
Thai Journal of Mathematics

Special Issue (Annual Meeting in Mathematics, 2010) : 1–9

www.math.science.cmu.ac.th/thaijournal

Online ISSN 1686-0209

Finding the Number of Cycle Egamorphisms
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A mapping f from graph G to graph H is called an egamorphism

(or weak homomorphism, contraction) from G to H, if f preserves or
contracts the edges. This paper is to find the number of egamorphism from
Cm to Cn, where m,n ∈ Z+ and m,n > 2.
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1 Introduction and Preliminaries

The motivation of this paper is come from the determination of number of
cycle homomorphisms [8]. Otherwise the number of path homomorphisms
[3] and the number of endomorphisms [2]. In [7] using the congruence
classes to fine the number of path and cycle endomorphisms.

As usual we denote by V (G) and E(G) the vertex set and the edge set
of the graph G, respectively, where V (G) 6= ∅ and E(G) ⊆ {{u, v}| u 6=
v in V (G)}. The graph with vertex set {0, 1, . . . , n} and edge set {{0, 1},
{1, 2}, . . . , {n−1, n}} is called a path of length n, denoted by Pn. Therefore,
the path Pn has n + 1 vertices and n edges. The graph with vertex set
{0, 1, . . . , n−1}, such that n ≥ 3, and edge set {{i, i+1}|i = 0, 1, . . . , n−1}
(with addition modulo n) is called a cycle of length n, denoted by Cn.
Therefore, the cycle Cn has n vertices and n edges.

A homomorphism of a graph G to a graph H is a mapping f : V (G) →
V (H) which preserves edges, i.e. {u, v} ∈ E(G) implies {f(u), f(v)} ∈
E(H). A homomorphism from G to itself is called an endomorphism of
G. By Hom(G,H) and End(G) we denote the set of all homomorphisms
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from G to H and endomorphism of G, respectively. For each bijective
f ∈ End(G), if f−1 ∈ End(G), f said to be automorphism, denoted by
Aut(G).

From [6], if G and H are two graphs, a map f : V (G) → V (H) is an
egamorphism if f preserves or contracts the edges, i.e., if f(x) = f(y) or
{f(x), f(y)} ∈ E(H) whenever {x, y} ∈ E(G) (f is also weak homomorphism

in [5] and contraction in [9]). By Ega(G,H) and Ega(G) we denote the
set of all egamorphisms from G to H and egamorphisms from G to itself,
respectively.

We now define notation about the set which will be used in later. For
any given m,n ∈ Z

+ ∪ {0} and r, i, j, k ∈ Cn. Let Egai(Pm, Cn) be the
set of all egamorphisms and maps f from Pm to Cn such that f(0) = i. Let
Egai

j(Pm, Cn) be the set of all egamorphisms and maps f from Pm to Cn

such that f(0) = i and f(m) = j. So the set of all egamorphisms from Pm

to Cn can be written as Ega(Pm, Cn). Similarly, if Egai(Cm, Cn) is the set
of all egamorphisms and maps f from Cm to Cn such that f(0) = i, and
Egai

j(Cm, Cn) is the set of all egamorphisms and maps f from Cm to Cn

such that f(0) = i and f(m − 1) = j. And easy to proof that,

Proposition 1.1. For any given path Pmand cycle Cn. Then, the following

properties are also held.

1. If j 6= k , then Egai
k(Pm, Cn)

⋂

Egai
j(Pm, Cn) = ∅ and

Egai
k(Cm, Cn)

⋂

Egai
j(Cm, Cn) = ∅

2. if i 6= r , then Egai(Pm, Cn)
⋂

Egar(Pm, Cn) = ∅ and

Egai(Cm, Cn)
⋂

Egar(Cm, Cn) = ∅,

3. |Egai(Pm, Cn)| =
n−1
∑

j=0
|Egai

j(Pm, Cn)|,

4. |Egai(Cm, Cn)| =
n−1
∑

j=0
|Egai

j(Cm, Cn)|,

5. |Ega(Pm, Cn)| =
n−1
∑

i=0
|Egai(Pm, Cn)|,

6. |Ega(Cm, Cn)| =
n−1
∑

i=0
|Egai(Cm, Cn)|.

From [1], trinomial coefficients are used as major tools for our results, so
its outline are introduced in brief here. For any given m ∈ Z+∪{0}, k ∈ Z,
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defined
(

m

k

)

2

=







m
∑

j=0
(−1)j

(

m
j

)( 2m−2j
m−k−j

)

, −m ≤ k ≤ m;

0, otherwise.

From the definition, it can be written in factorial forms

(

m

k

)

2

=

(

m − 1

k − 1

)

2

+

(

m − 1

k

)

2

+

(

m − 1

k + 1

)

2

we now properly suggested next lemma for utilizing to prove our results.

Lemma 1.2. Let m, q ∈ Z
+ ∪ {0}, for any given positive integer n such

that m = nq. Then

(

m

j − i + n(q + 1)

)

2

=

(

m

j − i − n(q + 1)

)

2

= 0,

for all 0 ≤ i, j ≤ n − 1.

2 The Number of Egamorphisms from Paths to

Cycles

First, we will show how to find the number of egamorphisms from paths
to cycles. They are the important tools to determine the number of cycle
egamorphisms. It’s easy to get that,

Lemma 2.1. Let G, H be graphs, u ∈ V (G) and v1, v2 ∈ V (H). If

there exists α ∈ Aut(H) such that α(v1) = v2, then |Egau 7→v1
(G,H)| =

|Egau 7→v2
(G,H)|.

Lemma 2.2. Let G be a graph and a, b ∈ V (G). If there exists ϕ ∈
Aut(G) such that ϕ(a) = b, then |Egaa(Pm, G)| = |Egab(Pm, G)| and

|Egav
a(Pm, G)| = |Egav

b (Pm, G)| for all v ∈ V (G).

Corollary 2.3. For any given path Pm and cycle Cn.Then |Egai(Pm, Cn)| =
|Egaj(Pm, Cn)| and |Egai

j(Pm, G)| = |Egai
k(Pm, G)| for all v ∈ V (G).

Theorem 2.4. Let G be a graph and m be a positive integer, then

|Egai
j(Pm, G)| =

∑

{j,j′}∈E(G)

|Egai
j′(Pm−1, G)|+|Egai

j(Pm−1, G)|, where j 6= j′.
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Proof. Let m,n ∈ Z
+, n ≥ 3 and i ∈ V (G).

Define ϕ : Egai
j(Pm, G) →

⋃

{j,j′}∈E(G)

Egai
j′(Pm−1, G) ∪ Egai

j(Pm−1, G),

where j 6= j′, by f ∈ Egai
j(Pm, G), then ϕ(f) = f

∣

∣

{0,1,2,...,m−1}
= f ′.

Clearly, f ′ ∈
⋃

{j,j′}∈E(G)

Egai
j′(Pm−1, G) ∪ Egai

j(Pm−1, G), where j 6= j′.

(i) We have to show that ϕ is injective.
Let f1, f2 ∈ Egai

j(Pm, G) such that ϕ(f1) = ϕ(f2).
Then f1(x) = f ′

1(x) = f ′
2(x) = f2(x) for all x ∈ Pm−1.

But f1, f2 ∈ Egai
j(Pm, G), f1(m) = f2(m) = j.

Therefore f1 = f2.
(ii) We want to show that ϕ surjective.
Let g ∈

⋃

{j,j′}∈E(G)

Egai
j′(Pm−1, G) ∪ Egai

j(Pm−1, G), where j 6= j′.

If g ∈
⋃

{j,j′}∈E(G)

Egai
j′(Pm−1, G), where j 6= j′, g(0) = i and g(m − 1) = j′.

∃ f ∈ Egai
j(Pm, G) such that f(x) = g(x) for all 0 ≤ x ≤ m − 1 and

f(m) = j.
If g ∈ Egai

j(Pm−1, G), g(0) = i and g(m − 1) = j.

∃ f ∈ Egai
j(Pm, G) such that f(x) = g(x) for all 0 ≤ x ≤ m − 1 and

f(m) = j.
By (i) and (ii) we get that |Egai

j(Pm, G)| =
∑

{j,j′}∈E(G)

Egai
j′(Pm−1, G) +

Egai
j(Pm−1, G), where j 6= j′.

By Theorem 2.4, we get one result as follow.

Corollary 2.5. For any m,n ∈ Z+, n ≥ 3, i, j ∈ V (Cn), then

|Egai
j(Pm, Cn)| =























∑

j ′=0,1,n−1

|Egai
j ′(Pm−1, Cn)|, j = 0;

∑

j ′=j−1,j,j+1

|Egai
j′(Pm−1, Cn)|, 0 < j < n − 1;

∑

j ′=0,n−2,n−1

|Egai
j′(Pm−1, Cn)|, j = n − 1.

We will suggest an important lemma for proving theorem of finding the
number of egamorphisms.

Lemma 2.6. For all n ∈ Z
+, n ≥ 3, i, j ∈ V (Cn), |Egai

j(P0, Cn)| =
{

1, i = j;

0, i 6= j.
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By definition of egamorphism, we then obvious the proof of this lemma.
By Corollary 2.5 and Lemma 2.6. These pretty results are useful for using
to calculate the number of egamorphisms. The next corollary is given the
number of egamorphisms from paths to cycles.

Corollary 2.7. For any m ∈ Z
+ ∪ {0}, n ∈ Z

+ and n ≥ 3. Then

|Egai(Pm, Cn)| = 3m, for all i ∈ V (Cn) and |Ega(Pm, Cn)| = n3m.

Proof. Let m ∈ Z
+ ∪ {0}, n ∈ Z

+, n ≥ 3 and i ∈ Cn.
We will show that |Egai(Pm, Cn)| = 3m.
If m = 0, then
|Egai

j(P0, Cn)| = 0, if i 6= j and |Egai
j(P0, Cn)| = 1, if i = j.

Then |Egai(P0, Cn)| =
n−1
∑

j=0
|Egai

j(P0, Cn)| = 1 = 30.

Therefore |Egai(P0, Cn)| = 30.
Assume |Egai(Pk, Cn)| = 3k at k ∈ Z

+ ∪ {0}, i ∈ V (Cn).
We will show that |Egai(Pk+1, Cn)| = 3k+1.

Using the fact that |Egai(Pk+1, Cn)| =
n−1
∑

j=0
|Egai

j(Pk+1, Cn)|, we have

|Egai(Pk+1, Cn)| = |Egai
0(Pk+1, Cn)| + |Egai

1(Pk+1, Cn)| + . . . + |Egai
n−1(Pk+1, Cn)|,

= 3|Egai
0(Pk, Cn)| + 3|Egai

1(Pk, Cn)| + . . . + 3|Egai
n−1(Pk, Cn)|,

= 3
n−1
∑

j=0
|Egai

j(Pk, Cn)|,

= 3|Egai(Pk, Cn)|
= 3 · 3k

= 3k+1.

Thus |Egai(Pm, Cn)| = 3m for all m ∈ Z
+ ∪ {0} and i ∈ V (Cn).

Therefore |Ega(Pm, Cn)| = n3m for all m ∈ Z
+ ∪ {0}.

The next is our main result which is generated by trinomial coefficients.
It can be written as the following formula.

Theorem 2.8. Let m ∈ Z
+ ∪ {0}, n ∈ Z

+, n ≥ 3 and i, j ∈ V (Cn). Then

|Egai
j(Pm, Cn)| =

q+1
∑

t=0

(

m

j − i ± nt

)

2

,

where m = nq + r, for some q ∈ Z
+ ∪ {0}, 0 ≤ r ≤ n − 1.

Proof. Let P(m) : |Egai
j(Pm, Cn)| =

q+1
∑

t=0

(

m
j−i±nt

)

2
, where m = nq + r, for

some q ∈ Z
+ ∪ {0}, 0 ≤ r ≤ n − 1.
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If m = 0, then q = 0, r = 0
(i) If j = i (j − i = 0), then |Egai

j(P0, Cn)| = 1 =
( 0
0−n

)

2
+

(0
0

)

2
+

( 0
0+n

)

2
=

q+1=1
∑

t=0

(

0
j−i±nt

)

2
.

(ii) If j 6= i (j − i 6= 0), then |Egai
j(P0, Cn)| = 0 =

( 0
j−i−n

)

2
+

( 0
j−i

)

2
+

(

0
j−i+n

)

2
=

q+1=1
∑

t=0

(

0
j−i±nt

)

2
, (because −n < j − i < n).

By (i) and (ii) therefore P (0) is true for all i, j ∈ V (Cn).
Assume that P (k) is true for some k ∈ Z

+ ∪ {0},

therefore |Egai
j(Pk, Cn)| =

q+1
∑

t=0

(

k
j−i±nt

)

2
, for all i, j ∈ V (Cn),

where k = nq + r, for some q ∈ Z
+ ∪ {0}, 0 ≤ r ≤ n − 1.

We want to show that P (k + 1) is true. Since k = nq + r, then k + 1 =
nq + r + 1.
Case 1 : If 0 ≤ r ≤ n− 2, then k +1 = nq + r +1 where 0 ≤ r +1 ≤ n− 1.
Let j ∈ V (Cn) such that 0 < j < n − 1. Then
|Egai

j(Pk+1, Cn)| = |Egai
j−1(Pk, Cn)| + |Egai

j(Pk, Cn)| + |Egai
j+1(Pk, Cn)|,

=
q+1
∑

t=0

(

k
j−i±nt−1

)

2
+

q+1
∑

t=0

(

k
j−i±nt

)

2
+

q+1
∑

t=0

(

k
j−i±nt+1

)

2
,

=
q+1
∑

t=0

[

(

k
j−i±nt−1

)

2
+

(

k
j−i±nt

)

2
+

(

k
j−i±nt+1

)

2

]

,

=
q+1
∑

t=0

(

k+1
j−i±nt

)

2
.

By Lemma 2.2, |Egai
j(Pk+1, Cn)| = |Egai

0(Pk+1, Cn)| = |Egai
n−1(Pk+1, Cn)|.

Therefore, |Egai
j(Pk+1, Cn)| =

q+1
∑

t=0

(

k+1
j−i±nt

)

2
, for all i, j ∈ V (Cn), in the case

of k = nq + r, 0 ≤ r ≤ n − 2.
Case 2 : If r = n − 1, then k + 1 = n(q + 1).
Let j ∈ V (Cn) such that 0 < j < n − 1. Similarly to Case 1, we get

that |Egai
j(Pk+1, Cn)| =

q+1
∑

t=0

(

k+1
j−i±nt

)

2
. From Lemma 1.2,

q+1
∑

t=0

(

k+1
j−i±nt

)

2
=

q+2
∑

t=0

(

k+1
j−i±nt

)

2
.

Thus |Egai
j(Pk+1, Cn)| =

q+2
∑

t=0

(

k+1
j−i±nt

)

2
.

By Lemma 2.2, |Egai
j(Pk+1, Cn)| = |Egai

0(Pk+1, Cn)| = |Egai
n−1(Pk+1, Cn)|.

Therefore, |Egai
j(Pk+1, Cn)| =

q+2
∑

t=0

(

k+1
j−i±nt

)

2
, for all i, j ∈ V (Cn), where
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k + 1 = n(q + 1), for some q ∈ Z
+ ∪ {0}.

By Case 1 and Case 2, we get that P(k+1) is true.

Therefore, by mathematical induction, |Egai
j(Pm, Cn)| =

q+1
∑

t=0

(

m
j−i±nt

)

2
, for

all m ∈ Z
+ ∪ {0} , n ∈ Z

+, n ≤ 3, i, j ∈ V (Cn), where m = nq + r, for some
q ∈ Z

+ ∪ {0}, 0 ≤ r ≤ n − 1.

This result used for finding the number of the value of Egai
j(Pm, Cn)

at i and j.

3 The Number of Cycle Egamorphisms

In this section, we presented the theorem which is use to find the num-
ber of cycle egamorphisms.

Lemma 3.1. For all m,n ∈ Z
+, m,n ≥ 3 and i, j ∈ V (Cn), if |Egai

j(Cm, Cn)| 6=
0, then {i, j} ∈ E(Cn) or i = j.

Lemma 3.2. For all m,n ∈ Z
+, m,n ≥ 3 and i, j ∈ V (Cn), if {i, j} ∈

E(Cn) or i = j, then |Egai
j(Pm−1, Cn)| = |Egai

j(Cm, Cn)|.

The proofs of two lemmas above are clear. In case of strictly for m,n ≥
3

Theorem 3.3. Let m,n ∈ Z
+, m,n ≥ 3. If m − 1 = nq + r, for some

q ∈ Z
+ ∪ {0}, 0 ≤ r ≤ n − 1, then

|Egai(Cm, Cn)| =

q+1
∑

t=0

(

m

±nt

)

2

, for all i ∈ V (Cn).

Proof. Let m,n ∈ Z
+, m,n ≥ 3 such that m − 1 = nq + r, for some

q ∈ Z
+ ∪ {0}, 0 ≤ r ≤ n − 1. Let i ∈ V (Cn). Thus |Egai(Cm, Cn)| =

n
∑

j=0
|Egai

j(Cm, Cn)|.

For 0 < i < n − 1.
By Lemma 3.1, |Egai

j(Cm, Cn)| = 0 for all j = 0, 1, ..., (i − 2), (i + 2), ..., n.
Thus
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|Egai(Cm, Cn)| = |Egai
i−1(Cm, Cn)| + |Egai

i(Cm, Cn)| + |Egai
i+1(Cm, Cn)|,

= |Egai
i−1(Pm−1, Cn)| + |Egai

i(Pm−1, Cn)| + |Egai
i+1(Pm−1, Cn)|,

=
q+1
∑

t=0

(

m−1
−1±nt

)

2
+

q+1
∑

t=0

(

m−1
±nt

)

2
+

q+1
∑

t=0

(

m−1
1±nt

)

2
,

=
q+1
∑

t=0

[

(

m−1
−1±nt

)

2
+

(

m−1
±nt

)

2
+

(

m−1
1±nt

)

2

]

,

=
q+1
∑

t=0

(

m
±nt

)

2
.

From 2.2, |Egai(Cm, Cn)| = |Ega0(Cm, Cn)| = |Egan−1(Cm, Cn)|. Alto-

gether |Egai(Cm, Cn)| =
q+1
∑

t=0

(

m
±nt

)

2
, for all i ∈ V (Cn).

Proposition 3.4. Let m,n ∈ Z
+, m,n ≥ 3. If m − 1 = nq + r, for some

q ∈ Z
+ ∪ {0}, 0 ≤ r ≤ n − 1, then

1. |Ega(Cm, Cn)| = n
q+1
∑

t=0

(

m
±nt

)

2
,

2. |Ega(Cm)| = n[
(

m
0

)

2
+ 2].
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