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Viscosity Approximation Methods
for Generalized Equilibrium Problems
and Fixed Point Problems of Finite Family
of Nonexpansive Mappings in Hilbert Spaces
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Abstract : In this paper, we introduce an iterative scheme by the viscosity ap-
proximation method for finding a common element of the set of solutions of the
equilibrium problem and the set of fixed points of a finite family of nonexpan-
sive mappings in a Hilbert space and we prove a strong convergence theorem in
a Hilbert space which connected with Kangtunyakarn and Suantai [A. Kangtun-
yakarn and S. Suantai, Hybrid iterative scheme for generalized equilibrium prob-
lems and fixed point problems of finite family of nonexpansive mappings, Nonlinear
Anal., 3 (2009), 296-309.] and Takahashi and Takahashi’s results [S. Takahashi
and W. Takahashi, Viscosity approximation methods for equilibrium problems and
fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506—
515]. Our results extend and improve some recent corresponding results in the
literature.
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1 Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex subset
of H and let Po be the projection of H onto C. A mapping T of H into itself is
called nonexpansive if

[Te =Tyl <[l —yll
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for all x,y € H. We denote by F(T) the set of fixed points of T. Goebel and Kirk
[7] showed that F(T) is always closed convex and nonempty provided T has a
bounded trajectory. Recall that a mapping A : C — H is called monotone if for
all z,y € C,

(x —y, Az — Ay) > 0.

The mapping A is called a-inverse-strongly monotone if there exists a positive
real number « such that

(x —y, Az — Ay) > af| Az — Ayl

for all z,y € C; see [4, 11, 14]. We know that if T : C' — C is nonexpansive, then
A=1-Tis %— inverse strongly monotone; see [15, 16, 17] for more details.

The classical variational inequality problem is to find a v € C such that
(Au,v —u) > 0 for all v € C. The set of solutions of variational inequality is
denoted by VI(C, A). The variational inequality has been extensively studied in
the literature; see [3, 5, 14].

Let F be a bifunction of C' x C into R, where R is the set of real numbers and
a nonlinear mapping A : C' — H. The equilibrium problem for F : C' x C' — R is
to find z € C such that

F(z,y)+ (Az,y —2) >0, YyeC. (1.1)
The set of such z € C' is denoted by EP i.e.,
EP={z€C:F(z,y)+ (Az,y—2) 20, VyeC}.

In the case of A = 0, EP is denoted by EP(F). In the case of F' = 0, EP is denoted

by VI(C, A). The problem (1.1) is very general in the sense that it includes, as

special cases, optimization problems, variational inequalities, minimax problems,

the Nash equilibrium problem in noncooperative games and others; see [2, 12].
For r > 0, let T, : H — C be defined by

TT(x)_{zéC’:F(z,y)—l—%(y—z,z—:z:}20, VyGC}. (1.2)

Combettes and Hirstoaga [6] showed that under some suitable conditions of
F, T, is single-valued and firmly nonexpansive and satisfies F'(T,) = EP(F).

Let {T;}¥, be a finite family of nonexpansive mappings of C' into itself with
ﬂfil F(T;) # (0. In 1999, Atsushiba and Takahashi [1] defined the mapping W, as
follows:

Un,l = /\n,lTl + (1 - )\n,l)Iv
Un2 = M2DoUni+ (1—Mp2),
Uns = MasT3Un2+ (1 —A\p3)1,
Uwn-1 = MnN—1Tn-1Unn_2+ (1= n-1)],

Wn = Un,N = An,NT’NUn,Nfl + (1 - An,N)I;
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where {)\,;}»¥ C [0,1]. This mapping is called the W-mapping generated by
T1,Ts,...,Tn and Ay 1, An 2, - - - Ap, . In 2000, Takahashi and Shimoji [18] proved
that if X is a strictly convex Banach space, then F(W,,) = ﬂfvzl F(T;), where
0<Api<li=1,2,...,N.

In 2007, Takahashi and Takahashi [19] introduced the following iterative scheme
by the viscosity approximation method in a real Hilbert space H. They defined
the iterative sequences {z,} and {u,} as follows: z1 € H and

{ F(tn,y) + =y — tn,un —2,) >0, VyeC,

Tn

Tnt+1 = Oénf(xn) + (1 - an)Tuna Vn €N, (13)

where f : H — H is a contraction mapping and {a,} C [0,1],{r,} C (0,0).
They proved under some suitable conditions on the sequences {w,}, {r,} and
bifunction F, that {z,} and {u,} converge strongly to z € F(T) N EP(F’), where
z = Prirynepr) f(2).

In 2008, Takahashi and Takahashi [20] introduced a hybrid iterative method
for finding a common element of EP and F(T'). They defined {z,} as follows:
u,x1 € C and

{ F(Znay)+<A$n7y_Zn>+ﬁ<y_znuzn_xn>207 VyECa

Tne1 = B+ (1= Bo)T{anu + (1 — an)zn), Vn €N, (14)

where {a,} € [0,1],{6,} C [0,1],{A\n} C [0, 2] and proved strong convergence of
the scheme (1.4) to z € ﬂf\;l F(T;) N EP, where z = Poy  p(1,)nppU-
In 2009, Kangtunyakarn and Suantai [10] defined the mappings S,, as follows:

Un,O = 1
Upp = ' TUno+ s Upo+ o' T
Unz = oy’ TolUna+ay?Uny + oI
Uns = 0/1113T3Un,2 + 0/21,3Un2 + ag’BI
Upn-1 = O/ll’NilTNflUnyNi2 + ag’NilUn,N,Q I Oég’N71]
Sn = Un,N = O‘;l)NTNUn,N—l + Oég’NUmN_l -+ ag’NI

where a7, a3 ay? € [0,1] with i’ +ab7 +a}? = 1. The mapping S,, is called
the S-mapping generated by 11,15, ..., Ty and ozgn), aén), s ag\’;).

If ag’j =0,7=1,2,...,N—1, then the mapping S reduces to the W-mapping
defined by Atsushiba and Takahashi [1] and if ag’j =0,7=1,2,..., N, then the
mapping S reduces to the K-mapping defined by Kangtunyakarn and Suantai [9].

In this paper, we introduce the iterative scheme as follows. For given z; € C|
let {z,} and {x,} C C be sequences generated by

{ F(Zn7y>+<AIn7y_Zn>+%<y_znazn_$n>207 VyGC,

Tnt1 = O f(Tn) + Bntn + (1 — ap — Bn)Snzn, VneN, (1.5)
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where {a,}, {fn} C [0,1] and {A\,} C [0,2q]. Using the viscosity approximation
method we will find a common element of the set of solutions of the equilibrium
problem and the set of fixed points of a finite family of nonexpansive mappings
in a Hilbert space. Then, we shall prove a strong convergence theorem which is
connected with Kangtunyakarn and Suantai [10] and Takahashi and Takahashi’s
results [19].

2 Preliminaries

Let C be a nonempty closed convex subset of H. Then, for any = € H, there
exists a unique nearest point in C, denoted by Pc(x), such that

|z — Po(z)|| < llz—yll, vyeC.
Such a Pg is called the metric projection of H onto C.

Lemma 2.1. [15] Letx € H and z € C. Then Pox = z if and only if (x — 2,2 —y) > 0
for ally € C.

Lemma 2.2. [21] Let {an} C [0,00),{bn} C [0,00) and {cn,} C [0,1) be sequences
of real numbers such that

ant1 < (1—cp)an +b, forallneN,
ch =00 and an < 0.
n=1 n=1
Then lim,,_, o a, = 0.
For solving the equilibrium problem for a bifunction F' : C' x C — R, let us
assume that F satisfies the following conditions:
(A1) F(z,z) =0 for all x € C;

(A2) F is monotone, i.e., F(z,y) + F(y,x) <0 for all z,y € C;
(A3) for each z,y,z € C, }ir% F(tz+ (1 —t)x,y) < F(x,y);
A4)

(A4) for each z € C, y — F(x,y) is convex and lower semicontinuous.

Lemma 2.3. [2] Let C be a nonempty closed convex subset of H and let F' be a
bifunction of C x C into R satisfying (A1)-(A4). Let r > 0 and x € H. Then,
there ezists z € C such that
1
F(z,y)+—<y—z,z—x>20, Vyec
r

Lemma 2.4. [6] Assume that F: C x C — R satisfies (A1)-(A4). Forr >0 and
x € H, define a mapping T, : H — C' as follows:

1
T (z) = {zeC:F(z,y)—i—;(y—z,z—:v) >0, VyEC}
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for all x € H. Then, the following hold:
(1) T is single-valued;
(2) T; is firmly nonexpansive, i.e., for any x,y € H,

I T (z) = To()|I* < (To(x) = To(y), = — y);
(3) F(T) = EP(F);
(4) EP(F) is closed and convet.

Definition 2.5. Let C be a nonempty convexr subset of a real Banach space. Let
{T;}N., be a finite family of nonexpansive mappmgs of C' into ztself For each j =
1,2,...,N, let aj = (o, 0k, ad), where o, ad), od, € [0,1] and of + o + af = 1.
Kangtunyakam and Suantai [10] defined the mapping S : C — C as follows:

U = I
Uy alT Uy + asUy + a3

Uy = oiTolUy +a3Us + a3l
U3 = Oti’TgUQ—FagUQ—FagI
Uv-1 = of "Tn1Un-o+a) "Un_o+ay T
S=Un = Q{VTNUNfl + OéévUN—l + ag NT.

This mapping is called S-mapping generated by T1,...,Tn and ay, s, ..., aN.

Lemma 2.6. [10] Let C be a nonempty closed convex subset of a strictly convex
Banach space Let {T;} Y., be a finite family of nonexpansive mappings of C into
itself with ﬂl L F(T, ) #+ @ and let ozj = (ozjl,oeé,ag) j = 1,2,3,..., N, where
od a0l € 00,1, o) + o + o = 1,a] € (0,1) for all j = 1,2,...,N 1, oV €
(0,1], 042,043; € [0,1) for all j = 1,2,...,N. Let S be the S-mapping generated by
Ti,....,Tn and ay,as, ...,an. Then F(S):ﬂfvle(Tl)

Lemma 2.7. [10] Let C be a nonempty closed convex subset of Banach space. Let
{T;}Y| be a finite family of nonexpansive mappings of C' into itself and for each
neNandje{1,2,...,N}, let a§") = (0/1” 0/2” ag’j), aj = (ozjl,a%,ag) where
a?’j,ag’j,ag’j € [0, 1),a], 0,0 € [0,1], a7 +ay 407 =1 and o + o + o = 1.
Suppose ) — al asn — oo fori =1,2,3 and j =1,2,3,...,N. Let S and S,, be
the S-mappings generated by Ty, To, ..., Tn and oy, a,...,an and Ty, T, ..., TN

and 041"), aén), e ,ag\?), respectively. Then lim,_, ||Spz — Sz| =0 for all x € C.

3 Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H andlet F: C x C — R be a bifunction satisfying conditions (A1)-(A4). Let A
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be an a-inverse strongly monotone mapping of C into H and let {T;}¥. be a finite
family of nonexpansive mappings of C into itself with NN F(T;) N EP # (. For
j=1,2,...,N, let a;n) = (a;” 72” ay’ ) be such that 0/1” 0/2”, Ozgj € [O 1],
a?’j—kag’j—kag’j =1, {o/fj}jz1 - [771,91] with 0 < m < 6; < 1, {af" M e
(v, 1] with 0 < ny < 1 and {af? s N {ald N, C [0,05] with 0 < 63 < 1.
Let f be a contraction of H into itself and let S be the S-mappings generated
by T1,Ts,..., T and a(") ozg"),.. (n). Let 1 € C and {zp}, {xn} C C be
sequences genemted by

F(Zn7y>+<A$nay_Zn>+ﬁ<y_znvzn_xn>207 VyEO,
Tnt+1 = anf(xn) + ﬁnmn + (1 - Qp — 671)5712717 vn € N,

where {an}, {Bn} C [0,1] and {A\,} C [0,2¢] satisfy the following conditions:
NH0<a<A<b<2a 0<c<pB,<d<];

(if) limp— 00 an =0,> 0" =00, and Yo" |api1 — o] < 00;

(iii) limyp oo 11 =1

(iv) [a} T =] — 0 and |ah T —a ’j| — 0asn — oo, forallj € {1,2,3,...,N}.
Then {z,} converges strongly to z € NN, F(T;)NEP, where z = Py perynepf(2)-

(3.1)

Proof. Let QQ = Py pr,)nep- Note that f is a contraction with coefficient k €
[0,1). Then

1Qf () — QW < [If (=) = FW)I < allz =yl

for all x,y € H. Thus Qf is a contraction of H into itself. Since H is complete,
there exists a unique element z € H such that z = Qf(z). Such a z € H is an
element of C.
Next, we show that (I — A, A) is nonexpansive. Let z,y € C. Since A is
a-inverse strongly monotone and A, < 2« for all n € N, we obtain
I = X A)z — (I = X A)yl* = [l — y — Au(Az — Ay)||?
= [l =yl = 2A\u(x — y, Az — Ay) + A} || Az — Ay]|?
< o = yl* = 200, || Az — Ay|]* + A7 || Az — Ay]|?
=z =yl + A (An — 20)]| Az — Ay]|?
< llz —yl
Therefore ||(I — X\, A)z — (I — A\ A)y|* < ||z —yl|? for all z,y € C. Thus (I — X, A)
is nonexpansive. Since

1
F(Znuy)+<Axn7y_zn>+/\_<y_znuzn_xn>207 VyECa
we obtain

F(zn,y) + %(y — zZny2n — (I = A\yA)x,) >0, VyeC.
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By Lemma 2.4, we have z, = T\, (2, — A\, Azy,) for all n € N.

Let z € NY,F(T;) N EP. Then F(z,y) + (y — z,Az) > 0 for all y € C. So
F(z,y)+ %ﬂ(y — 2,2 — 2+ MAz) > 0 for all y € C. Again by Lemma 2.4, we
obtain z = Ty, (z — A\, Az). Since I — A\, A and T}, are nonexpansive, we have

ll2n — Z||2 = |Tx, (zn — MpAzn) — Tx, (2 — )‘nAZ)||2

< Jln — 2[I?
and hence ||z, — z|| < ||z — z||. This implies that

[Znt1 = 2l| = lan(f(@n) = 2) + Bulzn — 2) + (1 — an — Bn)(Snzn — 2|
< an|[f(zn) = 2| + Bullen — 2 + (1 = an = Ba) |20 — 2|
< ankllen — 2| + anllf(2) = 2l + (1 = an)l|lzn — 2] (3.2)

Putting K = max{||z1 — z||, 725 [ f(2) — z[|}. By (3.2), we can show by induction
that ||z, — z|| < K for all n € N. This implies that {z,} is bounded. Hence
{Ax,},{Snzn}, {f(xn)} are also bounded.

Next, we shall show that lim,, o ||€n+1 — 2n|| = 0. Putting u,, = x,, — Ay A,
Then, we have 2,41 = T, (Tny1 = Any1ATnq1) = T, Uny1, and z, = Ty, (2, —
AnAxy,) = Ty, uyp. Thus

lzn+1 — znll = ||T>\n+1un+1 — Ty, un|
< ||T)\n+1un+1 - T>\n+1u7l|| + ||T>\n+1uﬂ - T)\nun”
< unt1 — unl + ||T>\n+1un =T, unl|- (3.3)

Since I — A\, 11 A is nonexpansive, we obtain

||un+l - un” = ||xn+l - )\n—i-lA:En-i-l — Tp + )\nA:EnH
=[[(I = A1 A)rpp1 — (I = A1 A)zn + (An — A1) Az ||
< zng1 — @ + A — Ans1|Azn |- (3.4)

By Lemma 2.4, we obtain

1
F(Tknunay) + )\_<y - T)\nunyT)\nun - un> > 0, Vy eC

.

and

1
F(TAn+1un7 y) + ) <y - T>\n+1unv T>\n+1un - un> >0, Vy eC.

n+1

In particular, we have

1
— (Tt — T, n, T, Un — ) >0 (3.5)

F(T)\nun7 T>\n+1u77f) + )\
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and

F(T)\n+1un, Ty, upn) + (T, un, — T)\n+1un, T>\n+1 — un> > 0. (3.6)

>\n+1

Summing up (3.5) and (3.6) and using (A2), we obtain

1 1
(T, un — T,y Un, Tn, oy Un — Un) + — (T — T, Un, T, Up — tup) >0,

n+1 )\n

n+1

for all y € C. It follows that

ZA — Uy I\ Uy — U
T +1 An Un mn
< ApUn — {Z>‘n+1 -

/\n+1 - >\n

This implies

An
0 S <T)\n+1un - T)\nunv T)\nun — Unp — (T)\n+1 - un)>
)\n—i-l

An
<T>\n+1 TAnunv TAnun T)\n+1 <1 - ) ) (TAn+1 - un)> .
n+1

It follows that
An
Tt = Thtnl? < [1 = 52 1Tt = Tl ]+ )

Hence, we obtain

An

Ty
” )‘n+1

L (3.7)

n+1

— Ty, un||* < }1 -

where L = sup{||un|| + | Tx, ., unll : » € N}. By (3.3), (3.4) and (3.7), we obtain

lzn+1 — 2l < lunt1 — unll + ||T>\n+1un — T, unl|
A

S|$n+1_$n+b‘1_ -

)\n-i-l

An
Az, || + (1 —
|| } )‘n+1

L (3.8)

Next, we show that

lim ||Sp4+12n — Snznl = 0.

n—oo
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For k € {2,3,..., N}, we have

||Un+1,kzn - Un,kzn” - ||a711+1,kaUn+l,k71Zn + ag’Jrl’kUnJrl,kflzn + OéngLkzn

- a?’kaUn,kflzn - agﬁkUn,kflzn - Oég’anH
= |4 (T Ui k120 — ThUn j12n) + (@75 — oPFYTLU,, 212,
+ (agﬂrl’k - a?’k)zn + 04721+1’k(Un+1,k712n — Un,k—1%n)

+ (O‘gﬂ’k - agﬁk)Un,kflzn”

< oMUt 120 = Unpmrzall + 1030 — o M| TUn 1 20|
+ o™ — ol [zl + ab T U1 k—120 — Unp—12a
+ |0‘721+Lk - O‘g’kmUn,kflan
= (o + 0 U1 k120 — Un o1 20|
+ 1 — a1 T U, ko1 20| + |0 T = a1z
+ |0‘721+Lk - O‘g’kmUn,kflan
< NUns1k-12n — Unh12nll + |8 — @ ¥ T Un g1 20|
Fla§ T = a2zl + (0} — o} )

+ (a5 — ag T Un 120

<NUns1p-12n — Un 12|l + [T — o7 F|| TeUn k120 |
+ oy T — | l[zn]| + laf " = o || Un g1 zall
oy = ag T | Un oz

= |Uns1,k-12n — Unp—12n]| + |Oz7f+1’k — a’f’k|(||TkUn7k_1zn||
+ | Unk—12nll) + lag T = o |([2nll + [ Un 120 ).

(3.9)
By (3.9), we obtain that for each n € N,

||Sn+1zn - Snzn” - ||Un+1,NZn - Un,NZnH

N
< NUng1,120 = Unpzall + Y 1e7 ™ — a7 (| T5Un j 12
j=2

N
+ | Ung—1zall) + D las*™ = a5 |(zall + | Un,j-12all)
=2
N . .
= ot — Y| T zn — 20| + Z ot — o (| T U1 20|
j=2

N
1 Ungerzall) + 3 las ™ — a7 (|20l + [Unjor2all).
Jj=2
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This together with condition (iv), we obtain

lim ||Sp4+12n — Snznll = 0. (3.10)
Next, we show that
lim ||zn41 — zn] = 0.

By (3.1), we obtain

||xn+l - xn” = ||O‘nf($n) + Bn®n + (1 — ap = Bn)Snzn — an—lf(xn—l) — Bn—1%n—1

— (I = ap—1 = Bn-1)Sn—12n-1]

= ”an (f(zn) - f(znfl)) + 671(5571 - znfl) + (1 — Qp — ﬁn)
(Snzn - nflznfl) + (an - O‘nfl)f(znfl) + (O‘nfl — o+ Bp_1 — 671)
Sp—12n-1~+ (Bn — Bn—1)Tn—1||

< apl|f(@n) = f@n—0)|| + Ballzn — Tn—all + 1 — an — Bl
||Snzn - Snflznfln + |0‘n - an71|||f($nfl)|| + |an71 — o+ Bp_1 — 6n|
[1Sn—12n-1ll + 1Bn = Bu-1lllzn—1]

< (O‘nk + ﬁn)”xn - fEn—1|| + |1 — Qn — ﬁnms’nzn - Sn—lzn—ln
+ |an — an—1|K + |tn—1 — an + Bn—1 — Bn| K
+18n = Br-1lllTn-1l], (3.11)

where K = sup{||f(zn)|| + ||Snznll,» € N}. By (3.11) and since
||Snzn - Snflznfln S ||Zn71 - Zn” + ||Snzn71 - Snflznfln
and (3.8), (3.10), Lemma 2.2, conditions (ii) and (iii), we obtain

Znt1 — znll < (ank + Bo)llen — 21l + 1 — an — Bul(|Tn-1 — 20 ||

+b|1 — ||| Az, || + ‘1 — "L+ ||Suzn-1— Sn—12n-1l)
>\n+1 /\n+1
+ |an - an—1|K + |an—1 — Qp + 671—1 - ﬁn|K + |ﬁn - ﬁn—l|||xn—l||
An
= (1 —an(l=k))zn-1 —znll + (1 — an — Balb }1 =5 | 1Azl
n+1
An
+ |1 — Qp — ﬁn| 1- L L+ |1 — Qp — 6n|||snzn—l - Sn—lzn—IH
n+

+ |05n - an71|K + |04n71 — Qp + 677,71 - 6n|K + |6n - 6n71|||xn71||)
It follows that

lim ||2n41 — zn] = 0. (3.12)
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Next, we shall show that

lim ||Spzn — x| = 0.
By (3.1), we obtain
||Snzn - zn” - ||Snzn - Snflznfl + Snflznfl - anflf(znfl)

— Bn-1%n—1 — Sn-12n—1+ 18- 1Zn—1 + Bn-1Sn—12n-1||
= ||Snzn — Sn—12n—1 + @n—1(Sn—12n—1 — f(Tn_1))
+ Bn-1(Sn-12n-1 — Tn_1)||
< ||Sn2n - Sn—lzn—ln + an—1||Sn—12n—1 - f(xn—l)H
+ Bn-1llSn-12n-1 — Tn_1|
By (3.10), we obtain

lim ||Spzn — x| = 0. (3.13)
Next, we want to show
lim ||z, — z,] = 0.

By monotonicity of A and nonexpansiveness of Ty _, we obtain

241 — Z||2 = llanf(@n) + Bntn + (1 — an — Bn)Snzn — Z||2

< anl|f(2n) — Z||2 + Bullzn — Z||2 + (1= an — Bu)llSnzn — 2”2

< ank®||lzn — 2| + anll f(2) = 2)1* + Bullzn — 2|2
+ (1= = Bn)llzn — 2”2

< O‘nk2||xn - 2”2 + anllf(2) — 2”2 + Bullzn — Z||2
+ (1 —an = Bu)ll(zn — AnAzn) — (2 — AHAZ)HQ

= O‘nk2||xn - 2”2 + anllf(2) - 2”2 + Bullzn — Z||2
+ (1 —an = Bu)ll(zn — 2) — An(Azy — AZ)”2

= O‘nk2||xn - 2”2 + anllf(2) — 2”2 + Bullzn — Z||2 + (1 —an— )
(||lzn — 2||* = 2Mn (@ — 2, Azyy — AZ) + N2 || Az, — Az||?)

< ank®||lzn — 2|* + anll f(2) = 2)1* + Ballen — 2)|* + (1 — an — Bn)
(lzn = 201> = 2\nall Azy — Az||* + A2 || Az, — A2||?)

= k2 — 2| + (=) = 212 + Bullzn — 2l + (1~ an — )
(lzn = 2017 + A (An = 20)|| Ay — Az]?)

= ank?||zn — 2|* + an| f(2) = 2° + (1 = an) |25 — 22
+ (1 = an — Ba) (A — 20) || Az, — Az|)?

< ank?|lzn — 2|1 + anll f(2) = 2l* + [|lzn — 2|

+ (1 = an = B) A (An — 20) || Az, — Az|% (3.14)
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By (3.14), we obtain

(1= an = Bu)Aa(20 = M)Az, — Azl < @k — 212 + aull £(2) — 2]

+llzn = 21 = et — 2%
Since0<a< A, <b<2aand 0<c¢<, <d<1, we obtain
(1= o — Bu)a(20 — M) Attn — A2|? < (1= — Bu) (20— Aw) [ Ay — Az
Thus

(1 = ap — Bn)a2a — M\ || Az, — Az||? < ank®||zn — 2% 4+ anl|f(2) — 2|2
+ lzn — 2l = [[2ng1 — 2|7
< ank?|lan — 2)* + anl| f(2) — 2]

+ llzns1 = zall(lzn — 21+ [z — 21).

This implies, by (3.12) and condition (i), that
lim ||Az, — Az|| = 0. (3.15)

Since T}, is a firmly nonexpansive, we obtain

Iz — z||2 =T, (xn — MpAxy) — T, (2 — /\nAz)H2
(T, — MAzxy) — (2 — MpA2Z), 20 — 2)

IN

1
5(”(5571 — A Azn) — (2 — )‘nAZ)Hz + Iz — Z||2 — (0 — AnAzn)

(2 = Md2) — (20— 2)IP)

1

2
1

= 5z = 21 + llzn = 21 = 0 = 20ll? + 200 (20 — 20, g — A2)
X2 Aw, — Az]).

IN

(2 = 21 + l120 = 212 = [ @ = 20) = Aa(Az — A2)]%)

It follows that
l2n = 201* < 2w — 207 = llzn — zall* + 22X |20 — 20 ||| Az, — Az (3.16)
Since

lns1 = 2] < ank?|an — 2| + anll £ (2) = 2[I* + Bullzn — 2]

+ (1= an = Ba)llzn — 2|
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and by (3.16), we obtain
[@nt1 = 2I” < ank®|lzn — 2)1* + anll f(2) = 2)1* + Ballzn — 2|2
+ (1= an—Bn)(lzn — Z||2 — [|zn — Zn||2 + 2\ | — 2n||[|Azn — Az]])
< ank?l|lzn = 2)* + anll f(2) = 2)7 + llan — 21> = (1 = Bo) |20 — 2n?
+ apl|zn — ZnHz + 2 |20 — zn||[| Az, — Az
= an(k?[lzn — 21> + £ (2) = 211> + llzn — 2all®) + [0 — 2|2
— (1= Bu)llzn — Zn||2 + 2\ |lzn — 20 ||| Az, — Az
This implies
(1= Bu)llzn = 2ul® < 20 — 211 = @01 — 2I° + an (K|l an — 2|
+1£(2) = 212 + ll2n — 2all®) + 2Anllzn — 20| Azn — Az||
and by condition (i), we obtain
(1= d)|en = 20l* < N2ns1 — zall(l2n = 2] + 2011 = 2]) + @n (kK]0 — 2|2
+1f(2) = 21 + llen — 2nl1?) + 2Xnllzn — zall| A2y — Az]].
Thus
lim ||, — z,] = 0. (3.17)
From (3.13) and (3.17), we obtain
||Sn2n - Zn” = ||Snzn —Tn +Tpn — Zn”
< ||Snzn — Tnl| + ||Xn — 2n|| — 0 as n — oc. (3.18)
We shall show that

lim sup(f(20) — 20, 2n — 20) <0,

n—oo
where 20 = Ph~  p(1)nEP f(20). To show this inequality, we choose a subsequence
{zn, } of {zn} such that

lim sup(f(z0) — 20, 2n — 20) = limsup(f(z0) — 20, 2n, — 20)-

n—00 k—oo
Without loss of generality, we may assume that z,, — w as k — oo where w € C.
We first show w € EP. Since z,, = Ty, (v, — \nAx,), we obtain

1
F(Znay)+<A:En7y_zn>+)\_<y_znvzn_$n>207 VyEC

From (A2), we have

<Axn7y - Zn> + N
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Thus
1
A

Putting z; = ty + (1 — t)w for all ¢ € (0,1] and y € C. Then, we have z; € C. So,
from (3.19), we obtain

(AZp, Y — 2n,) + (Y= 2Znys Zny — Tny,) = F(y, 2n,,), Yy e C. (3.19)

z — X
<Zt - an,AZt> Z <Zt - an;AZt> - <Zt - anaAInk> - <Zt - an; u> +F(Zt,2nk)

Ang
= (2t — zn,, Azt — Azp, ) + (2t — 2n,, Az, — Azp,)
Zny — Ty,

Any,

Since ||zn, — Tn,|| — 0 as k — oo, we obtain ||Az,, — Azp, || — 0 as k — oo.
Further, from the monotonicity of A, we have (z; — z,,, , Azs — Az, ) > 0. So, from
(A4), we obtain

> + F(Zt72nk)'

— (2t — Zny,

(2t —w, Azt) > F(z¢,w). (3.20)
From (A1), (A4) and (3.20), we also have

0=F(zt,2t) <tF(z,y) + (1 =) F(z,w)
<tF(ze,y) + (1 — t) (2t — w, Azt)
=tF(z,y) + (1 = t)t{y — w, Az;)

and hence
0< Flzt,y)+ (1 —t){y —w, Az)
Letting t — 0, we obtain
0 < F(w,y) + (y —w, Aw), Vy e C.
Therefore w € EP. Next, we show that w € NY_, F(T;). We assume that
o™ ol e(0,1) and oM - aN € (0,1] as k— oo

forj:1,2,...,N—1andagk’jﬂage [0,1) as k — oo for j =1,2,..., N.
Let S, be the S-mappings generated by T1,T5,...,Tn and (1, 52,. .., Bn, where
B = (o, 0, 0f) for j =1,2,...,N. By Lemma 2.7, we have

klim |Sn,x — Sz|| =0, VzeC. (3.21)

By Lemma 2.6, we have N;_, F(T;) = F(S). Assume that Sw # w. By using the
Opial property and (3.18) and (3.21), we obtain

liminf ||z,, — w| < liminf |z, —Sw||
k—o0 k—o0

< liminf ||z, — w||
k—oo
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which is a contradiction. Thus Sw = w and w € F(S) = N¥_; F(T;). Therefore
we NN, F(T;) N EP. Since z,, — w and w € N, F(T;) N EP
we obtain

limsup(f(20) — 20, 2n — 20) = limsup(f(z0) — 20, 2n, — 20)

n—oo k—oo

= (f(20) = 20,w — 20) < 0. (3.22)

From Tn+1 — 20 = O‘n(f(xn) - ZO) + ﬁn(xn - ZO) + (1 — Qp — ﬁn)(snzn - 20)7
we obtain

(1= an = B2)?(1Sn2n = 20l* > [[2n41 = 20]|* = 20 (f (¥n) = 20, 41 — 20)

= Ballzn — ZO||2-

So we have
st — 20ll° < (1= @ — B)?l2n — 2011 + Buallm — 2011
+ 20, (f(xn) — 20, Tnt1 — 20)
< (1 —an — Bn)?llzn — 20l* + Bullzn — 20|
+ 200 (f(7n) — f(20); Tna1 — 20) + 200 (f(20) — 20, Tny1 — 20)
S (1 — Qp — 6n)2||xn - 20”2 + 6n||xn - ZO”
+ 20, (f(2n) — f(20), Tnt1 — 20) + 2an(f(20) — 20, Tny1 — 20)
<(I—ay— n) lzn — 20”2 + Bnllvn — ZO||2
+ 2ank”$n - 20||||:1:n+1 - ZOH + 20‘n<f(20) — 20, Tp4+1 — ZO>
< (1= an = Ba)? + B ln = 20012 + ank(llzn = 20/ + 2n+1 = 2012
+ 200 (f(20) — 20, Tny1 — 20)-
So

(1= ank)2ns1 = 20ll* < (1 = an = B)? + B + k) [z = 20l
+ 20&n<f(2’0) — 20, Tp+1 — Zo>.

Thus
[@ns1 — 20l* < (1o _fj)(z:];ﬁ" ok |2 — 20]|* + : an?nkﬁ(zo) — 20, Tn+1 = 20)
e i T
T Ea;nkﬁ(zo) — 20, Tn41 — 20)
< (1- B My e

2(1 - k)an OZnM 1
* 1—ank (2(1 — k) + 1— k<f(20) — 20, Tn+1 — Zo>),
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where M = sup{|z,, — 20||* : n € N}. Put 3, %%Z" Then Y )7, B, =
and lim, o B, = 0. Let € > 0. From (3.22), there exists m € N such that
o, M € 1 €
— < = d — — el — < Z
20— k) — 2 an 1_ k<f(20) 20, Tn41 — 20) < D)

for all n > m. Then

lzns1 = 20ll* < (1= Bn)llwn — 20l1* + (1 = (1 = Bn))e.

Similarly, we have

m+n—1 m+n—1
Jomin = 20l2 < [T (0= Bollam =zl + (1= JT (1= 40)e
k=m k=m

From Y72, Bk = oo, we have [[,—, (1 — ) = 0. Therefore

limsup ||z, — 20% = hmsup |Zmin — 20]* < e

n—oo

Since € > 0 is arbitrary, we obtain

limsup ||z, — 0% < 0.
n—oo
Thus {,,} converges strongly to 29 € NY, F(T;) N EP, where
Z0 = ngVle(Ti nepf(20). L]

Using our main theorem (Theorem 3.1), we obtain strong convergence in a
Hilbert space.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H
and let F : CxC — R be a bifunction satisfying conditions (A1)-(A4). Let {T;}Y,
be a finite family of nonexpansive mappings of C into itself with NY_, F(T;,)NEP #
0. Forj =1,2,...,N, let a(") = (a’f’j ay? ay?) be such that o7, aly? oy’ €
[0,1], &7 4 a7 + a’” =1, {aP 3 C [, O] with0 < my < 61 <1, {a"V} C
N, 1] wzth 0<ny <1 and {a? jvl,{ag’] Ny C [0,03] with 0 < 63 < 1.
Let f be a contraction of H into itself and let S, be the S-mappings generated
by Th,Ts,....,Tn and o ) ag"),.. (n) Let ©1 € C and {z,},{xn} C C be
sequences generated by

F(Znay)+ﬁ<y_znazn_$n>207 Vyeca
Tn+l = Oénf(xn) + 5n$n + (1 — Qp — 671)‘971277.7 Vn € N,

where {an}, {Bn} C [0,1] and {A\,} C (0,00) satisfy the following conditions:
H0<a<A <b<oo, 0<c<G,<d<I;

(i) limp,— 00 an =0,> 0 =00, and Yo" |api1 — o] < 00;

(iil) limg,— 00 )\ = 1;

n+l,j n+l,j

(iv) | o = 0 and |a} ’j|—>Oasn—>oo,f07“allj€{1,2,3,...,N}.
Then {x,} converges strongly to z € NN, F(T;) N EP(F), where
z= ngvle(Ti)mEP F)f( z).
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Proof. In Theorem 3.1, put A = 0. Then, for all a € (0,0), we have
(v —y, Az — Ay) > af| Az — Ayl®

for all z,y € C. So, taking a,b € (0,00) with 0 < a < b < oo and choosing
a sequence {A,} of real numbers with a < A, < b, we obtain the result from
Theorem 3.1. O

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H
and let A be an a-inverse strongly monotone mapping of C into H and let {T;} N,
be a finite family of monexpansive mappings of C into itself with NN F(T;) N
VI(C, A) £ (Z) For j = 1,2,....N, let ag.”) = (a?’],aZ’J,ag’J) be such that
at? ay? ag? €10,1], o) + ay? +az? =1, {af? ;V:_ll C [m,01] with 0 < ny <

0, <1, {7}y € [nw, 1] with 0 < nn < 1 and {37 3N, {ab?}Y., < [0,65] with

j=0 j=
0 <03 < 1. Let f be a contraction of H into itself and let S,, be the S-mappings
generated by Ty, Ts, ..., Tn and ozgn),ozg"), ce ozg(;). Let x1 € C and {x,} C C be

sequences generated by
Tn41 = Olnf(xn) + ﬁnxn + (1 — Qp — 6n)SnPC(:En - )\nAfEn)v VYn € N,

where {an}, {Bn} C [0,1] and {\,} C [0,2q] satisfy the following conditions:
()0<a<A, <b<2a 0<c<pB,<d<];
(ii) limp oo @y, = 0,00 vy = 00, and Yoo i1 — | < 00;

(i) Ty ooy = 15
(iv) o™ =] — 0 and |as T —a?| — 0 asn — oo, forallj € {1,2,3,...,N}.

Then {x,} converges strongly to = € NN F(T;) N VI(C, A), where
z =Py perynvie,af(2)-
Proof. In Theorem 3.1, put F' = 0. Then, we obtain

1
<A117my—2’n>+)\_<y—2n,2’n—117n>207 VyEO, Vn € N.

This implies that
(Y — 2n, T — ApAxy — 2,) <0, VyeC.

So, we obtain Po(z — A\, Az, ) = 2, for all n € N. Then, we obtain the result from
Theorem 3.1. [l

A mapping G : C — C is called strictly pseudocontractive if there exists g
with 0 < g < 1 such that

Gz = Gyl* < llz = ylI* + gl (I = G)z — (I = G)yl?, Va,yeC.

Such a mapping G is called strictly g-pseudocontractive. Putting A = I — G, we
know that

@~y Az — Ag) > 2 Ax — gl Vay € O

see [8]. So, we have the following corollary.
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Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H and let F : C x C — R be a bifunction satisfying conditions (A1)-(A4). Let
G be a strictly g-pseudocontractive mapping of C into itself and let {T;}Y., be a
finite family of nonexpansive mappings of C into itself with "X, F(T;) N EP # 0,
where A = I — G. For j = 1,2,...,N, let 045-") = (a?’j,ag’j,ag’j) be such that
a?dv agJ7 agJ € [07 1]7 0/11J + agJ + agJ = 15 {0/11J }j\[:zl C [7715 91] with 0 < m <
01 < 1, {a""} C [nv,1] with 0 < ny < 1 and {o37 ) {ag 7}, C (0,05
with 0 < 03 < 1. Let f be a contraction of H into itself and let S, be the S-
mappings generated by T1,Ts,...,Tn and aln),aén), . .,ag\?). Let x1 € C and
{zn},{zn} C C be sequences generated by

F(Znuy) + <(I - G)xnuy - Zn> + ,\%<y — ZnyRn — :En> 2 07 Vy S Ca
Tn+l = Oénf(xn) + 6715[:71 + (1 — Qp — ﬁn)snzna Vn € N,

where {an}, {Bn} C [0,1] and {A\,} C [0,1 — g] satisfy the following conditions:

(H0<a<A, <b<l—-g, 0<ec<B,<d<1;

(ii) limp oo an = 0,> 07 oy = 00, and Yoo, |apy1 — ap| < 00;

(i) lim oo 322 = 1

(iv) o}t =] — 0 and |ag T —a?| — 0 asn — oo, forallj € {1,2,3,...,N}.

Then {z,} converges strongly to z € NN, F(T;)NEP, where z = Py perynepf(2)-
1-g

Proof. A strictly g-pseudocontractive mapping is —5Z-inverse-strongly monotone.

So, from Theorem 3.1, we obtain the desired result. O
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