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families through a representation for a survival function in terms of hazard measure
and covariance identities. These results subsume previous results given by Hudson
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1 Introduction

There is an extensive literature in the theory of exponential families is that
discussed in many books and monographs such as Barndorff-Nielsen [2], Brown [3]
and Letac [9] and many papers are published during earlier years.

Hudson [7] found a natural identity for an exponential family in the discrete
and continuous cases, later Prakasa Rao [14] characterized the exponential family
through some identities and Chou [6] obtained an identity for multi-dimensional
continuous exponential families. Papathanasiou [13], Prakasa Rao and Sreehari
[15] and Srivastava and Sreehari [16] characterized results related to this matters.

In this paper, we produce characterization of the continuous exponential fam-
ilies through version of the hazard measure.

2 Characterizations via Hazard Measure

Let F be a distribution function on ℜ. Then, the measure mF on the Borel

σ-field of ℜ such that mF (B) =
∫

B

dF (x)
1−F (x−) for every set B is referred to as the

hazard measure relative to F. Kotz and Shanbhag [8] introduced this measure and
established a representation for a distribution function in terms of the correspond-
ing hazard measure as follows :
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Theorem 2.1. (Kotz and Shanbhag [8]) Let mF be as defined above and mc
F

be the continuous (non-atomic) part of mF and let Hc(x) = mc
F

(

(−∞, x]
)

. Then
the survivor function S(x) = 1 − F (x−) is given by

S(x) =

[

∏

xr∈Dx

(1 − mF ({xr}))

]

e−Hc(x), x < b, (2.1)

where Dx is the set of all points y ∈ (−∞, x) such that mF ({x}) > 0 and b denotes
the right extremity of F.

Corollary 2.2. In Theorem 2.1, if mF is a non-atomic (continuous) measure,
then, we have 1−F (x) = exp{−H(x)} for all x, in place of (2.1) such that S(x) =
1 − F (x) and H(x) = mF

(

(−∞, x]
)

.

Remark 2.3. Theorem 2.1 implies that the hazard measure mF relative to F

uniquely determines the df F.

Following Alharbi and Shanbhag [1] and Mohtashami Borzadaran and Shanbhag
[11, 12], we extend and unify the existing literature on exponential families. In
particular, we arrive at here, new representations via the hazard measure and
characterizations of families of distributions that are continuous without neces-
sarily being absolutely continuous (w.r.t. Lebesgue measure). Analogous results
corresponding to the discrete case are also addressed in Mohtashami Borzadaran
[10]. Before we discuss about the generalized continuous exponential families, we
mention two lemmas and a theorem, giving certain representations for distribu-
tions in terms of distributions that are mixture of continuous and discrete. We
can see the proof of the discrete version them in Mohtashami Borzadaran [10].

Lemma 2.4. With w(.) > 0 for almost all (a.a.)[νF∗ ]x ∈ ℜ, F is a df that
absolutely continuous w.r.t. νF∗ and t(X) ≥ θ almost surely (a.s.) (with t(X) > θ

almost surely (a.s.) for X ≥ x0 for some x0 with P{X ≥ x0} > 0) where X is an
r.v. with df F, we have

(

∫

[x,∞)

(t(y) − θ)dF (y)

)

dνF∗(x) = w(x)dF (x), x ∈ ℜ, (2.2)

if and only if, for some c ∈ (0,∞),

dF (x) = c







1

w(x)







∏

xr∈D
(1)
x

(

1 − m(1) ({xr})
)







e−H(1)
c

(x)







dνF∗(x), x ∈ ℜ,

(2.3)
where

m(1)(•) =

∫

[x0,∞)
T

•

(t(y) − θ)(w(y))−1dνF∗(y), H(1)
c (x) = m(1)

c ((−∞, x]),
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and m
(1)
c is the continuous part of m(1) and D

(1)
x is the set of all points y ∈ (−∞, x)

such that m(1)
(

{y}
)

> 0. (Here F ∗ be a non-constant Lebesgue-Stieltjes measure
function on ℜ and νF∗ be the measure determined by it.)

Lemma 2.5. With 0 < w∗(x) = w(x)+(θ−t(x))νF∗

(

{x}
)

for almost all (a.a.)[νF∗ ]x
∈ ℜ, F is a df that absolutely continuous w.r.t. νF∗ and t(X) < θ almost
surely (a.s.) (with t(X) < θ almost surely (a.s.) for X < x0 for some x0 with
P{X < x0} > 0) where X is an r.v. with df F, we have

(

∫

(−∞,x)

(θ − t(y))dF (y)

)

dνF∗(x) = w(x)dF (x), x ∈ ℜ, (2.4)

if and only if, for some c ∈ (0,∞),

dF (x) = c







1

w∗(x)







∏

xr∈D
(2)
x

(

1 − m(2) ({xr})
)







e−H(2)
c

(x)







dνF∗(x), x ∈ ℜ,

(2.5)
where

m(2)(•) =

∫

(−∞,x0)
T

•

(θ − t(y))(w∗(y))−1dνF∗(y), H(2)
c (x) = m(2)

c ([x,∞)),

and m
(2)
c be the continuous part of m(2) and D

(2)
x is the set of all points y ∈ (x,∞)

such that m(2)
(

{y}
)

> 0.

Theorem 2.6. With w(x) > 0 for a.a.[νF∗ ]x ∈ ℜ, F is a df that absolutely
continuous w.r.t. νF∗ and there exists a point x0 such that t(x) > θ for a.a.[νF∗ ]x ∈
ℜ, lying in (x0,∞) and t(x) < θ for a.a.[νF∗ ]x ∈ ℜ, lying in (−∞, x0) with
E(t(X)) = θ and t(x0) ≥ θ where X is an r.v. with df F. Then F satisfies (2.2),
if and only if for some c ∈ (0,∞),

dF (x) =

{

c{ 1
w(x){

∏

xr∈D
(1)
x

(

1 − m(1)
(

{xr}
))

}e−H(1)
c

(x)}dνF∗(x) if x ≥ x0

c{ 1
w∗(x){

∏

xr∈D
(2)
x

(

1 − m(2)
(

{xr}
))

}e−H(2)
c

(x)}dνF∗(x) if x < x0

(2.6)
where

m(1)(•) =

∫

[x0,∞)
T

•

(t(y) − θ)(w(y))−1dνF∗(y), H(1)
c (x) = m(1)

c ((−∞, x]),

and

m(2)(•) =

∫

(−∞,x0)
T

•

(θ − t(y))(w∗(y))−1dνF∗(y), H(2)
c (x) = m(2)

c ([x,∞)),

with 0 < w∗(x) = w(x)+(θ− t(x))νF∗

(

{x}
)

, m
(1)
c and m

(2)
c as continuous parts of

m(1) and m(2) respectively, and D
(1)
x and D

(2)
x as the sets of discontinuity points

of m(1) that lie in (−∞, x) and of m(2) that lie in (x,∞) respectively.
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The following corollary implies a version of the continuous exponential families:

Corollary 2.7. If we have the assumptions in Theorem 2.6 met with F ∗ contin-
uous, then the conclusion of the theorem holds with the following in place of (2.6)
:

dFθ(x) =
c(θ)

w(x)
exp

{

−

∫

(x0,x]

t(y) − θ

w(y)
dνF∗(y)

}

dνF∗(x) (2.7)

where x0 is as the statement of Theorem 2.6.

Let Fθ satisfies (2.7), then the fact that 0 ≤ Fθ(x2)−Fθ(x1)(≤ 1) < ∞ for every
x2 > x1 and c(θ) is a normalizing constant (lying in (0,∞)) implies that for each

x with |
∫

(x0,x]
(w(y))−1dνF∗(y)| = ∞, we have |

∫

(x0,x]
t(y)−θ

w(y) dνF∗(y)| = ∞. (Note

that |Fθ(x)−Fθ(x0)| ≥ c(θ)|
∫

(x0,x]
(w(y))−1dνF∗(y)| exp{−|

∫

(x0,x]
t(y)−θ

w(y) dνF∗(y)|}.)

This, in turn, implies that if Fθ satisfies (2.7), then the distribution is concentrated
on {x ∈ ℜ : |

∫

(x0,x](w(y))−1dνF∗(y)| < ∞}; we shall denote this set by D.

In here, we assume throughout that νF∗ is a non-atomic measure (i.e. F ∗ is
continuous).

Corollary 2.8. If we have the assumptions in Theorem 2.6 met with F ∗ contin-
uous, then for any distribution Fθ (that is absolutely continuous w.r.t. νF∗) the
conclusion of the theorem holds on taking, in place of (2.7), that Fθ is concentrated
on D and it satisfies the following :

dFθ(x) =
c(θ)

w(x)
exp

{

−

∫

(x0,x]

t(y)

w(y)
dνF∗(y)

}

exp

{

θ

∫

(x0,x]

1

w(y)
dνF∗(y)

}

dνF∗(x)

= c(θ)k1(x) exp

{

θ

∫

(x0,x]

1

w(y)
dνF∗(y)

}

dνF∗(x), x ∈ D, (2.8)

where

k1(x) =
1

w(x)
exp

{

−

∫

(x0,x]

t(y)

w(y)
dνF∗(y)

}

. (2.9)

3 Continuous Exponential Families via Covariance

Identities

In view of extension of the Chernoff-types [5] inequality, Cacoullos and Pap-
athanasiou [4] for random variable X with mean µ, variance σ2 < ∞ and density
f , proved that

Cov[h(X), g(X)] = E[Z(X)g′(X)],

where g is absolutely continuous function with |E[Z(X)g′(X)]| < ∞ and h(x) is
a given function leads to

Z(x) =
1

f(x)

∫ x

a

[E(h(X)) − h(t)]f(t)dt.
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This idea extended by Mohtashami Borzadaran and Shanbhag [11] to a general
case. So, in what follow, special case of family is obtained with the form of
(2.8), that is derived some characterization in view of the continuous exponential
families.

Theorem 3.1. Let X be an r.v. with distribution (2.8) and Eθ(t(X)) = θ. Also,
let g be a real-valued function that is absolutely continuous w.r.t. νF∗ with Radon-
Nikodym derivative g′ satisfying Eθ{| w(X)g′(X) |} < ∞. Then

Covθ{t(X), g(X)} = Eθ(w(X)g′(X)). (3.1)

Proof. Applying the argument used to prove the “ if ” part of the Theorem 2.2
in Mohtashami Borzadaran and Shanbhag [11] with t(X) in place of h∗(X) and
w(X) in place of Z(X), we obtain the theorem.

Theorem 3.2. The assumptions in Theorem 2.6 met with F ∗ continuous and
Eθ(t(X)) = θ. Also, let τ be the class of real-valued function g such that g′(x) ≡
cos(ux) or g′(x) ≡ sin(ux) where g′ is the Radon-Nikodym derivative of g w.r.t.
νF∗ . Suppose (3.1) holds for each g ∈ τ. Then the distribution of X is as in
Corollary 2.8.

Proof. For any real u, let gu(x) be such that g′u(x) = cos(ux) is the Radon-
Nikodym derivative of gu w.r.t. νF∗ . Then, for any real a,

Eθ

{

(t(X) − θ)

∫

(a,X]

cos(uy)dνF∗(y)

}

= Eθ{w(X) cos(uX)}.

This implies that, for any real a,

∫

ℜ

(t(x) − θ)

{

∫

(a,x]

cos(uy)dνF∗(y)

}

dFθ(x)

=

∫

ℜ

cos(uy)

{

∫

[y,∞)

(t(x) − θ)dFθ(x)

}

dνF∗(y)

=

∫

ℜ

w(y) cos(uy)dFθ(y). (3.2)

From (3.2) and the analogue of (3.2) with sin(uy) in place of cos(uy), we get that

∫

ℜ

ei(uy)

{

∫

[y,∞)

(t(x) − θ)dFθ(x)

}

dνF∗(y) =

∫

ℜ

w(t)ei(uy)dFθ(y), u ∈ ℜ.

From the uniqueness of Fourier transforms,
{

∫

[y,∞)

(t(x) − θ)dFθ(x)

}

dνF∗(y) = w(y)dFθ(y).

By using Theorem 2.6 with νF∗ as non-atomic measure, dFθ(x) is seen to be that
given by (2.8).
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Remark 3.3. In Corollary 2.8, F ∗(x) = x, x ∈ ℜ, implies that we have

dFθ(x) =
c(θ)

w(x)
exp

{

−

∫

(x0,x]

t(y)

w(y)
dy

}

exp

{

θ

∫

(x0,x]

1

w(y)
dy

}

dx

= c(θ)k1(x) exp

{

θ

∫

(x0,x]

1

w(y)
dy

}

dx, (3.3)

in place of (2.8) and

k1(x) =
1

w(x)
exp

{

−

∫

(x0,x]

t(y)

w(y)
dy

}

, (3.4)

in place of (2.9). Also, in this case, Theorems 3.1 and 3.2 are valid.

Based on formula (2.8), when F ∗(x) = x, we have the characterization that is
derived in Table 1 as examples.

Table 1: Characterizations Based on w(x) and t(x) in Continuous case

w(x) t(x) Domain of the r.v. X Name of Distribution

1 x x ∈ ℜ Normal

x cx − 1 x ∈ (0, ∞) Gamma

x
cx−1
1−x

x ∈ (0, 1) Beta

1 ex x ∈ (0, ∞) Standard Log Gamma

Let us now define an exponential family that is a special case of (2.8). Let X

be an r.v. with df Fθ that is absolutely continuous w.r.t. νF∗ with density fθ(x)
of the form:

fθ(x) = c(θ)k(x)eθµ∗(x), x ∈ ℜ, θ ∈ ℜ, (3.5)

where 0 < k(x) = exp{−
∫

(x0,x]
t(y)dνF∗(y)}, and µ∗(x) = F ∗(x) − F ∗(a) and

Eθ[t(X)] = θ.

Remark 3.4. In Theorem 3.2, if w(x) ≡ 1, then we have the family (3.5) in place
of (2.8).
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Corollary 3.5. Let X be an r.v. with distribution (3.5) and Eθ(t(X)) = θ. Also,
let g be a real-valued absolutely continuous function such that g′ be the Radon-
Nikodym derivative of g w.r.t. νF∗ and Eθ{| g′(X) |} < ∞. Then

Eθ{(t(X) − θ)g(X)} = Eθ(g
′(X)). (3.6)

Proof. The result follows on using the same argument as in the proof of the The-
orem 3.1, but with w(x) ≡ 1.

Corollary 3.6. The assumptions in Theorem 2.6 met with F ∗ continuous and
Eθ(t(X)) = θ. Also, let τ be the class of real-valued functions g such that g′u(x) ≡
cos(ux) or g′u(x) ≡ sin(ux) where g′u is the Radon-Nikodym derivative of g w.r.t.
νF∗ . Suppose (3.6) holds for each g ∈ τ. Then the distribution of X is of the form
(3.5).

Proof. The result follows on using the same argument as in the proof of Theorem
3.2, with w(x) ≡ 1.

In (3.5) if we take, F ∗(x) = x, x ∈ ℜ, then (3.5) simplifies to

fθ(x) ∝ k(x)eθx, x ∈ ℜ, θ ∈ ℜ. (3.7)

In this case we arrive at the following characterizations as consequences of Corol-
laries 3.5 and 3.6 :

Remark 3.7. Let X be an r.v. with density (3.7) where k(x) > 0 for all x ∈ ℜ
and is differentiable and Eθ(t(X)) = θ. Also g be any differentiable function with
Eθ{| g′(X) |} < ∞. Then, Hudson [7] proved that

Eθ{(t(X) − θ)g(X)} = Eθ(g
′(X)). (3.8)

Also, let t(x) = −k′(x)
k(x) such that Eθ(t(X)) = θ. Suppose (3.8) holds for all gu such

that gu(x) ≡ eiux, u ∈ ℜ. Then, Prakasa Rao [14] obtained that X has density
w.r.t. Lebesgue measure and it is given by (3.7).

4 Conclusion

In this paper, we derive characterization of continuous exponential families
via hazard measure. This characterization is an extended version of the results
of Hudson [7] and Prakasa Rao [14] related to a representation of the exponential
families and covariance identity.
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