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Abstract : The aim of this paper is to calculate Maluta’s coefficient for Riesz-
Musielak-Orlicz sequence spaces with the orlicz norm. Furthermore show that
Riesz-Musielak-Orlicz sequence space has the Schur’s property.
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1 Introduction

Let X be a real vector space. A functional ¢ : X — [0, 0] is called a modular
if

(1) o(z) =0 if and only if z = 6;
(i) o(ax) = o(x) for all scalar a with |a| = 1;
(131) o(az + By) < o(z) + o(y), for all z,y € X and o, > 0 with o + 5 = 1.
The modular ¢ is called convex if
() olax + By) < ap(z) + Poly), for all z,y € X and a, f > 0 with o + 8 = 1.
If 0 is a modular in X, the space

Xpo={zeX: )\lirgh o(A\z) =0}

and
X, ={r € X :o(\z) < oo for some A > 0}.
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It is clear that X, C X. If ¢ is a convex modular, for z € X,,

||x||:inf{)\>0:g(§)§1}. (1.1)
It is known that if g is a convex modular on X, then X, = X7 and [[.|| is a norm
on X, under which it is a Banach space. The norm ||.|| defined as in (1.1)) is called

the Luxemburg norm.

A map ¢ : R — [0,00] is said to be an Orlicz function if ¢ vanishes only at 0,
and ¢ is even and convex (see [10, 12]).

A sequence M = (Mj},) of Orlicz functions is called a Musielak - Orlicz function
(see [3, 12]). In addition, a Musielak - Orlicz function N = (Nj) is called a
complementary function of a Musielak - Orlicz function M if

Ni(v) = sup{|v|u — My(u) :u >0}, k=1,2,...

For a given Musielak - Orlicz function M, the Musielak - Orlicz sequence space [,
and its subspace hj,; are defined as follows :

I :={ze€ 19: Ins(cx) < oo for some ¢ > 0},

har :={x €1°: Iy(cx) < oo for all ¢ > 0},

where I, is a convex modular defined by
I = 32 Mie(k), = (a(k)) € lar
k=1
We consider [j; equipped with the Luxemburg norm

||| :inf{k >0: Iy (%) < 1}

or equipped with the Orlicz - Amemiya norm
1
||| = inf {k(l + Ing(kx)) : k> o} .

A Musielak - Orlicz function M satisfies the d2 condition (M € §, for short) if
there exist constants K > 2,ug > 0 and a sequence (¢ ) of positive numbers such
that Y2 | ¢x < oo and the inequality

My (2u) < KMy (u) + ¢

holds for every k € N and u € R satisfying My (u) < ug.

If M €6y and N € dg, then we write M € 62N d5. It is known that [y = hag
if and only if M € & (see [12]).

The Riesz sequence space introduced in [1] is :

Pk

k
ri(p) = m:(xk)elozz équx(]’) <oy,
=0

k
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where {° is the space of all real sequences, I, the space of all real bounded sequences
x = (zg), and (px) € loo-

Let M = (Mjy) be a Musielak - Orlicz function and ¢ = (gx) be a bounded
sequence of real numbers. Vakeel A. Khan [§] defined Riesz-Musielak-Orlicz se-

quence space 74 (M) as follows :

rd(M) :={x €1°: ppr(cx) < oo for some ¢ > 0},

where o) is a convex modular defined by

0o k
o (@) = > M, Qiijxm 7
k=1 j=0

k
and Qr = Y q;- We consider 71(M) equipped with the Luxemburg norm
i=1

1=

||| :inf{A>0:g(§) < 1}

under which it is a Banach space.
Vakeel A. Khan [8] defined the subspace St (M) of ri(M) by

Sra(M) :={x €1°: opr(cx) < oo for all ¢ > 0}.

Let X be a reflexive infinite dimensional Banach space (which automatically
does not have the schur property) and let S(X) denote its unit sphere. For a
sequence (z,) C X, Y. Cui, H. Hudzik and H. Zhu [4] defined:

Alwn) = Tim sup{le — |5 > n.i #
A = Jim (o = ]| 05 > i £ )
The weak uniform normal structure coefficient of X is defined by (see [2])
WSC(X) = sup{k > 0 : for each weakly convergent sequence (z,) € S(X),
some y € conv(z,) such that klirrbnsup l|zn —yll < A((wn))}

A sequence (z,) € X is said to be an asymptotic equidistant sequence if
A((z)) = A1((zy)). This definition was introduced in [13], where it was proved
that

WSC(X) =inf{A((z,)) : (x,) is an asymptotic equidistant sequence in S(X)

and z, — 0 weakly}.

Maluta’s coefficient is connected with normal structure, which is very impor-
tant property of Banach spaces that gurantees the fixed point property for them
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(see |5, 6, [7]). Maluta’s coefficient L(X) of a Banach space X is defined by (see
[11])

lim sup d(@nr1, conv(z;)72,) (r,) is a bounded nonconstant
L(X) =sup : . .
A((zn)) sequence in X
We have
1
L(X) = WOS(X)’ for each reflexive Banach space X
and

L(X)=1 for each nonreflexive Banach space X.

For every m,n € N, k > 1, Y. Cui, H. Hudzik and H. Zhu [4] defined :

_1 m—4+n
c(k,m,n) = inf {c;m >0: Iy ( ke ) _k 5 and x = Z z(i)e; € S(TZ(M))} ;

Ck,x

i=m

and
d(M) =inf {dy : k> 1}.

2 Main Results

Theorem 2.1. Suppose that M = (M;) is a Musielak - Orlicz function such that
all M; (i =1,2,...) are finitely valued and

— 400 as u— +oo V 1e€eN.

Then
(a) When ri(M) is nonreflexive, then L(X) = 1;

(b) When ri(M) is reflexive, then £L(X) = W.

Proof. (a) Follows immediately from the fact that L(X) = 1 for every nonreflexive
Banach space X. Now we need to show that WCS(rd(M)) = d(M) whenever
rl(M) is reflexive. It is well known that the reflexivity of r{(M) is equivalent to
the fact that both M and N satisfy the do - condition.

First of all show that WCS(rd(M)) < d(M). For each e > 0, by the definition
of d(M), there is k > 1 such that d(M) > dj — e. We know that d, > d(k,m) V
k> 1 and m € N. By the definition of d(k, m) there is n(m) € N such that

d(k,m) > c(k,m,n) —e, whenever n > n(m).

Finally, by the definition of c(k,m,n) there exists x,, € S(rj(M)) such that
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m-+n

(1) Chapmn — € <clk,m,n), Tpmy = 2 Tmn(i)e; € S(ri(M)),

(i0) Ty (e ) = 551,

Ck,xm,n

Take m; = 1. Then there exists n — 1 € N, ny > n(m1) and 2, », satisfying
(7) and (i7) with m; and ny in place of m and n. Take mg = my 4+ n1 + 1. There
eXiStS T, m, satisfying (i) and (i4) with mg, ne, na > n(msz), in place of m,n.
By induction, we can construct a sequence (T, ;)i in S(rj(M)) with pairwise
disjoint supports and satisfying (i) and (#¢) with m; and n;, n; > nm;) in place of
mand n fori=1,2,...

Define yx = s, n,,- Then we have y,, € S(rl(M)) for every n € N. Moreover,

Yn — 0 weakly and for every j, k €V,
Yv — Yl

1+1 k—r-Z—

( i ( d<M>+2e>>
Yu Yi

1+1 k
( T ( a0 + 2¢ d(M)—|—2e>)
(ka:mv,nv ) Ty kT, n,

Ck\T iy my Ck\omy m,

1 k—1 k-1
= —(1+4¥—4+"—)=1
0 )

Yi — Yk
d(M) + 2¢

IN
e el

/N
=
_|_
~
g

A((yn)) < d(M) + 3e. Since € is arbitrary, we have A((y,)) < d(M). We know
that for each weakly convergent sequence on the unit sphere of a Banach space
X there exists an asymptotic equidistant subsequence (see Proposition 2 in [13]).
Thus WCS(r{(M)) < d(M). Next, prove that WCS(rd(M)) > d(M). First of all
we will show the equality

In
= . . d :
WCS@riM)) = inf{ A(z,): " i:lgﬁlxn(z)ez and (z,) is an
asymptotic equidistant sequence in S (rg( M)

= d.

It is obvious that WCS(ri(M)) < d, so we need to show that WCS(ri(M)) > d.
For any € > 0, by the definition of WCS(r{(M)), there exists a sequence (z,,) €
S(ri(M)) being an asymptotic equidistant sequence, weakly convergent to 0 and
such that

A((zn)) <WCS(rj(M)) +e.
Take v1 = z1. Then there exists i1 € N such that

o0

Z (% (z)ez

i=ip+1

< €.
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A number [ exists since by the reflexivity of ri(M), the generating function
M = (M;) satisfies the d2 - condition. By z,(i) - 0asn — oo, (i =1,2,...,1)
there is ng € IV such that

5t
Z xn(i)e;
i=1

Fix N; > ng and set vy = Ty, - Then

< ¢, whenever n > ng.

< €.

15
Z (%) (i)ei
i=1

Take Iy > Iy such that ||, va(i)eil| < e By 2,(i) — 0 as n — oo, for
i=1,2,..., we can find Ny > N; such that

2
Z n(i)e;
i=1

Let choose N3 > N5 and set v3 = £ N3. Then

l2
Z V3 (1)62
i=1

< € whenever n > N.

< €.
Take I3 > Iy such that
oo
Z v3(i)e;|| < e.
i=iz+1

In thus way we can construct by induction a sequence (l,,) of natural numbers
with Iy < lz < --- and a subsequence (v,) of (z,,) satisfying A((vy,)) = A((zn))

and
ln —1

Z vn(i)e;|| < e

i=1
o0
Z vp(i)e; ]| < e,
i=l,+1
where [p = 0 by definition.
Let us take l
vn(i)e;
=l
Up = — i (n=1,2,...)
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Then u,, € S(r{(M)) for each n € N. Moreover, for every m,n € N, n < m, we
have

ln—1 ln

lon —vmll = | D @a()) —vm(i)es + Y (vn(i) — vm())es

i=1 i=ln_1+1

Im

Im—1
+ Y ali) —vm(@ei+ Y (0nli) = vm(i))es

i=lp+1 i=lpy_1+1
+ > (vni) = vm(i))es
i=lpm+1
In lm
> Z vp(i)e; — Z v (1)e; || — 4e
i=lp_1+1 i=lpm_1+1
> |[(wn — um) (1 — 2¢)|| — 4e.
Therefore
A(u, 4e
A(w) < ((un)) n

1—2¢ 1—2¢
A((xy)) + 4e
1—2¢
WSC(rg(M)) + e
- 1—2¢ '

Since € is arbitrary, we have
d < WSC(ri(M)).
Finally show that d > d(M). For any equidistant sequence

ln
To= Y an(i)e; € S(rE(M)) (n=12,..),
i=lp_1+1

1 Tm — Tn
= 14+ Iy | kpn——
‘ m(*M( (M) >)
for all m,n €N, m # n.

Suppose that m,n € W, m # n. We will consider two cases.

there ky, n, > 0 such that

(T — xn)
d(M)

(2) If ko < 1, then ||z, — z,|| > d(M).
(#3) If Ky > 1, then
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(xm - xn) 1 ko nyLm Ky nyLn
-_ = 1+17 7 I =
“aan 1 = & U UCaon ) T Caon
1 kmn—1 kmn —1
> 1 : :
e

hence we get ||z, — xn|| > d(M). Consequently A((x,)) > d(M). Since (x,)
is an asymptotic equidistant sequence in S(r(M)). Therefore WSC(rj(M)) >
d(M). O

Theorem 2.2. In Riesz - Musielak - Orlicz Sequence Space, if the Musielak -
Orlicz function M = (M) then d(M) = 2/,

Proof. 1t is clear that ri(M) = IP. Moreover,
||x\|p1/pq1/q|\x||p for any x € rg(M), where 1/p+1/¢=1

and
0 1/p
|l = (Z |in”> (seeld]).

Take arbitrary k > 1 and x € S(rg(M)) with finite support. It is easy to see

that the number ¢ = c(k, ) > 0 satisfying the equality In;(£2) = #51 is equal to

21/ (k — 1)~1/Pp=1/pg=1/a_ Therefore,
d(M) = inf {21/Pk(k — 1) Vrp=lrg=l/a g s 1} .
To find this infimum it is sufficient to calculate
inf{k(k —1)"Y? : k> 1}.

This infimum is attained at ko = g. Since ko — 1 = q/p, we get d(M) =2%?. [0

Theorem 2.3. If > N;(a;) <1 then r{(M) has the Schur Schur property, i.e.
=1

K3
every weakly convergent sequence is norm convergent in r$(M).

Proof. Let x, = (x,(i)) € S(rd(M)) for each n € N and z,, — xo weakly. By
Yoo Ni(a;) <1 we have

loall = 3 ailza(d)] (n=1,2,..)
=1

Define
zn = (a12,(1), a2z, (2),...)
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and
20 = (all.()(]-)) azx()(Q), .. )
Then z, € I! forn=0,1,2,... and 2, — 2 weakly in I! (since the weak conver-

gence in (M) implies the weak convergence in I'((a;))). Since I* has the schur
property, we get ||z, — 2o||;1 — 0. Hence in view of the equality

oo
|[zn — zo| = ZGZ‘mn(Z) —zo(8)] = ||z — 20l |12,
i=1
we get lim,, ||z, — zo|| = 0, i.e. 7{(M) has the schur property. O
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