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Abstract : The aim of this paper is to calculate Maluta’s coefficient for Riesz-
Musielak-Orlicz sequence spaces with the orlicz norm. Furthermore show that
Riesz-Musielak-Orlicz sequence space has the Schur’s property.
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1 Introduction

Let X be a real vector space. A functional % : X → [0,∞] is called a modular
if

(i) %(x) = 0 if and only if x = θ;

(ii) %(αx) = %(x) for all scalar α with |α| = 1;

(iii) %(αx + βy) ≤ %(x) + %(y), for all x, y ∈ X and α, β ≥ 0 with α + β = 1.

The modular % is called convex if

(iv) %(αx + βy) ≤ α%(x) + β%(y), for all x, y ∈ X and α, β ≥ 0 with α + β = 1.

If % is a modular in X, the space

X% = {x ∈ X : lim
λ→0+

%(λx) = 0}

and
X∗

% = {x ∈ X : %(λx) < ∞ for some λ > 0}.
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It is clear that X% ⊆ X∗
% . If % is a convex modular, for x ∈ X%,

||x|| = inf
{

λ > 0 : %
(x

λ

)
≤ 1

}
. (1.1)

It is known that if % is a convex modular on X, then X% = X∗
% and ||.|| is a norm

on X% under which it is a Banach space. The norm ||.|| defined as in (1.1) is called
the Luxemburg norm.

A map φ : IR → [0,∞] is said to be an Orlicz function if φ vanishes only at 0,
and φ is even and convex (see [10, 12]).

A sequence M = (Mk) of Orlicz functions is called a Musielak - Orlicz function
(see [3, 12]). In addition, a Musielak - Orlicz function N = (Nk) is called a
complementary function of a Musielak - Orlicz function M if

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, . . .

For a given Musielak - Orlicz function M, the Musielak - Orlicz sequence space lM
and its subspace hM are defined as follows :

lM := {x ∈ l0 : IM (cx) < ∞ for some c > 0},
hM := {x ∈ l0 : IM (cx) < ∞ for all c > 0},

where IM is a convex modular defined by

IM =
∞∑

k=1

Mk(x(k)), x = (x(k)) ∈ lM .

We consider lM equipped with the Luxemburg norm

||x|| = inf
{

k > 0 : IM

(x

k

)
≤ 1

}

or equipped with the Orlicz - Amemiya norm

||x||0 = inf
{

1
k

(1 + IM (kx)) : k > 0
}

.

A Musielak - Orlicz function M satisfies the δ2 condition (M∈ δ2 for short) if
there exist constants K ≥ 2, u0 > 0 and a sequence (ck) of positive numbers such
that

∑∞
k=1 ck < ∞ and the inequality

Mk(2u) ≤ KMk(u) + ck

holds for every k ∈ IN and u ∈ IR satisfying Mk(u) ≤ u0.
If M∈ δ2 and N ∈ δ2, then we write M∈ δ2 ∩ δ∗2 . It is known that lM = hM

if and only if M∈ δ2 (see [12]).
The Riesz sequence space introduced in [1] is :

rq(p) =



x = (xk) ∈ l0 :

∑

k

∣∣∣∣∣∣
1

Qk

k∑

j=0

qjx(j)

∣∣∣∣∣∣

pk

< ∞


 ,
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where l0 is the space of all real sequences, l∞ the space of all real bounded sequences
x = (xk), and (pk) ∈ l∞.

Let M = (Mk) be a Musielak - Orlicz function and q = (qk) be a bounded
sequence of real numbers. Vakeel A. Khan [8] defined Riesz-Musielak-Orlicz se-
quence space rq

p(M) as follows :

rq
p(M) := {x ∈ l0 : %M (cx) < ∞ for some c > 0},

where %M is a convex modular defined by

%M (x) =
∞∑

k=1

Mk




∣∣∣∣∣∣
1

Qk

k∑

j=0

qjx(j)

∣∣∣∣∣∣


 ,

and Qk =
k∑

i=1

qi. We consider rq
p(M) equipped with the Luxemburg norm

||x|| = inf
{

λ > 0 : %
(x

λ

)
≤ 1

}

under which it is a Banach space.
Vakeel A. Khan [8] defined the subspace Srq

p(M) of rq
p(M) by

Srq
p(M) := {x ∈ l0 : %M (cx) < ∞ for all c > 0}.

Let X be a reflexive infinite dimensional Banach space (which automatically
does not have the schur property) and let S(X) denote its unit sphere. For a
sequence (xn) ⊂ X, Y. Cui, H. Hudzik and H. Zhu [4] defined:

A(xn) = lim
n→∞

sup{||xi − xj || : i, j ≥ n, i 6= j},

A1(xn) = lim
n→∞

inf{||xi − xj || : i, j ≥ n, i 6= j}.
The weak uniform normal structure coefficient of X is defined by (see [2])

WSC(X) = sup{k > 0 : for each weakly convergent sequence (xn) ∈ S(X),

some y ∈ conv(xn) such that k lim
n

sup ||xn − y|| ≤ A((xn))}.
A sequence (xn) ∈ X is said to be an asymptotic equidistant sequence if

A((xn)) = A1((xn)). This definition was introduced in [13], where it was proved
that

WSC(X) = inf{A((xn)) : (xn) is an asymptotic equidistant sequence in S(X)

and xn → 0 weakly}.
Maluta’s coefficient is connected with normal structure, which is very impor-

tant property of Banach spaces that gurantees the fixed point property for them
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(see [5, 6, 7]). Maluta’s coefficient ÃL(X) of a Banach space X is defined by (see
[11])

ÃL(X) = sup

{
lim
n

sup d(xn+1, conv(xj)∞j=1)

A((xn))
: (xn) is a bounded nonconstant

sequence in X

}
.

We have

ÃL(X) =
1

WCS(X)
, for each reflexive Banach space X

and
ÃL(X) = 1 for each nonreflexive Banach space X.

For every m,n ∈ IN , k > 1, Y. Cui, H. Hudzik and H. Zhu [4] defined :

c(k, m, n) = inf

{
ck,x > 0 : IM

(
kx

ck,x

)
=

k − 1
2

and x =
m+n∑

i=m

x(i)ei ∈ S(rq
p(M))

}
,

and
d(M) = inf {dk : k > 1} .

2 Main Results

Theorem 2.1. Suppose that M = (Mi) is a Musielak - Orlicz function such that
all Mi (i = 1, 2, . . .) are finitely valued and

Mi(u)
u

→ +∞ as u → +∞ ∀ i ∈ IN.

Then

(a) When rq
p(M) is nonreflexive, then ÃL(X) = 1;

(b) When rq
p(M) is reflexive, then ÃL(X) = 1

d(M) .

Proof. (a) Follows immediately from the fact that ÃL(X) = 1 for every nonreflexive
Banach space X. Now we need to show that WCS(rq

p(M)) = d(M) whenever
rq
p(M) is reflexive. It is well known that the reflexivity of rq

p(M) is equivalent to
the fact that both M and N satisfy the δ2 - condition.

First of all show that WCS(rq
p(M)) ≤ d(M). For each ε > 0, by the definition

of d(M), there is k > 1 such that d(M) > dk − ε. We know that dk ≥ d(k, m) ∀
k > 1 and m ∈ IN . By the definition of d(k, m) there is n(m) ∈ IN such that

d(k,m) > c(k, m, n)− ε, whenever n > n(m).

Finally, by the definition of c(k,m, n) there exists xm,n ∈ S(rq
p(M)) such that
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(i) ck,xm,n − ε < c(k, m, n), xm,n =
m+n∑
i=m

xm,n(i)ei ∈ S(rq
p(M)),

(ii) IM

(
kxm,n

ck,xm,n

)
= k−1

2 .

Take m1 = 1. Then there exists n− 1 ∈ IN , n1 > n(m1) and xm1,n1 satisfying
(i) and (ii) with m1 and n1 in place of m and n. Take m2 = m1 + n1 + 1. There
exists xm2,n2 satisfying (i) and (ii) with m2, n2, n2 > n(m2), in place of m,n.
By induction, we can construct a sequence (xmi,ni

)∞i=1 in S(rq
p(M)) with pairwise

disjoint supports and satisfying (i) and (ii) with mi and ni, ni > nmi) in place of
m and n for i = 1, 2, . . .

Define yk = xmk,nk
. Then we have yn ∈ S(rq

p(M)) for every n ∈ IN . Moreover,
yn → 0 weakly and for every j, k ∈ IN ,

∣∣∣∣
∣∣∣∣

yj − yk

d(M) + 2ε

∣∣∣∣
∣∣∣∣ ≤ 1

k

(
1 + IM

(
k

yv − yl

d(M) + 2ε

))

=
1
k

(
1 + IM

(
k

yv

d(M) + 2ε
+

yl

d(M) + 2ε

))

≤ 1
k

(
1 + IM

(
kxmv,nv

ck,xmv,nv

)
+ IM

(
kxml,nl

ck,xml,nl

))

=
1
k

(
1 +

k − 1
2

+
k − 1

2

)
= 1.

A((yn)) ≤ d(M) + 3ε. Since ε is arbitrary, we have A((yn)) ≤ d(M). We know
that for each weakly convergent sequence on the unit sphere of a Banach space
X there exists an asymptotic equidistant subsequence (see Proposition 2 in [13]).
Thus WCS(rq

p(M)) ≤ d(M). Next, prove that WCS(rq
p(M)) ≥ d(M). First of all

we will show the equality

WCS(rq
p(M)) = inf



A((xn)) :

xn =
ln∑

i=ln−1+1

xn(i)ei and (xn) is an

asymptotic equidistant sequence in S(rq
p(M))



 .

= d.

It is obvious that WCS(rq
p(M)) ≤ d, so we need to show that WCS(rq

p(M)) ≥ d.
For any ε > 0, by the definition of WCS(rq

p(M)), there exists a sequence (xn) ∈
S(rq

p(M)) being an asymptotic equidistant sequence, weakly convergent to 0 and
such that

A((xn)) < WCS(rq
p(M)) + ε.

Take v1 = x1. Then there exists i1 ∈ IN such that
∣∣∣∣∣

∣∣∣∣∣
∞∑

i=i1+1

v1(i)ei

∣∣∣∣∣

∣∣∣∣∣ < ε.
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A number l1 exists since by the reflexivity of rq
p(M), the generating function

M = (Mi) satisfies the δ2 - condition. By xn(i) → 0 as n → ∞, (i = 1, 2, . . . , l1)
there is n0 ∈ IN such that

∣∣∣∣∣

∣∣∣∣∣
l1∑

i=1

xn(i)ei

∣∣∣∣∣

∣∣∣∣∣ < ε, whenever n > n0.

Fix N1 > n0 and set v2 = xxN1
. Then

∣∣∣∣∣

∣∣∣∣∣
l1∑

i=1

v2(i)ei

∣∣∣∣∣

∣∣∣∣∣ < ε.

Take l2 > l1 such that ||∑∞
i=i2+1 v2(i)ei|| < ε. By xn(i) → 0 as n → ∞, for

i = 1, 2, . . . , we can find N2 > N1 such that
∣∣∣∣∣

∣∣∣∣∣
l2∑

i=1

xn(i)ei

∣∣∣∣∣

∣∣∣∣∣ < ε whenever n > N2.

Let choose N3 > N2 and set v3 = xN3. Then
∣∣∣∣∣

∣∣∣∣∣
l2∑

i=1

v3(i)ei

∣∣∣∣∣

∣∣∣∣∣ < ε.

Take l3 > l2 such that ∣∣∣∣∣

∣∣∣∣∣
∞∑

i=i3+1

v3(i)ei

∣∣∣∣∣

∣∣∣∣∣ < ε.

In thus way we can construct by induction a sequence (ln) of natural numbers
with l1 < l2 < · · · and a subsequence (vn) of (xn) satisfying A((vn)) = A((xn))
and ∣∣∣∣∣∣

∣∣∣∣∣∣

ln−1∑

i=1

vn(i)ei

∣∣∣∣∣∣

∣∣∣∣∣∣
< ε,

∣∣∣∣∣

∣∣∣∣∣
∞∑

i=ln+1

vn(i)ei

∣∣∣∣∣

∣∣∣∣∣ < ε,

where l0 = 0 by definition.

Let us take

un =

ln∑
i=ln−1+1

vn(i)ei

∣∣∣∣∣

∣∣∣∣∣
ln∑

i=ln−1+1

vn(i)ei

∣∣∣∣∣

∣∣∣∣∣

(n = 1, 2, . . .).
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Then un ∈ S(rq
p(M)) for each n ∈ IN . Moreover, for every m,n ∈ IN , n < m, we

have

||vn − vm|| =

∥∥∥∥∥∥

ln−1∑

i=1

(vn(i)− vm(i))ei +
ln∑

i=ln−1+1

(vn(i)− vm(i))ei

+
lm−1∑

i=ln+1

(vn(i)− vm(i))ei +
lm∑

i=lm−1+1

(vn(i)− vm(i))ei

+
∞∑

i=lm+1

(vn(i)− vm(i))ei

∥∥∥∥∥

≥
∥∥∥∥∥∥

ln∑

i=ln−1+1

vn(i)ei −
lm∑

i=lm−1+1

vm(i)ei

∥∥∥∥∥∥
− 4ε

≥ ‖(un − um)(1− 2ε)‖ − 4ε.

Therefore

A((un)) ≤ A((un))
1− 2ε

+
4ε

1− 2ε

=
A((xn)) + 4ε

1− 2ε

≤ WSC(rq
p(M)) + 5ε

1− 2ε
.

Since ε is arbitrary, we have

d ≤ WSC(rq
p(M)).

Finally show that d ≥ d(M). For any equidistant sequence

xn =
ln∑

i=ln−1+1

xn(i)ei ∈ S(rq
p(M)) (n = 1, 2, . . .),

there km,n > 0 such that
∥∥∥∥

(xm − xn)
d(M)

∥∥∥∥ =
1

km,n

(
1 + IM

(
km,n

xm − xn

d(M)

))

for all m,n ∈ IN , m 6= n.
Suppose that m,n ∈ IN , m 6= n. We will consider two cases.

(i) If km,n ≤ 1, then ||xm − xn|| ≥ d(M).

(ii) If km,n > 1, then
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|| (xm − xn)
d(M)

|| =
1

km,n

(
1 + IM

(
km,n, xm

d(M)

)
+ IM

(
km,n, xn

d(M)

))

≥ 1
km,n

(
1 +

km,n − 1
2

+
km,n − 1

2

)

= 1,

hence we get ||xm − xn|| ≥ d(M). Consequently A((xn)) ≥ d(M). Since (xn)
is an asymptotic equidistant sequence in S(rq

p(M)). Therefore WSC(rq
p(M)) ≥

d(M).

Theorem 2.2. In Riesz - Musielak - Orlicz Sequence Space, if the Musielak -
Orlicz function M = (Mk) then d(M) = 21/p.

Proof. It is clear that rq
p(M) = lp. Moreover,

||x||p1/pq1/q||x||p for any x ∈ rq
p(M), where 1/p + 1/q = 1

and

||x||p =

( ∞∑

i=1

|xi|p
)1/p

(see[9]).

Take arbitrary k > 1 and x ∈ S(rq
p(M)) with finite support. It is easy to see

that the number c = c(k, x) > 0 satisfying the equality IM (kx
c ) = k−1

2 is equal to
21/pk(k − 1)−1/pp−1/pq−1/q. Therefore,

d(M) = inf
{

21/pk(k − 1)−1/pp−1/pq−1/q : k > 1
}

.

To find this infimum it is sufficient to calculate

inf{k(k − 1)−1/p : k > 1}.
This infimum is attained at k0 = q. Since k0 − 1 = q/p, we get d(M) = 21/p.

Theorem 2.3. If
∞∑

i=1

Ni(ai) ≤ 1 then rq
1(M) has the Schur Schur property, i.e.

every weakly convergent sequence is norm convergent in rq
1(M).

Proof. Let xn = (xn(i)) ∈ S(rq
p(M)) for each n ∈ IN and xn → x0 weakly. By∑∞

i=1 Ni(ai) ≤ 1 we have

||xn|| =
∞∑

i=1

ai|xn(i)| (n = 1, 2, . . .)

Define
zn = (a1xn(1), a2xn(2), . . .)
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and
z0 = (a1x0(1), a2x0(2), . . .).

Then zn ∈ l1 for n = 0, 1, 2, . . . and zn → z0 weakly in l1 (since the weak conver-
gence in rq

p(M) implies the weak convergence in l1((ai))). Since l1 has the schur
property, we get ||zn − z0||l1 → 0. Hence in view of the equality

||xn − x0|| =
∞∑

i=1

ai|xn(i)− x0(i)| = ||zn − z0||l1 ,

we get limn ||xn − x0|| = 0, i.e. rq
1(M) has the schur property.
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