Thai Journal of Mathematics Volume 8 (2010) Number 3 : 575–579

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

On Self-graphoidal Graphs

K. R. Singh and P. K. Das

Abstract: A graph H is called a graphoidal graph if there exists a graph G and a graphoidal cover ψ of G such that $H \cong \Omega(G, \psi)$. A graph G is self-graphoidal if $G \cong \Omega(G, \psi)$ for some graphoidal cover ψ of G. In this paper we study self-graphoidal graph for different families of graphs.

Keywords : Graphoidal cover; Graphoidal covering number; Graphoidal graph; Self-graphoidal graph.

2000 Mathematics Subject Classification : 05C75.

1 Introduction

A graph is a pair G = (V, E), where V is the set of vertices and E is the set of edges. Here, we consider only finite undirected graph with neither loops nor multiple edges. Also all graphs are connected and nontrivial. The order and size of G are denoted by p and q respectively. The concept of graphoidal cover was introduced by Acharya and Sampathkumar [1]. The reader may refer [3] for the terms not defined here.

Definition 1.1. A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions:

- (i) Every path in ψ has at least two vertices.
- (ii) Every vertex of G is an internal vertex of at most one path in ψ .
- (iii) Every edge of G is in exactly one path in ψ .

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$ or η .

Copyright \bigodot 2010 by the Mathematical Association of Thailand. All rights reserved.

Definition 1.2. If $\mathcal{F} = \{S_1, S_2, S_3, \dots, S_n\}$ be a family of distinct nonempty subsets of a set S whose union is S then the intersection graph of \mathcal{F} , denoted by $\Omega(\mathcal{F})$, is the graph whose vertex - and edge - sets are given by

$$V_{\Omega(\mathcal{F})} = \{S_1, S_2, S_3, \dots, S_n\}$$

and
$$E_{\Omega(\mathcal{F})} = \{S_i S_j : i \neq j \text{ and } S_i \cap S_j \neq \emptyset\}.$$

For a graph G and $\psi \in \mathcal{G}_G$ (the set of all graphoidal covers of G), the intersection graph on ψ is denoted by $\Omega(G, \psi)$.

Definition 1.3. A graph H is called a graphoidal graph if there exists a graph G and $\psi \in \mathcal{G}_G$ such that $H \cong \Omega(G, \psi)$.

Let us denote $\Theta(G) = \{graph \ H : G \cong \Omega(H, \psi), for some \ \psi \in \mathcal{G}_H\}$. Then G is graphoidal iff $\Theta(G) \neq \phi$.

Definition 1.4. A graphoidal graph G is called self-graphoidal if $G \in \Theta(G)$, i.e., $G \cong \Omega(G, \psi)$ for some $\psi \in \mathcal{G}_G$.

The following problem has been proposed in [4]

Problem 1. Which graphoidal graphs G satisfy $G \in \Theta(G)$?

The present work is a partial solution to this problem.

2 Main Results

Theorem 2.1. A graph G is self-graphoidal if the number of paths in a graphoidal cover of G is equal to the number of vertices in G but the converse is not necessarily true. (Example $K_{3,6}$)

Theorem 2.2. (Harary [3, Theorem 8.2]) A connected graph is isomorphic to its line graph iff it is a cycle.

Corollary 2.3. Every cycle is self-graphoidal.

Theorem 2.4. A complete graph K_p is self-graphoidal iff $3 \le p \le 5$.

Proof. Let us assume that p > 5. Then we have to take a graphoidal cover ψ of K_p such that the number of paths in a graphoidal cover of K_p is equal to p. If $|\psi| = \eta$, where η is the minimum graphoidal cover of K_p , then we know from [2] that $\eta > p \Rightarrow |\psi| \ge \eta > p$. Hence K_p is not self-graphoidal if p > 5.

Next, if p = 5 then label its vertices as $\{v_0, v_1, v_2, v_3, v_4\}$ and construct the path

$$P_i = \{v_{(i+4) \pmod{5}}, v_i, v_{(i+3) \pmod{5}}\}$$
 for $i = 0, 1, 2, 3, 4$.

Then $\psi = \{P_0, P_1, P_2, P_3, P_4\}$ is a graphoidal cover of K_5 and $\Omega(K_5, \psi) \cong K_5$. If p = 4 then label its vertices as $\{v_1, v_2, v_3, v_4\}$ and construct the path On Self-graphoidal Graphs

$$P_1 = (v_1, v_2, v_4), P_2 = (v_1, v_3, v_2), P_3 = (v_3, v_4), P_4 = (v_1, v_4).$$

Then $\Omega(K_4, \psi) \cong K_4$.

If p = 3 then the result follows from §2.3.

Theorem 2.5. $K_{2,2}$ is the only complete bipartite graph which is self-graphoidal.

Proof. Let us assume that for some m and n, $K_{m,n}$ is self-graphoidal, i.e. $K_{m,n} \cong \Omega(K_{m,n}, \psi)$, $|\psi|$ is the number of paths in a graphoidal cover of $K_{m,n}$.

Consider a bipartition of the vertex set of $K_{m,n}$ to be $X = \{v_1, v_2, \ldots, v_m\}$ and $Y = \{w_1, w_2, \ldots, w_n\}$ such that $d(v_i) = n$ and $d(w_j) = m$ for all $i = 1, 2, 3, \ldots, m$ and $j = 1, 2, 3, \ldots, n$. Since $K_{m,n}$ is self-graphoidal, $\Omega(K_{m,n}, \psi)$ is also a complete bipartite graph with the bipartition $X^* = \{P_1, P_2, \ldots, P_m\}$ and $Y^* = \{Q_1, Q_2, \ldots, Q_n\}$ such that each v_i corresponds to P_i and each w_j corresponds to Q_j for $i = 1, 2, 3, \ldots, m$ and $j = 1, 2, 3, \ldots, n$. Also, $d(P_i) = n$ and $d(Q_j) = m$. Then for any vertex $v_1 \in P_1, d_{P_1}(v_1) \leq 2$ and $v_1 \in Q_j$ for exactly one $j = 1, 2, 3, \ldots, n$, otherwise it will contradict the bipartition of X^* and Y^* . Thus $d_{\Omega(K_{m,n},\psi)}(v_1) \leq 2$ and hence $d(v_i) \leq 2, d(w_j) \leq 2$ in $\Omega(K_{m,n})$ for all i and j. This implies $K_{m,n}$ is self-graphoidal when $m, n \leq 2$, i.e., the only possible such $K_{m,n}$ are $K_{1,1}, K_{1,2}, K_{2,2}$. But $K_{1,1}$ and $K_{1,2}$ are trees and so by §2.1 they are not self-graphoidal. Also, by §2.3, $K_{2,2} = C_4$ which is self-graphoidal.

Theorem 2.6. Wheel W_p is self-graphoidal iff $p \leq 5$.

Proof. If p = 4 then $W_4 = K_4$ so $\Omega(W_4, \psi) \cong W_4$. If p = 5 then label its vertices as $\{v_1, v_2, v_3, v_4, v_5\}$. Now, Construct the path $P_1 = (v_5, v_1, v_3, v_4), P_2 = (v_2, v_5), P_3 = (v_5, v_4), P_4 = (v_1, v_4), P_5 = (v_1, v_2, v_3)$. Hence $\Omega(W_5, \psi) \cong W_5$.

Suppose $p \ge 6$ then $\Delta \ge 5$. Take a vertex v in W_p such that $\deg v = \Delta$. Then the number of paths in a graphoidal cover containing v is at least $\deg v - 1$ and hence the intersection graph $\Omega(W_p, \psi)$ of graphoidal cover of W_p will form a complete graph $K_{\deg v-1}$ which contradicts the property that no wheel contains a complete subgraph of $p \ge 4$.

Theorem 2.7. There exists a 3-regular self-graphoidal graph on $p \equiv 0 \pmod{4}$ vertices.

Proof. Let us take a cycle C_p , where $p \equiv 0 \pmod{4}$, and label its vertices in cyclic order as $0, 1, 2, \ldots, p-1$. Now join the vertices $\{0, 2\}$, $\{1, 3\}$, $\{4, 6\}$, $\{5, 7\}$ and so on. Continuing in this process, we get a 3–regular graph. Now, Construct the paths as

$$\psi = \{(i, i+2, i+1), (i+2, i+3, i+1), (i+3, i+4), (i+4, i+5)\}$$

where *i* is a multiple of 4 and $0 \le i \le p - 1$. Then ψ is a graphoidal cover of *G* and $\Omega(G, \psi) \cong G$.

We refer to [3] for the definition of the square graph G^2 , total graph T(G), subdivision graph S(G) and line graph L(G) of a graph G.

Theorem 2.8. There exists a 4-regular self-graphoidal graph.

Proof. Let us take a cycle C_p and label its vertices in cyclic order as $0, 1, 2, \ldots, p-1$. Then $(C_p)^2$ is 4-regular graph. Now, Construct the paths as

 $P_i = \{(i+p-1) \pmod{p}, i, (i+p-2) \pmod{p}\}$ for $i = 0, 1, 2, \dots, p-1$.

Then $\psi = \{P_0, P_1, P_2, \dots, P_{p-1}\}$ is a graphoidal cover of G and $\Omega(G, \psi) \cong G$. \Box

Remark 2.9. Combining §2.3, §2.7 and §2.8, we observe that there exists a d-regular self-graphoidal graph if $2 \le d \le 4$.

Corollary 2.10. $T(C_p)$ is self-graphoidal for all $p \ge 3$.

Proof. Let C_p be a cycle of length greater than 2. Then the total graph of C_p is 4–regular and hence from §2.8, we have $T(C_p)$ is self-graphoidal for all $p \ge 3$. \Box

Remark 2.11. Since $T(C_p) \cong S^2(C_p)$. So, $S^2(C_p)$ is self-graphoidal for all $p \ge 3$.

Corollary 2.12. $L(K_p)$ is self-graphoidal iff p = 3, 4.

Proof. Let $L(K_p)$ is self-graphoidal. Then $L(K_p)$ is 2(p-2)-regular and so from §2.3, we have $2(p-2) = 2 \Rightarrow p = 3$. Again, from §2.8, we have $2(p-2) = 4 \Rightarrow p = 4$. Conversely, Consider the graph $L(K_3)$. then from §2.2, we get the desired result. Again, Consider the graph $L(K_4)$. We know that $T(K_p) \cong L(K_{p+1})$, i.e., $T(K_3) \cong L(K_{3+1})$. But $K_3 = C_3$. So, by §2.10, we have $T(K_3) = T(C_3)$ is self-graphoidal, i.e., $L(K_{3+1}) = L(K_4)$ is self-graphoidal.

References

- B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J. Pure Appl. Math., 18 (10) (1987), 882–890.
- [2] C. Pakkiam and S. Arumugam, On the graphoidal covering number of a graph, Indian J. Pure Appl. Math., 20 (1989), 330–333.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [4] S. Arumugam, B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph: a creative review, in Proc. National Workshop on Graph Theory and its applications, Manonmaniam Sundaranar University, Tirunelveli, Tata McGraw-Hill, New Delhi (1997), 1–28.

(Received 9 January 2010)

578

On Self-graphoidal Graphs

K. Ratan Singh and P. K. Das Department of Mathematics, NERIST, Nirjuli - 791 109, Arunachal Pradesh, INDIA. e-mail : karamratan7@gmail.com, pkd_ma@yahoo.com