On Self-graphoidal Graphs

K. R. Singh and P. K. Das

Abstract

A graph H is called a graphoidal graph if there exists a graph G and a graphoidal cover ψ of G such that $H \cong \Omega(G, \psi)$. A graph G is self-graphoidal if $G \cong \Omega(G, \psi)$ for some graphoidal cover ψ of G. In this paper we study selfgraphoidal graph for different families of graphs.

Keywords : Graphoidal cover; Graphoidal covering number; Graphoidal graph; Self-graphoidal graph.
2000 Mathematics Subject Classification : 05C75.

1 Introduction

A graph is a pair $G=(V, E)$, where V is the set of vertices and E is the set of edges. Here, we consider only finite undirected graph with neither loops nor multiple edges. Also all graphs are connected and nontrivial. The order and size of G are denoted by p and q respectively. The concept of graphoidal cover was introduced by Acharya and Sampathkumar [1]. The reader may refer [3] for the terms not defined here.

Definition 1.1. A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions:
(i) Every path in ψ has at least two vertices.
(ii) Every vertex of G is an internal vertex of at most one path in ψ.
(iii) Every edge of G is in exactly one path in ψ.

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$ or η.

```
Copyright (c) 2010 by the Mathematical Association of Thailand. All rights
reserved.
```

Definition 1.2. If $\mathcal{F}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}\right\}$ be a family of distinct nonempty subsets of a set S whose union is S then the intersection graph of \mathcal{F}, denoted by $\Omega(\mathcal{F})$, is the graph whose vertex - and edge - sets are given by

$$
\begin{gathered}
V_{\Omega(\mathcal{F})}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}\right\} \\
\text { and } E_{\Omega(\mathcal{F})}=\left\{S_{i} S_{j}: i \neq j \text { and } S_{i} \cap S_{j} \neq \emptyset\right\} .
\end{gathered}
$$

For a graph G and $\psi \in \mathcal{G}_{G}$ (the set of all graphoidal covers of G), the intersection graph on ψ is denoted by $\Omega(G, \psi)$.

Definition 1.3. A graph H is called a graphoidal graph if there exists a graph G and $\psi \in \mathcal{G}_{G}$ such that $H \cong \Omega(G, \psi)$.

Let us denote $\Theta(G)=\left\{\right.$ graph $H: G \cong \Omega(H, \psi)$, for some $\left.\psi \in \mathcal{G}_{H}\right\}$. Then G is graphoidal iff $\Theta(G) \neq \phi$.

Definition 1.4. A graphoidal graph G is called self-graphoidal if $G \in \Theta(G)$, i.e., $G \cong \Omega(G, \psi)$ for some $\psi \in \mathcal{G}_{G}$.

The following problem has been proposed in 4
Problem 1. Which graphoidal graphs G satisfy $G \in \Theta(G)$?
The present work is a partial solution to this problem.

2 Main Results

Theorem 2.1. A graph G is self-graphoidal if the number of paths in a graphoidal cover of G is equal to the number of vertices in G but the converse is not necessarily true. (Example $K_{3,6}$)

Theorem 2.2. (Harary [3, Theorem 8.2]) A connected graph is isomorphic to its line graph iff it is a cycle.

Corollary 2.3. Every cycle is self-graphoidal.
Theorem 2.4. A complete graph K_{p} is self-graphoidal iff $3 \leq p \leq 5$.
Proof. Let us assume that $p>5$. Then we have to take a graphoidal cover ψ of K_{p} such that the number of paths in a graphoidal cover of K_{p} is equal to p. If $|\psi|=\eta$, where η is the minimum graphoidal cover of K_{p}, then we know from [2] that $\eta>p \Rightarrow|\psi| \geq \eta>p$. Hence K_{p} is not self-graphoidal if $p>5$.
Next, if $p=5$ then label its vertices as $\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and construct the path

$$
P_{i}=\left\{v_{(i+4)(\bmod 5)}, v_{i}, v_{(i+3)(\bmod 5)}\right\} \text { for } i=0,1,2,3,4
$$

Then $\psi=\left\{P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right\}$ is a graphoidal cover of K_{5} and $\Omega\left(K_{5}, \psi\right) \cong K_{5}$. If $p=4$ then label its vertices as $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and construct the path

$$
P_{1}=\left(v_{1}, v_{2}, v_{4}\right), P_{2}=\left(v_{1}, v_{3}, v_{2}\right), P_{3}=\left(v_{3}, v_{4}\right), P_{4}=\left(v_{1}, v_{4}\right) .
$$

Then $\Omega\left(K_{4}, \psi\right) \cong K_{4}$.
If $p=3$ then the result follows from $\S 2.3$.
Theorem 2.5. $K_{2,2}$ is the only complete bipartite graph which is self-graphoidal.
Proof. Let us assume that for some m and $\mathrm{n}, K_{m, n}$ is self-graphoidal, i.e. $K_{m, n} \cong$ $\Omega\left(K_{m, n}, \psi\right),|\psi|$ is the number of paths in a graphoidal cover of $K_{m, n}$.

Consider a bipartition of the vertex set of $K_{m, n}$ to be $X=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $Y=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ such that $d\left(v_{i}\right)=n$ and $d\left(w_{j}\right)=m$ for all $i=$ $1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$. Since $K_{m, n}$ is self-graphoidal, $\Omega\left(K_{m, n}, \psi\right)$ is also a complete bipartite graph with the bipartition $X^{*}=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ and $Y^{*}=\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$ such that each v_{i} corresponds to P_{i} and each w_{j} corresponds to Q_{j} for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$. Also, $d\left(P_{i}\right)=n$ and $d\left(Q_{j}\right)=m$. Then for any vertex $v_{1} \in P_{1}, d_{P_{1}}\left(v_{1}\right) \leq 2$ and $v_{1} \in Q_{j}$ for exactly one $j=1,2,3, \ldots, n$, otherwise it will contradict the bipartition of X^{*} and Y^{*}. Thus $d_{\Omega\left(K_{m, n}, \psi\right)}\left(v_{1}\right) \leq 2$ and hence $d\left(v_{i}\right) \leq 2, d\left(w_{j}\right) \leq 2$ in $\Omega\left(K_{m, n}\right)$ for all i and j. This implies $K_{m, n}$ is self-graphoidal when $m, n \leq 2$, i.e., the only possible such $K_{m, n}$ are $K_{1,1}, K_{1,2}, K_{2,2}$. But $K_{1,1}$ and $K_{1,2}$ are trees and so by $\S 2.1$ they are not self-graphoidal. Also, by $\S 2.3, K_{2,2}=C_{4}$ which is self-graphoidal.

Theorem 2.6. Wheel W_{p} is self-graphoidal iff $p \leq 5$.
Proof. If $p=4$ then $W_{4}=K_{4}$ so $\Omega\left(W_{4}, \psi\right) \cong W_{4}$. If $p=5$ then label its vertices as $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Now, Construct the path $P_{1}=\left(v_{5}, v_{1}, v_{3}, v_{4}\right), P_{2}=\left(v_{2}, v_{5}\right)$, $P_{3}=\left(v_{5}, v_{4}\right), P_{4}=\left(v_{1}, v_{4}\right), P_{5}=\left(v_{1}, v_{2}, v_{3}\right)$. Hence $\Omega\left(W_{5}, \psi\right) \cong W_{5}$.

Suppose $p \geq 6$ then $\Delta \geq 5$. Take a vertex v in W_{p} such that $\operatorname{deg} v=\Delta$. Then the number of paths in a graphoidal cover containing v is at least $\operatorname{deg} v-1$ and hence the intersection graph $\Omega\left(W_{p}, \psi\right)$ of graphoidal cover of W_{p} will form a complete graph $K_{\text {deg } v-1}$ which contradicts the property that no wheel contains a complete subgraph of $p \geq 4$.

Theorem 2.7. There exists a 3-regular self-graphoidal graph on $p \equiv 0(\bmod 4)$ vertices.

Proof. Let us take a cycle C_{p}, where $p \equiv 0(\bmod 4)$, and label its vertices in cyclic order as $0,1,2, \ldots, p-1$. Now join the vertices $\{0,2\},\{1,3\},\{4,6\},\{5,7\}$ and so on. Continuing in this process, we get a 3 -regular graph. Now, Construct the paths as

$$
\psi=\{(i, i+2, i+1),(i+2, i+3, i+1),(i+3, i+4),(i+4, i+5)\}
$$

where i is a multiple of 4 and $0 \leq i \leq p-1$. Then ψ is a graphoidal cover of G and $\Omega(G, \psi) \cong G$.

We refer to [3] for the definition of the square graph G^{2}, total graph $T(G)$, subdivision graph $S(G)$ and line graph $L(G)$ of a graph G.

Theorem 2.8. There exists a 4-regular self-graphoidal graph.
Proof. Let us take a cycle C_{p} and label its vertices in cyclic order as $0,1,2, \ldots, p-1$.
Then $\left(C_{p}\right)^{2}$ is 4 -regular graph. Now, Construct the paths as

$$
P_{i}=\{(i+p-1)(\bmod p), i,(i+p-2)(\bmod p)\} \text { for } i=0,1,2, \ldots, p-1
$$

Then $\psi=\left\{P_{0}, P_{1}, P_{2}, \ldots, P_{p-1}\right\}$ is a graphoidal cover of G and $\Omega(G, \psi) \cong G$.
Remark 2.9. Combining $\S 2.3, \S 2.7$ and $\S 2.8$, we observe that there exists a dregular self-graphoidal graph if $2 \leq d \leq 4$.

Corollary 2.10. $T\left(C_{p}\right)$ is self-graphoidal for all $p \geq 3$.
Proof. Let C_{p} be a cycle of length greater than 2 . Then the total graph of C_{p} is 4 -regular and hence from $\S 2.8$, we have $T\left(C_{p}\right)$ is self-graphoidal for all $p \geq 3$.

Remark 2.11. Since $T\left(C_{p}\right) \cong S^{2}\left(C_{p}\right)$. So, $S^{2}\left(C_{p}\right)$ is self-graphoidal for all $p \geq 3$.
Corollary 2.12. $L\left(K_{p}\right)$ is self-graphoidal iff $p=3,4$.
Proof. Let $L\left(K_{p}\right)$ is self-graphoidal. Then $L\left(K_{p}\right)$ is 2 $(p-2)$-regular and so from §2.3, we have $2(p-2)=2 \Rightarrow p=3$. Again, from §2.8, we have $2(p-2)=4 \Rightarrow$ $p=4$. Conversely, Consider the graph $L\left(K_{3}\right)$. then from $\S 2.2$, we get the desired result. Again, Consider the graph $L\left(K_{4}\right)$. We know that $T\left(K_{p}\right) \cong L\left(K_{p+1}\right)$, i.e., $T\left(K_{3}\right) \cong L\left(K_{3+1}\right)$. But $K_{3}=C_{3}$. So, by $\S 2.10$, we have $T\left(K_{3}\right)=T\left(C_{3}\right)$ is self-graphoidal, i.e., $L\left(K_{3+1}\right)=L\left(K_{4}\right)$ is self-graphoidal.

References

[1] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J. Pure Appl. Math., 18 (10) (1987), 882-890.
[2] C. Pakkiam and S. Arumugam, On the graphoidal covering number of a graph, Indian J. Pure Appl. Math., 20 (1989), 330-333.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[4] S. Arumugam, B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph: a creative review, in Proc. National Workshop on Graph Theory and its applications, Manonmaniam Sundaranar University, Tirunelveli, Tata McGraw-Hill, New Delhi (1997), 1-28.
K. Ratan Singh and P. K. Das

Department of Mathematics,
NERIST,
Nirjuli - 791 109,
Arunachal Pradesh, INDIA.
e-mail : karamratan7@gmail.com, pkd_ma@yahoo.com

