Generalized Frames

N. A. Sheikh

Abstract

In this paper, we use regular infinite matrices $\left(a_{n k}\right)_{n, k=1}^{\infty}$ to define A-frame and prove some analogous results of Duffin and Schaeffer [5].

Keywords : Frame, moment sequence, Bessel sequence, A-transform, regular matrix, A-frame.
2000 Mathematics Subject Classification : 41A17, 42C15.

1 Introduction

The concept of frames were introduced by Duffin and Schaeffer [5] in the context of non- harmonic Fourier series. A sequence $\left\{x_{n}\right\}$ in a Hilbert Space H is a frame if there exists numbers $C_{1}, C_{2}>0$, such that for all $x \in H$, we have

$$
C_{1}\|x\|^{2} \leq \sum_{n}\left|\left\langle x, x_{n}\right\rangle\right|^{2} \leq C_{2}\|x\|^{2}
$$

The two constants C_{1} and C_{2} are called frame bounds. The frame is tight if C_{1} $=C_{2}$ and is said to be exact if it ceases to be a frame by removing any of it's elements.

Frames have many of the properties of bases, but lack very important one i.e., uniqueness. Frames need not to be linearly independent. This turns out to be useful in image and signal processing applications, since the redundancy or transmission errors. As with the Riesz bases, perturbing a frame by a small amount, also yield a frame. Chui and Shi's over sampling theorems provide methods to generate wavelet frames. The theory of frames are discussed in variety of sources, including $[1,3,4,6,9]$. Here in this paper we define A-frame for an infinite nonnegative regular matrix and obtained analogous results of Duffin and Schaeffer.

2 Definitions and Notations

In the sequel, $\mathbb{Z}, \mathbb{Z}^{+}, \mathbb{R}$ and \mathbb{C} will respectively denote the integers, the strictly positive integers, the real numbers and the complex numbers and H will denote a(separable) Hilbert space with inner product $\langle.,$.$\rangle and norm \|\|=.\langle., .\rangle^{\frac{1}{2}}$.

A sequence $\left\{x_{n}, n \in \mathbb{Z}^{+}\right\} \subset H$ is called a frame if there exists two constants C_{1} and C_{2} such that for every $x \in H$

$$
C_{1}\|x\|^{2} \leq \sum_{n \in \mathbb{Z}^{+}}\left|\left\langle x, x_{n}\right\rangle\right|^{2} \leq C_{2}\|x\|^{2}
$$

The constants C_{1} and C_{2} are called frame bounds of the frame. The supremum of all such C_{1} and infimum of all such C_{2} are called best bounds of the frame. If only the right hand inequality is satisfied for all $x \in H$, then $\left\{x_{n}, n \in \mathbb{Z}^{+}\right\}$is called Bessel sequence with bounds C_{2}. One of the properties that are important is the following:
$\left\{x_{n}, n \in Z^{+}\right\}$is a Bessel sequence with bound M if and only if for every finite sequence of scalers $\left\{c_{k}\right\}$

$$
\begin{equation*}
\left\|\sum_{k} c_{k} x_{k}\right\|^{2} \leq M \sum_{k}\left\|c_{k}\right\|^{2} \tag{2.1}
\end{equation*}
$$

(see [9, page 155]). As remarked by Chui and Shi's in [2], it is straight forward consequence of this statement that $\left\{x_{n}, n \in \mathbb{Z}^{+}\right\}$is a Bessel sequence with bound M if and only if, (2.1) is satisfied for every sequence $\left\{c_{k}\right\} \in \ell^{2}$.

Two sequences $\left\{a_{n}, n \in \mathbb{Z}^{+}\right\}$and $\left\{b_{n}, n \in \mathbb{Z}^{+}\right\}$in H are called bi-orthogonal if $\left\langle a_{m}, a_{n}\right\rangle=\delta_{m, n}$, where $\delta_{m, n}$ is the Kronecker delta.

Example 2.1 Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis for H. Then
(i) $\left\{e_{1}, e_{1}, e_{2}, e_{2}, \ldots\right\}$ is a tight exact frame with bounds $C_{1}=C_{2}=2$.
(ii) $\left\{e_{1}, \frac{e_{2}}{2}, \frac{e_{3}}{3}, \ldots\right\}$ is a complete orthogonal sequence, but not a frame.
(iii) $\left\{e_{1}, \frac{e_{2}}{\sqrt{2}}, \frac{e_{2}}{\sqrt{2}}, \frac{e_{3}}{\sqrt{3}}, \frac{e_{3}}{\sqrt{3}}, \frac{e_{3}}{\sqrt{3}}, \ldots\right\}$ is a tight inexact frame with bounds $C_{1}=C_{2}=2$.

Definition 2.2 Given a sequence $\left\{x_{n}, n \in Z^{+}\right\} \subset H$. Let $S: H \rightarrow H$ be defined by

$$
S(x)=\sum_{n=1}^{\infty}\left\langle x, x_{n}\right\rangle x_{n}
$$

A number of important properties of frames are mentioned below (see [1]).
Theorem 2.3 Let $\left\{x_{n}, n \in Z^{+}\right\} \subset H$
(a) The following are equivalent:
(i) $\left\{x_{n}, n \in Z^{+}\right\}$is a frame for H with frame bounds C_{1} and C_{2}.
(ii) $S: H \rightarrow H$ is a topological isomorphism with norm bounds

$$
\|S\| \leq C_{2}
$$

and

$$
\|S\| \leq C_{1}^{-1}
$$

(b) In case of either condition in part (a), we have that

$$
C_{1} I \leq S \leq C_{2} I, \quad C_{2}^{-1} I \leq S^{-1} \leq C_{1}^{-1} I
$$

$\left\{S^{-1} x_{n}\right\}$ is a frame for H with frame bounds C_{2}^{-1} and C_{1}^{-1} and for all $x \in H$.

$$
\begin{equation*}
f=\sum\left\langle x, S^{-1} x_{n}\right\rangle x_{n} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f=\sum\left\langle x, x_{n}\right\rangle S^{-1}\left(x_{n}\right) \tag{2.3}
\end{equation*}
$$

If $\left\{x_{n}, n \in Z^{+}\right\}$is a frame, S is called the frame operator, $\left\{S^{-1} x_{n}\right\}$ is called dual frame of $\left\{x_{n}\right\},(2.2)$ is the frame decomposition of x and (2.3) is the dual frame decomposition of x (I is the identity map, $S \leq C_{2} I$ means that $\left\langle\left(C_{2} I-S\right) x, x\right\rangle \geq 0$ for each $\mathrm{x} \in H$)

A sequence is called minimal, if no element of the sequence is closure of the linear span of of other elements.

Theorem 2.4 Let $\left\{x_{n}, n \in \mathbb{Z}^{+}\right\} \subset H$ be a frame for H with frame bounds C_{1} and C_{2}.
(a) For each $C=\left\{c_{n}\right\} \in \ell^{2}$ such that $x=\sum c_{n} x_{n}$ converges in H and $\|x\|^{2} \leq$ $C_{2}\|c\|_{\ell^{2}}^{2}$.
(b) Let $\left\{x_{n}, n \in Z^{+}\right\}$be a frame and let v be any arbitrary vector, then there exist a moment sequence $\left\{y_{n}, n \in Z^{+}\right\}$such that $v=\sum_{n=1}^{\infty} x_{n} y_{n}$ and

$$
C_{2}^{-1}\|v\|^{2} \leq \sum_{n=1}^{\infty}\left|y_{n}\right|^{2} \leq C_{1}\|v\|^{2}
$$

A basis of $\left\{x_{n}, n \in Z^{+}\right\} \subset \mathrm{H}$ is called unconditional if there exists a $C>1$ such that for any two finite sequences of scalars $\left\{a_{k}, 1 \leq k \leq n\right\}$ and $\left\{b_{k}, 1 \leq k \leq n\right\}$ if $\left|a_{k}\right| \leq\left|b_{k}\right|, 1 \leq k \leq n$, then

$$
\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\| \leq C\left\|\sum_{k=1}^{n} b_{k} x_{k}\right\|
$$

Theorem 2.5 A sequence $\left\{x_{n}, n \in \mathbb{Z}^{+}\right\}$in a Hilbert space H is an exact frame for H if and only if it is bounded unconditional basis for H.

Now we will enlist some basic definitions which will be used oftenly in this paper.

Definition 2.6 ([7]) Let X and Y be two non empty subsets of the space of all real or complex numbers. Let $A=\left(a_{n k}\right),(n, k=1,2,3, \ldots)$, be an infinite matrix of real or complex numbers. By (X, Y) we denote the class of all such matrices A such that the series

$$
A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}
$$

converges for all $x \in X$ and the sequence $A x=\left(A_{n}(x)\right)$ will be called A-transform of x. Also

$$
\lim A x=\lim _{n \rightarrow \infty} A_{n}(x)
$$

whenever it exists.
Definition 2.7 ([7]) A matrix $A=\left(a_{n k}\right)$ is said to be regular if the matrix transformation $A: X \rightarrow Y$ is defined on a convergent sequence to a convergent sequence and limit is preserved i.e.,

$$
\lim _{n} A_{n}(x)=\lim _{n} x_{n}
$$

Definition 2.8 ([7]) A necessary and sufficient condition for matrix $A=\left(a_{n k}\right)$ is said to be regular if and only if
(i) $\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty$
(ii) $\lim _{n \rightarrow \infty} a_{n k}=0$
(iii) $\lim _{n \rightarrow \infty} \sum a_{n k}=1$.

Definition 2.9 An A-frame for an infinite non-negative regular matrix $\mathrm{A}=\left(a_{n k}\right)$ is an infinite sequence $\left\{A_{n}(\phi)\right\}$ such that for any $f \in L^{2}(R)$

$$
\begin{equation*}
C_{1}\|f\|^{2} \leq \sum_{n}\left|\left\langle f, A_{n}(\phi)\right\rangle\right|^{2} \leq C_{2}\|f\|^{2} \tag{2.4}
\end{equation*}
$$

where $A_{n}(\phi)=\sum a_{n k} \phi_{k}$ and $C_{1}, C_{2}>0$ are constants and are called bounds of the frame. The sequence $\phi=\left\{\phi_{k}\right\}$ is a sequence of vectors. The number $\beta_{n}=\left\langle f, A_{n}(\phi)\right\rangle$ are called A-moment sequence of $f \in L^{2}(R)$ relative to the frame.

3 Main Results

Theorem 3.1 If $\left\{A_{n}(\phi)\right\}$ is an exact A-frame in a Hilbert space H, then it is bounded in norm.

Proof. Assume $\left\{A_{n}(\phi)\right\}$ is an exact A-frame with $C_{1}, C_{2}>0$, then $\left\{A_{n}(\phi)\right\}$ and $\left\{S^{-1} A_{n}(\phi)\right\}$ are biorthogonal, so for fixed m, we have

$$
\begin{aligned}
C_{1}\left\|S^{-1} A_{m}(\phi)\right\|^{2} & \leq \sum_{n}\left|S^{-1} A_{m}(\phi), A_{n}(\phi)\right|^{2} \\
& =\left|\left\langle S^{-1} A_{m}(\phi), A_{m}(\phi)\right\rangle\right|^{2} \\
& =\left\|S^{-1} A_{m}(\phi)\right\|^{2}\left\|A_{m}(\phi)\right\|^{2}
\end{aligned}
$$

Then we have

$$
C_{1} \leq\left\|A_{m}(\phi)\right\|^{2}
$$

and

$$
\begin{aligned}
\left\|A_{m}(\phi)\right\|^{4} & =\left|\left\langle A_{m}(\phi), A_{m}(\phi)\right\rangle\right|^{2} \\
& \leq \sum_{n}\left|\left\langle A_{m}(\phi), A_{n}(\phi)\right\rangle\right|^{2} \leq C_{2}\left\|A_{m}(\phi)\right\|^{2}
\end{aligned}
$$

Thus we obtain

$$
\left\|A_{m}(\phi)\right\|^{2} \leq C_{2}
$$

Therefore, $\left\{A_{n}(\phi)\right\}$ is bounded in norm. This completes the proof.
Theorem 3.2 If $\left\{A_{n}(\phi)\right\}$ is A-frame and $\left\{c_{n}\right\}$ is a sequence of numbers such that $\left\{c_{n}\right\} \in \ell^{2}$, then $\sum_{n} c_{n} A_{n}(\phi)$ converges and

$$
\begin{equation*}
\left\|\sum_{n=1}^{\infty} c_{n} A_{n}(\phi)\right\|^{2} \leq C_{2} \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \tag{3.1}
\end{equation*}
$$

Proof. If we take

$$
f_{k}=\sum_{n=1}^{k} c_{n} A_{n}(\phi)
$$

then for any $k \geq j$, we have from Schwartz inequality and the frame condition (2.4),

$$
\begin{aligned}
\left\|f_{k}-f_{j}\right\|^{2} & =\sum_{n=j+1}^{k} c_{n}\left\langle A_{n}(\phi), f_{k}-f_{j}\right\rangle \\
& \leq\left\{\sum_{n=j+1}^{k}\left|c_{n}\right|^{2}\right\}^{\frac{1}{2}}\left\{c_{2}\left\|f_{k}-f_{j}\right\|^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

Hence,

$$
\left\|f_{k}-f_{j}\right\|^{2} \leq C_{2} \sum_{n=j+1}^{k}\left|c_{n}\right|^{2}
$$

This completes the proof.
Theorem 3.3 If $\left\{A_{n}(\phi)\right\}$ is A-frame and for any $f \in L^{2}(\mathbb{R})$. Then there exists a A-moment sequence $\left\{\beta_{n}\right\}$, such that

$$
\beta_{n}=\left\langle f, A_{n}(\phi)\right\rangle
$$

and

$$
\begin{equation*}
f=\sum_{n=1}^{\infty} \beta_{n} A_{n}(\phi) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}^{-1}\|f\|^{2} \leq \sum_{n=1}^{\infty}\left|\beta_{n}\right|^{2} \leq C_{1}^{-1}\|f\|^{2} \tag{3.3}
\end{equation*}
$$

If $\left\{b_{n}\right\}$ is any other sequence such that $f=\sum_{n=1}^{\infty} b_{n} A_{n}(\phi)$, then $\left\{b_{n}\right\}$ is not the A-moment sequence and

$$
\sum_{n=1}^{\infty}\left|b_{n}\right|^{2}=\sum_{n=1}^{\infty}\left|\beta_{n}\right|^{2}+\sum_{n=1}^{\infty}\left|b_{n}-\beta_{n}\right|^{2} .
$$

Proof. For any $f \in L^{2}(\mathbb{R})$. Let us define a linear transform S by the relation

$$
S f=\sum_{n=1}^{\infty}\left\langle f, A_{n}(\phi)\right\rangle A_{n}(\phi) .
$$

The transformation is self adjoint, and if we use (2.4), it follows that

$$
C_{1}\|f\|^{2} \leq\langle S f, f\rangle \leq C_{2}\|f\|^{2} .
$$

This shows that S is positive definite with positive upper and lower bounds. Hence S^{-1} exist as a self adjoint transformation and

$$
C_{2}^{\prime}\|f\|^{2} \leq\langle S f, f\rangle \leq C_{1}^{\prime}\|f\|^{2} .
$$

The proof of this theorem follows by using (3.1). This completes the proof.
Theorem 3.4 If $\left\{A_{n}(\phi)\right\}$ is an exact A-frame then $\left\{A_{n}(\phi)\right\}$, where $B_{n}(\phi)=$ $S^{-1} A_{n}(\phi)$ are biorthogonal. Any sequence of numbers $\left\{c_{n}\right\} \in \ell^{2}$ is a A-moment sequence of any function $f \in L^{2}(\mathbb{R})$ with respect to $\left\{A_{n}(\phi)\right\}$ and

$$
\begin{equation*}
C_{1} \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \leq\left\|\sum_{n=1}^{\infty} c_{n} A_{n}(\phi)\right\|^{2} \leq C_{2} \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} . \tag{3.4}
\end{equation*}
$$

Proof. If $\left\{A_{n}(\phi)\right\}$ is an exact A-frame then $\left\langle A_{m}(\phi), A_{n}(\phi)\right\rangle=\delta_{m, n}$ is true for all m and n, so $\left\{A_{n}(\phi)\right\}$ and $\left\{B_{n}(\phi)\right\}$ are biorthogonal. Given a sequence $\left\{c_{n}\right\} \in \ell^{2}$ and any $f \in L^{2}(\mathbb{R})$ such that $f=\sum c_{n} A_{n}(\phi)$ has a finite norm,then (3.4) follows from (3.3). This completes the proof.

References

[1] J. J. Benedettoo and D. F. Walnut, Gabor frames for L^{2} and related spaces in wavelets, CRC Press, Boca Raton, 1994.
[2] C. K. Chui and S. Xianliang, Bessel's sequences and affine frames, Appl.and Comp. Harm. Anal., 1(1993), 29-49.
[3] I. Daubchies, The wavelet transform time frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36(5),(1990), 961-1005.
[4] I. Daubchies, Ten lectures on wavelets, SIAM, Publications, Phildelphia, 1992.
[5] R. J. Duffin and A. C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366.
[6] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Review, 31(1989), 628-666.
[7] I. J. Maddox, Elements of Functional Analysis, Camb. Univ. Press, 1970.
[8] I. M. Singer, Bases in Banach Spaces I, Springer Verlag, New York, 1970.
[9] R. M. Young, An Introduction to non-harmonic Fourier series, Academic Press, New York, 1980.
(Received 12 June 2005)
N. A. Sheikh

Department of Mathematics
National Institute of Technology
Srinagar, Kashmir-190006, India.
e-mail : neyaznit@yahoo.co.in

