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Abstract : In this paper, we consider the problem of robust stability for the
discrete-time linear parameter dependent (LPD) system with delay. We use the
parameter dependent Lyapunov function and derive stability conditions in terms
of linear matrix inequalities (LMIs). The new stability condition is more general
than some existing results. Numerical examples are presented to illustrate the
effectiveness of the theoretical results.
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1 Introduction

Robust stability of linear continuous-time and discrete-time systems subject
to time-invariant parametric uncertainty has received considerable attention in the
past few decades. An important class of linear time-invariant parametric uncertain
system is linear parameter dependent (LPD) system in which the uncertain state
matrices are in the polytope consisting of all convex combination of known matri-
ces. Within this context, a fundamental problem is that of establishing whether a
polytope of given matrices consists of only Hurwitz matrices (for continuous-time
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case) or Schur matrices (for discrete-time case). To address this problem, several
results have been obtained in terms of sufficient (or necessary and sufficient) con-
ditions, see [1]-[16] and references cited therein. Most of these conditions have
been obtained via Lyapunov theory approaches in which parameter dependent
Lyapunov functions have been employed. Moreover, these conditions are always
expressed in terms of linear matrix inequalities (LMI) which can be solved nu-
merically by using available tools such as LMI toolbox in MATLAB. However,
a few results have been obtained for robust stability for LPD systems in which
time-delay occur in state variable. In [3] and [9], sufficient conditions have been
obtained for robust stability of continuous-time LPD system with delays. In this
paper, we shall give sufficient conditions of robust stability for discrete-time LPD
system with delay. These conditions will be expressed in terms of LMI and when
there are no delays in the system we shall obtain main results in [11] and [16] as
corollaries of our results.

The paper is organized as follows. In Section 2, we shall review main notations
and present problem formulation. In Section 3, based on a combination of the
LMI approach and the use of parameter dependent Lyapunov function, sufficient
conditions of robust stability for discrete-time LPD system with delay will be
given. Numerical examples will be presented to illustrate the effectiveness of the
theoretical results. The paper ends with acknowledgments and cited references.

2 Preliminaries

We first introduce some notations.

R+− the set of all non-negative real numbers;

Z+− the set of all non-negative integers;

Rn− the n-dimensional Euclidean space;

Mn×m− the space of all n × m real matrices;

AT− the transpose of the matrix A; A is symmetric if A = AT

The matrix A is positive semi-definite (negative semi-definite), denoted by
A ≥ 0 (A ≤ 0), if xT Ax ≥ 0 (xT Ax ≤ 0) for all x ∈ Rn. The matrix A is positive
definite (negative definite), denoted by A > 0 (A < 0), if xT Ax > 0 (xT Ax < 0)
for all x ∈ Rn − {0}.

Consider the discrete-time LPD system with delay of the form

{

x(k + 1) = A(α)x(k) + B(α)x(k − h), ∀k ≥ 0;
x(k) = φ(k), ∀k ∈ [−h, 0],

(2.1)

where x(k) ∈ Rn, k ∈ Z+, h ∈ Z+ − {0} is the delay and φ(k) is a vector-valued
initial condition on [−h, 0]. A(α) and B(α) are uncertain Mn×n polytope matrices
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of the form
[

A(α), B(α)
]

=
[

N
∑

i=1

αiAi,

N
∑

i=1

αiBi

]

,

N
∑

i=1

αi = 1, αi ≥ 0, Ai, Bi ∈ Mn×n, i = 1, ..., N.

Definition 2.1 A function V (x) : Rn → R is called positive (negative) definite if
V (0) = 0 and V (x) > 0 (V (x) < 0) whenever x 6= 0.

Definition 2.2 The system (2.1) is said to be robustly stable if there exists a
positive definite function V (x) : Rn → R+ such that

∆V (x(k)) = V (x(k + 1)) − V (x(k)) < 0

along the solution of the system (2.1).
There are a number of conditions for robustly stable of system (2.1) when

there is no delay (namely, B(α) = 0) given in the literatures, see [4]-[5], [11]-[14],
[16] for examples.

3 Main Results

In this section, we present our main results on the robust stability criteria
for discrete-time LPD system with delay. We introduce the following notation for
later use,

Mi,j,l[A, P, B] =

[

AT
i PjAl AT

i PjBl

BT
i PjAl BT

i PjBl

]

, Ni[P, Q] =

[

−Pi + Qi 0
0 −Qi

]

.

Theorem 3.1. The system (2.1) is robustly stable if there exist positive definite

symmetric matrices Pi, Qi, i = 1, 2, ..., N , such that the following LMIs are satis-

fied:

(i). Mi,i,i[A, P, B] + Ni[P, Q] < −I, i = 1, 2, ..., N,

(ii). Mi,j,i[A, P, B] + Mi,i,j [A, P, B] + Mj,i,i[A, P, B] + 2Ni[P, Q]

+Nj[P, Q] <
1

(N − 1)2
I, i = 1, 2, ..., N, i 6= j, j = 1, 2, ..., N,

(iii). Mi,j,l[A, P, B] + Mi,l,j [A, P, B] + Mj,i,l[A, P, B] + Mj,l,i[A, P, B]

+Ml,i,j[A, P, B] + Ml,j,i[A, P, B] + 2Ni[P, Q] + 2Nj[P, Q]

+2Nl[P, Q] <
6

(N − 1)2
I,

i = 1, 2, ..., N − 2, j = i + 1, ..., N − 1, l = j + 1, ..., N.

Proof. Consider a parameter dependent Lyapunov function of the form

V (x(k)) = xT (k)P (α)x(k) +

k−1
∑

i=k−h

xT (i)Q(α)x(i)
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where P (α) =

N
∑

i=1

αiPi and Q(α) =

N
∑

i=1

αiQi. The difference of parameter de-

pendent Lyapunov function along a trajectory solution of system (2.1) is given
by

∆V (x(k)) = V (x(k + 1)) − V (x(k))

= xT AT (α)P (α)A(α)x + xT
−hBT (α)P (α)A(α)x

+xT AT (α)P (α)B(α)x−h + xT
−hBT (α)P (α)B(α)x−h

+xT Q(α)x − xT P (α)x − xT
−hQ(α)x−h.

where, for simplicity, x := x(k), x−h := x(k−h). By the definition of A(α), B(α), P (α)
and Q(α), we obtain

∆V (x(k)) =
N

∑

i=1

αi

N
∑

j=1

αj

N
∑

l=1

αl

[

xT
(

AT
i PjAl − Pi + Qi

)

x
]

+

N
∑

i=1

αi

N
∑

j=1

αj

N
∑

l=1

αl

[

xT
−h

(

BT
i PjAl

)

x
]

+

N
∑

i=1

αi

N
∑

j=1

αj

N
∑

l=1

αl

[

xT
(

AT
i PjBl

)

x−h

]

+

N
∑

i=1

αi

N
∑

j=1

αj

N
∑

l=1

αl

[

xT
−h

(

BT
i PjBl − Qi

)

x−h

]

=

N
∑

i=1

α3
i Y

T
[

Mi,i,i[A, P, B] + Ni[P, Q]
]

Y

+
N

∑

i=1

N
∑

i6=j,j=1

α2
i αjY

T





Mi,j,i[A, P, B] + Mi,i,j [A, P, B]
+Mj,i,i[A, P, B] + 2Ni[P, Q]

+Nj[P, Q]



Y

+

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

l=j+1

αiαjαlY
T
[

∆i,j,l(M, N)
]

Y,

where

∆i,j,l(M, N) =









Mi,j,l[A, P, B] + Mi,l,j [A, P, B]
+Mj,i,l[A, P, B] + Mj,l,i[A, P, B]
+Ml,i,j[A, P, B] + Ml,j,i[A, P, B]

+2Ni[P, Q] + 2Nj[P, Q] + 2Nl[P, Q]









,
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Y = [x(k) x(k − h)]T . By conditions (i) − (iii), we get

∆V (x(k)) < −Y T [
N

∑

i=1

α3
i I −

1

(N − 1)2

N
∑

i=1

N
∑

i6=j,j=1

α2
i αjI

−
6

(N − 1)2

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

l=j+1

αiαjαlI]Y.

We define Φ and Λ as

Φ ≡

N
∑

i=1

N
∑

j=1

αi(αi − αj)
2 = (N − 1)

N
∑

i=1

α3
i −

N
∑

i=1

N
∑

j 6=i;j=1

α2
i αj ≥ 0,

Λ ≡
N

∑

i=1

N−1
∑

j 6=i;j=1

N
∑

l 6=i;l=2

αi[αj − αj ]
2 = (N − 2)

N
∑

i=1

N−1
∑

j 6=i;j=1

α2
i αj

−6

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

l=j+1

αiαjαl ≥ 0.

From (N − 1)Φ + Λ ≥ 0, we obtain

N
∑

i=1

α3
i −

1

(N − 1)2

N
∑

i=1

N
∑

i6=j,j=1

α2
i αj −

6

(N − 1)2

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

l=j+1

αiαjαl ≥ 0.

Therefore, ∆V (x(k)) < 0 which means that the system (2.1) is robustly stable.
The proof of theorem is complete.

Theorem 3.2. The system (2.1) is robustly stable if there exist positive definite

symmetric matrices Pi, Qi, i = 1, 2, ..., N ; Ziii, i = 1, 2, ..., N ; Ziij = ZT
jii, Ziji, i =

1, 2, ..., N, j 6= i, j = 1, 2, ..., N ; Zijl = ZT
lji, Zilj = ZT

jli, Zjil = ZT
lij , i = 1, 2, ..., N −

2, j = i + 1, ..., N − 1, l = j + 1, ..., N , such that the following LMIs are satisfied:

(i). Mi,i,i[A, P, B] + Ni[P, Q] < Ziii, i = 1, 2, ..., N,

(ii). Mi,j,i[A, P, B] + Mi,i,j [A, P, B] + Mj,i,i[A, P, B] + 2Ni[P, Q]

+Nj[P, Q] < Ziij + ZT
jii + Ziji,

i = 1, 2, ..., N, i 6= j, j = 1, 2, ..., N,

(iii). Mi,j,l[A, P, B] + Mi,l,j [A, P, B] + Mj,i,l[A, P, B] + Mj,l,i[A, P, B]

+Ml,i,j[A, P, B] + Ml,j,i[A, P, B] + 2Ni[P, Q] + 2Nj[P, Q]

+2Nl[P, Q] < Zijl + ZT
lji + Zilj + ZT

jli + Zjil + ZT
lij ,

i = 1, 2, ..., N − 2, j = i + 1, ..., N − 1, l = j + 1, ..., N,

(iv).











Z1i1 Z1i2 · · · Z1iN

Z2i1 Z2i2 · · · Z2iN

...
...

. . .
...

ZNi1 ZNi2 · · · ZNiN











≤ 0, i = 1, 2, ..., N.
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Proof. Consider a Lyapunov function of the form

V (x(k)) = xT (k)P (α)x(k) +

k−1
∑

i=k−h

xT (i)Q(α)x(i)

where P (α) =

N
∑

i=1

αiPi and Q(α) =

N
∑

i=1

αiQi. The difference of Lyapunov function

along a trajectory solution of (2.1) is given by

∆V (x(k)) =
N

∑

i=1

α3
i Y

T
[

Mi,i,i[A, P, B] + Ni[P, Q]
]

Y

+

N
∑

i=1

N
∑

i6=j,j=1

α2
i αjY

T

[

Mi,j,i[A, P, B] + Mi,i,j [A, P, B]
+Mj,i,i[A, P, B] + 2Ni[P, Q] + Nj [P, Q]

]

Y

+
N−2
∑

i=1

N−1
∑

j=i+1

N
∑

l=j+1

αiαjαlY
T









Mi,j,l[A, P, B] + Mi,l,j[A, P, B]
+Mj,i,l[A, P, B] + Mj,l,i[A, P, B]
+Ml,i,j[A, P, B] + Ml,j,i[A, P, B]

+2Ni[P, Q] + 2Nj [P, Q] + 2Nl[P, Q]









Y,

where Y = [x(k) x(k − h)]T (see Theorem 3.1). By conditions (i)− (iii), we get

∆V (x(k)) <

N
∑

i=1

α3
i Y

T ZiiiY +
N

∑

i=1

N
∑

i6=j,j=1

α2
i αjY

T [Ziij + ZT
jii + Ziji]Y

+

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

l=j+1

αiαjαlY
T

[

Zijl + ZT
lji + Zilj + ZT

jli

+Zjil + ZT
lij

]

Y

< Y T α1











α1I

α2I
...

αNI











T 









Z111 Z112 · · · Z11N

Z211 Z212 · · · Z21N

...
...

. . .
...

ZN11 ZN12 · · · ZN1N





















α1I

α2I
...

αNI











Y

+Y T α2











α1I

α2I
...

αNI











T 









Z121 Z122 · · · Z12N

Z221 Z222 · · · Z22N

...
...

. . .
...

ZN21 ZN22 · · · ZN2N





















α1I

α2I
...

αNI











Y

+ · · · + Y T αN











α1I

α2I
...

αNI











T 









Z1N1 Z1N2 · · · Z1NN

Z2N1 Z2N2 · · · Z2NN

...
...

. . .
...

ZNN1 ZNN2 · · · ZNNN





















α1I

α2I
...

αNI











Y.
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Thus, we have

∆V (x(k)) < Y T





















α1I

α2I
...

αN I











T

∑N

i=1 αi











Z1i1 Z1i2 · · · Z1iN

Z2i1 Z2i2 · · · Z2iN

...
...

. . .
...

ZNi1 ZNi2 · · · ZNiN





















α1I

α2I
...

αNI





















Y.

By the condition (iv), we obtain ∆V (k) < 0. Therefore, the system (2.1) is
robustly stable.

Example 3.3. Consider the following discrete-time LPD system with delay of the

form

x(k + 1) = A(α)x(k) + B(α)x(k − h), k ∈ Z+, (3.1)

where h is any positive integer and

A(α) = α1A1 + α2A2, B(α) = α1B1 + α2B2,

where

A1 =

[

0.0233 0.4211
−0.7472 0.1765

]

, A2 =

[

0.0198 0.5124
−0.6389 0.2015

]

,

B1 =

[

0.0634 0.0036
−0.0054 0.0523

]

, B2 =

[

0.0701 0.0041
−0.0065 0.0621

]

.

By using LMI Toolbox in MATLAB, we use the condition (i), (ii) and (iii) in

Theorem 3.1 for this example. The solutions of LMI verify as follows of the form

P1 = 103 ×

[

1.6967 −0.1306
−0.1306 2.3893

]

, P2 = 103 ×

[

1.7014 −0.1525
−0.1525 2.3556

]

,

Q1 =

[

521.0819 17.3861
17.3861 547.6851

]

, Q2 =

[

528.0290 11.8215
11.8215 559.8311

]

.

Therefore, the system (3.1) is robustly stable. �

Example 3.4. Consider the following discrete-time LPD systems with time-delay

of the form

x(k + 1) = A(α)x(k) + B(α)x(k − h), k ∈ Z+, (3.2)

where h is any positive integer and

A(α) = α1

[

−0.52130 0.34646
−0.21218 −0.72940

]

+ α2

[

−0.63410 0.26354
−0.25410 −0.71280

]

,

B(α) = α1

[

0.0318 −0.00234
−0.00456 0.0350

]

+ α2

[

0.0354 −0.00364
−0.00605 0.0834

]

.
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Figure 1: The Simulation solution of the states x1(k) and x2(k) in the
discrete-time LPD delay system (3.1) where h = 2, α1 = α2 = 1

2
with initial

conditions x1(k) = 3 and x2(k) = −4, k = −2,−1, 0 by using method of
Runge-Kutta order 4 with Matlab.

By using LMI Toolbox in MATLAB, we use the condition (i), (ii), (iii) and (iv) in

Theorem 3.2 for this example. The solutions of LMI verify as follows of the form

P1 = 103 ×

[

3.8531 0.4311
0.4311 5.4663

]

, P2 = 103 ×

[

4.4796 0.2519
0.2519 5.0000

]

,

Q1 = 103 ×

[

1.3666 0.0713
0.0713 1.2885

]

, Q2 = 103 ×

[

1.2795 −0.0066
−0.0066 1.2584

]

,

Z111 = 103 ×









−2.9670 0 0 0
0 −2.9670 0 0
0 0 −2.9670 0
0 0 0 −2.9670









,

Z222 = 103 ×









−2.9770 0 0 0
0 −2.9770 0 0
0 0 −2.9770 0
0 0 0 −2.9770









,

Z112 = Z121 = Z211 = 103 ×









−0.4322 0 0 0
0 −0.4322 0 0
0 0 −0.4322 0
0 0 0 −0.4322









,

Z212 = Z122 = Z221 = 103 ×









−0.4162 0 0 0
0 −0.4162 0 0
0 0 −0.4162 0
0 0 0 −0.4162









.

Therefore, the system (3.2) is robustly stable. �
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Figure 2: The Simulation solution of the states x1(k) and x2(k) in the
discrete-time LPD delay system (3.2) where h = 2, α1 = α2 = 1

2
with initial

conditions x1(k) = 6 and x2(k) = −5, k = −2,−1, 0. by using method of
Runge-Kutta order 4 with Matlab.
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