the closed form methods used in this paper are very effective for
comparing the rates of convergence of an infinite series of Legendre polynomials
∑

∞

n=0 anPn(z) and of Chebyshev polynomials
∑

∞

n=0 a
′

nTn(z) for the same function
of z when z lies in the the radius of convergence for both series. This comparison
is still in the research process.
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