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Existence of Positive Solutions to a Second
-Order Multi-Point Boundary Value

Problem with Delay

J. Chen, J. Tariboon and S. Koonprasert

In this paper, by using the Krasnosel’skii fixed-point theorem, we study
the existence of positive solutions to the second-order delay differential
equation,

u"(t) + Xa(t) f(t,u(t — 7)) =0, teJ=]0,1],
0

where a, 3, n are constants with n € (0,1). X is a positive real parameter.
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1 Introduction

Multi-point boundary value problems for ordinary differential equations
arise in a variety of different areas of applied mathematics and physics.
The study of the three-point boundary value problem for nonlinear ordinary
differential equations was initiated by Gupta [1-2]. Since then, nonlinear
multi-point boundary value problems have been studied by several authors.
For details, see, for example, [3-7] and reference therein.

In this paper, we consider the existence of positive solutions for the
following multi-point boundary value problem of the second order delay
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differential equation:

u’(t) + ha(t) f(t,ut — 7)) =0, teJ=][0,1],
u(t) = Bu(n), —7<t<0, (1.1)
u(1) = au(n),

where a, 3, n are constants with n € (0,1). X is a positive real parameter.
For the case 0 < 7 < %, B = a =0, Bai and Xu [6] studied the existence
of multiple positive solutions to BVP (1.1) with a(t)f(¢t,u) = g(t,u) by
using Krasnoselskii fixed-point theorem.
Recently, for the case 0 < 7 < 1, § = 0, Wang and Shen [7] given some
sufficient conditions with A belonging to an open interval of eigenvalues to
ensure the existence of positive solutions to BVP (1.1).

2 Preliminaries

In this section we give the following definition of positive solution of
(L.1).

Definition 2.1. u(t) is called a positive solution of (1.1) if u € C[—7,1] N
C?(0,1), u(t) >0 fort € (0,1) and satisfies (1.1).

Lemma 2.1. Assume 3 # 11__—0‘7777 Then for y € C([0,1], R) , the problem
() +yt) =0, 0<t<l, (2.1)

u(0) = Bu(n), u(1) = au(n), (2.2)

has a unique solution

[ B+ (a—p)t '
ut) = [ Gltas)as + 7S [ G s, 23
where
Gt 5) = {s(l—t), 0<s<t<l, 24)
t(1—s), 0<t<s<l

Proof. Tt is well known that the Green’s function is G(¢,s) as in (2.4) for
the second-order two point linear boundary value problem

(2.5)

w” +y(t) =0, 0<t<l1
w(0) =0, w(l) =0,
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and the solution of (2.5) is given by

1
= / G(t,s)y(s)ds
0

1
w(0)=0, w(l)=0, wn) = /0 G(n, s)y(s)ds. (2.6)

We suppose that the solution of the three-point boundary value problem
(2.1), (2.2) can be expressed by

and

u(t) = w(t) + A+ Bt, (2.7)

where A and B are constants that will be determined.
From (2.6), (2.7) we know that

u(0) = A,

u(l) = A+ B,

u(n) = w(n) + A+ Bn.
Putting these into (2.2) yields

(1=B)A—pnB = puw(n),
(1—-a)A+(1—an)B = aw(n).

Since § # 11__0;7", solving the system of linear equations on the unknowns A,

B, we obtain

B Bw(n)
(1—an) = B(1—-n)’
o (e Bl
(I—an) =B —-n)
Hence
u(t) = w(t) + B+ (a— Bt

(1 —an)—p01 - n)w(n)-

This implies that

B+ (a—p /
/Gts ds+(1—ow7 1_ G(n, )

Next, we will show that the solution u(t) is unique. Assume that v(t)
is another solution of the three-point boundary value problem (2.1), (2.2).
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Let z(t) = v(t) —u(t), t € [0,1]. Then, we get 2" (t) = v"(t) — u”"(t) = 0,
t € [0,1] therefore

z(t) = C1t + Cq, (2.8)
where C1, Cy are undetermined constants. From (2.2), we have
2(0) = Bz(n),  2(1) = az(n). (2.9)
Using (2.8), we obtain
2(0)=Cy,  2(1) =C1+Co,  2(n) =Cin+ Co. (2.10)

From (2.9), (2.10) we know that

—AnCy + (1 = B)C2 =0,
(1—an)Ci+(1—-a)Cy=0

Since 3 # 11__07‘777, then the system of linear equations on the unknown num-
bers C1, Co, has exactly one solution, therefore z(t) = 0, t € [0,1], so
v(t) = u(t), t € [0, 1], that is uniqueness of the solution. O

Lemma 2.2. [§] Let 0 < o < %, 0<p< 11__0;7". If f € C([0,1],]0,00)),
then the unique solution to problem (2.1),(2.2) satisfies

u(t) =0, t € [0,1].

Lemma 2.3. [5] Let an # 1, f > max{ 11__0;;7,0} and f € C([0,1],[0,00)),
then problem (2.1),(2.2) has no nonnegative solutions.

Hence, in this paper, we always assume the following condition is satis-
fied

(Hy0<in<1,0<a<i#0<iﬁ<1ﬁ?ﬁ)<7<1,a:@ﬂ)ﬂ

[O oo) is contmuous and f :[0,1] x [0,00) — [0,00) is continuous, 0 <
fo a(s)ds < oo. There exist constants 0 < b < ¢ < 1 — 7 such that
gﬁ (Ms>0

By Lemma 2.1-2.3, it is easy to see that the BVP (1.1) has a solution
u = u(t) if and only if u is a solution of the operator equation u = Tu,
where

Bu(n), —T<t<0,
Tu(t) = )\fol (s)f(s, u(s —7))ds
MTUSW Jy G(n.s)a(s)f(s,u(s —7))ds, 0<t<s<L.

(2.11)
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Let

P ={ue Cl-7,1] s u(t) > 0 for t € (—7,1],u(t) = Pu(n), —7 < t <0,
u(1) = au(n)}.

It is clear that C[—7,1] with norm |ju|| = sup{|u(t)| : —7 <t < 1} is a
Banach space.
Put
1-06)t 1— -1
p@):rMn{ﬁn+( Bt 1-an+ (a ﬁ},
U L=mn
1-06)b 1— -1
0 = min { b+ (77 b) ; anl—i-_(?(;z )C} min{n, 1 — n},

and a cone K in C[—7,1] is defined by
K = {u € C[—7,1] :u(t) =0 for t € J, bréltlgcu(t) > HHuH}

We now state and prove the following lemmas before stating our main
results.

Lemma 2.4. Assume that u € PN C%(0,1) and u"(t) <0 fort € J, then
u(t) = p(t) min{n, 1 — n}|lul| forte J.

Proof. Firstly, we show that w(n) > min{n,1 — n}|jul|. By the properties
of Green’s function (2.4), we can find that

min{n, 1 —n}s(1—s) < G(n,s) < G(s,s) =s(1—s), (n,s)€[0,1]x][0,1].

(2.12)
By using (2.11) and (2.12), we know that for every solution u(t) of BVP
(1.1), one has

1
Jull <A /0 s(1 = s)a(s) f(s,u(s — 7))ds

. pYe"
(1—an) -

1
3(1—n) /0 G(n,s)a(s)f(s,u(s —7))ds. (2.13)
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Multiplying both side of inequality (2.13) by min{n,1 —n}, we get

1
min{n, 1 - n}flul <A / min{y, 1 — n}s(l — s)a(s) f (s, u(s — 7))ds

A
a iézl;n{n’ / G(n,s (s,u(s —7))ds
<)\/ G(n,s (s,u(s —1))ds
+(1 _ﬁa—; a—l_ / G(n,s) (s,u(s —7))ds = u(n).

Hence, the inequality w(n) > min{n, 1 — n}||ul is true.
Next, we will prove that w(t) > p(t) min{n, 1 — n}||u|| in two cases.
Case(7) if 0 <t <, then

u(t) —u(0) _ u(n) —u(0)
t—0 - n—0

Using u(0) = fu(n), we have

u(t) > Bn+(1— ﬁ)tu(n) > Bn+ (1 -p)t
7 7

Case(ii) if n < t < 1, then

u(t) —u(n) _ u(l) —uln)
t—mn - 1—n

min{n, 1 —n}ul.

)

since u(1) = au(n), we get

I—an+ (a—1)t
L—=n

IL—an+ (a—1)t

o min{n. 1~ ) ful|

u(t) >

u(n) =

Combining above two cases, we have that u(t) > p(t) min{n, 1 — n}||u|| for
t € J, and the proof is complete. O

Lemma 2.5. The fized point of T is a solution of (1.1) and T : K — K is
completely continuous.

Proof. From (2.11), we have
(Tw)"(t) + XAa(t) f(t,u(t — 7)) =0 teJ=][0,1],
(Tw)(t) = B(Tw)(n),  —7<t<O,
(Tu)(1) = a(Tu)(n).
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Therefore, the fixed point of 7" is a solution of (1.1).

Next, we will prove that T : K — K. For any u € K, it is easy to see
that Tu € C[—7,1] and Tu > 0 for ¢ € J. Since (Tw)"(t) < 0, by Lemma
2.4, we have

(Tu)(t) > p(t)minfy. 1 — n}|Tul, fort e
Hence
min{(Tu)(t) : b <t <c} Zmin{p(t) : b <t < ¢} min{n, 1—n}|Tu|| = 0||Tu|.

So T : K — K. By using Arzela-Ascoli theorem, it is easy to prove that T
is completely continuous. The proof is complete. O

Lemma 2.6. Let X be a Banach space, c@d let K C X be a cone. Assume
Q1,9 are open subset of E with 0 € Qq,Qs C Qs, and let

A:Kﬂ(ﬁg\gl)—)K,

be a completely continuous operator such that either

(1) [|Au|| < |Jull,u € KN OQ and ||Aul| > ||ul|, v € K N 0Ny, or
(1)) Aul| = |lul|,uw € KN and ||Aul| < |Ju|, v € K N ONs.
Then A has a fized point in K N (Qg\ Q7).

3 Main Results

Let
t,u t,u
f° = lim sup max 1, ), fo = lim inf min f(t, ),
u—0+ teJ u u—0t tedJ u
t,u . . t,u
f°° = lim sup max 1 ), foo = liminf min 1 )
u—oo t€J u u—oo teJ U

Theorem 3.1. Let (H) hold and fs > 0, f' < oo, then there exists at
least one positive solution to (1.1) for

o S
Joo SUPsc s (ﬂ min{n, 1 —n} [ G(t,s)a(s)ds + 6 [T G(t, s)a(s)ds)
1—an—p(1—n) )
- - (3.1)
(L+a(l = n) + An)f2(8 J7 G(s,s)a(s)ds + [ G(s, s)a(s)ds )




28 J. Chen, J. Tariboon and S. Koonprasert

Proof. By (3.1), there exists an € > 0 such that

1
(foo — ) supye s (Bmin{n, 1 =} [ G(t, s)a(s)ds +0 [T G(t, 5)a(s)ds)
<A<
1—an—p(1 77) .
(1+a(l =) + Bn)(fO + ) (B fy G(s,s)a(s)ds + [ G(s, s)a(s)ds)

(3.2)
Let ¢ be fixed. By f° < oo, there exists a > 0 such that for v : 0 < u < 7,

Fls,u) < (f° +e)u. (3.3)

Let Q1 = {u € C[—7,1] : |lu|]| < 7}, then for u € K N0y, we have by (3.2)
and (3.3) that

1
I Tul| < /\/ G(s,8)a(s)f(s,u(s —71))ds

(1—a7§)ﬁ+§1_ /GSS a(s)f(s,u(s —7))ds
A(ifznl_ +5”)/ G(s. s)a(s)f(s, u(s — 7))ds
<A+ )&fznl_g(*ﬁ” / G(s, s)as)u(s — 7)ds

:A<f0+g>(1jzn1—g>(+ﬁn (/ Clonsla

Next, by foo > 0, there exists a R > r such that f(s,u) > (foo — €)u for
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u > R. Set Qg = {u € C[—7,1] : ||ul| < R}, then for u € K N dQs, we have

1
| Tul| > )\sup/ G(t,s)a(s)f(s,u(s —7))ds

teJ
Asup/ G(t,s)a(s) —e)u(s —7))ds
teJ
= - igy(/Gts s)Bu(n d8+/Gts s—7’)ds>
= — &) sup </ G(t, s)a(s)Pu(n )d8+ G(t,s—l—T) (S—I—T)u(s)ds)
teJ
>\ - igy(/Gts s)Bu(n dS—I—/GtS—I—T) (s—I—T)()ds)
> A foo —€) sup </ G(t,s)a(s)fmin{n, 1 — n}||ul/ds
teJ

+/b Glt, s+ T)a(s +7’)9Hu||ds>

2 Moo — )SUP <5mln{77, 77}/ G(t, s)a(s)ds

c+T

+0 G(t,S)a(S)d8> [l = ull

b+

Therefore, by the first part of Lemma 2.6, T" has a fixed point u €
KN (2\ Q) and ||ul]| = r. From Lemma 2.5, u(t) is a positive solution of
BVP (1.1). The proof is complete. O

Theorem 3.2. Let (H) hold and fy > 0, f> < oo, then there exists at
least one positive solution to (1.1) for

A e( 1 )
fosup,es (ﬁ min{n,1 —n} [ G(t,s)a(s)ds + 9[0+T (t S)a(s)ds>
1—an - ﬁ(l 1) ) |
(1+a(l— )+ﬁnf°°<ﬁf0 Ja(s)ds + [ G(s, s)a(s)ds)

(3.4)
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Proof. Suppose that A satisfies (3.4). There exists an € > 0 such that

1

(fo— &) supyes (Bmin{n, 1 =0} [§ G(t, s)a(s)ds + 0 [/ G(t, s)a(s)ds )
<AL

1—an—p(1 - ) '
(1+a(l— )+ﬁn)(f°°+s<ﬁf0 (s)ds + [LG(s, 5) ()ds>

(3.5)
By fo > 0, there exists a r* > 0 such that for v : 0 < u < 7%,
f(s,u) = (fo—€)u (3.6)

Let Q9 = {x € C[-7,1] : |lu|]| < r*}, then for u € K N 9Q, we have by
(3.5) and (3.6) that

||Tu\|>/\sup/ G(t,s)a(s)f(s,u(s —7))ds
teJ
2)\sup/ G(t,s)a(s)(fo —e)u(s —7))ds
teJ
= fo—&?sup</Gts s)Bu(n ds+/Gts u(s —71)d )
teJ
= Afo—¢) sup(/ G(t,s)a n)ds + G(t s+7)a(s+T)u ()ds)
teJ 0

A(fo —¢) sup(/ G(t,s)a(s)Pu(n ds+/Gts+7') (s+71)u ()d)

teJ

A(fo — ) sup (/ G(t,s)a(s)Bmin{n, 1 —n}|ullds

teJ

+ /b G(t,s+ 1)a(s + T)HHqus)

A(fo —€)Sup (ﬁmm{n,l —77}/ G(t,s)a(s)ds

c+T
L6 / G, s>a<s>d8> lull > [lull
b

+7
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By f*° < oo, we choose that R, > r* such that for u > R,

fls,u) < (F +€)u.

There are two cases of interest: Case (i) f is bounded, and Case (ii) f is
unbounded.

Case(i) Suppose that f is bounded. We can choose N > r* such that
f(s,u) < N for s € J and u € [0,00). Let

R* = max N,AN1+a1_ +57]/(?33
(1 —an)

and Qg = {z € C[—7,1] : |lu|]| < R*}. Then for u € K N9, we have

|Tu| < / G(s,s)a(s)f(s,u(s —7))ds

A+ «) 1 B
(1—an)—B(1—n / G(s,s)a(s)f(s,u(s —7))ds
l+ad - )+ﬁ17 _
@N(l_an B /Gss <R =l

Case(iz) Suppose that f is unbounded. There exists R** > R, such
that f(s,u) < f(s, R**) for s € J and 0 < z < R*. Then for u € K N 0Ny,

we have

| Tul| < /Gss F(s,u(s —7))ds
o) —7))ds
o [ s s)a(o) sl — )
1+a1— +ﬁ77 .
/\(1_@77 /Gss 5, R**)ds

1 + a(l —n)+ 0n
(I—an)—pB(1-n
Therefore, by the second part of Lemma 2.6, T" has a fixed point u €

KN (Q\ Q) and ||u|| > r*. From Lemma 2.5, u(t) is a positive solution
of BVP (1.1). The proof is complete. O

1
)/0 Gls, s)a(s)ds < B™ = |Jul|.
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