Characterization of Cayley Graphs of Rectangular Groups

S. Panma

Abstract

A digraph (V, E) is a Cayley graph of semigroup (group) if there exists a semigroup (group) S and $A \subseteq S$ such that (V, E) is isomorphic to the Cayley graph $\operatorname{Cay}(S, A)$. In this paper, we characterize digraphs which are Cayley graphs of rectangular groups.

Keywords : Cayley graph; Rectangular group; Cayley graph of Rectangular group.
2000 Mathematics Subject Classification : 05C25; 20 B 25.

1 Introduction

One of the previously known investigations of algebraic structures on Cayley graphs can be found in Maschke's Theorem from 1896 about groups of genus zero. A group of genus zero is a group G which possess a generating system A such that the Cayley graph $\operatorname{Cay}(G, A)$ is planar, see for example [16]. In [15] Cayley graphs which represent groups are described. It is natural to investigate Cayley graphs for semigroups which are unions of groups, so-called completely regular semigroups, see for example [14]. In [1,13] Cayley graphs which represent completely regular semigroups which are right (left) groups and Clifford semigroups are characterized. We now characterize digraphs which are Cayley graphs of rectangular groups.

2 Basic definitions and results

All sets in this paper are assumed to be finite. A groupoid is a non-empty set G together with a binary operation on G. A semigroup is a groupoid G which is associative. A monoid is a semigroup G which contains an (two-sided) identity

```
Copyright (c) }2010\mathrm{ by the Mathematical Association of Thailand. All rights
reserved.
```

element $e_{G} \in G$. A group is a monoid G such that for every $a \in G$ there exists a group inverse $a^{-1} \in G$ such that $a^{-1} a=a a^{-1}=e_{G}$.

A semigroup S is said to be a right (left) zero semigroup if $x y=y(x y=x)$ for all $x, y \in S$.A semigroup S is called a right (left) group if it is isomorphic to the direct product of a group and a right (left) zero semigroup. A semigroup S is rectangular band if it is isomorphic to the direct product of a left zero semigroup and a right zero semigroup. A semigroup S is called a rectangular group if it is isomorphic to the direct product of a group and a rectangular band. It is clear that a right (left) zero semigroup, a right(left) group, and a rectangular band are rectangular groups.

Let $\left(V_{1}, E_{1}\right)$ and $\left(V_{2}, E_{2}\right)$ be digraphs. A mapping $\varphi: V_{1} \rightarrow V_{2}$ is called a (digraph) homomorphism if $(u, v) \in E_{1}$ implies $(\varphi(u), \varphi(v)) \in E_{2}$, i.e. φ preserves arcs. We write $\varphi:\left(V_{1}, E_{1}\right) \rightarrow\left(V_{2}, E_{2}\right)$. A digraph homomorphism $\varphi:(V, E) \rightarrow$ (V, E) is called an (digraph) endomorphism. If $\varphi:\left(V_{1}, E_{1}\right) \rightarrow\left(V_{2}, E_{2}\right)$ is a bijective digraph homomorphism and φ^{-1} is also a digraph homomorphism, then φ is called an (digraph) isomorphism. A digraph isomorphism $\varphi:(V, E) \rightarrow(V, E)$ is called an (digraph) automorphism. All digraph automorphisms form a group, called the automorphism group of (V, E) and denoted by $\operatorname{Aut}(V, E)$.

Let S be a semigroup(group) and $A \subseteq S$. We define the Cayley graph $\operatorname{Cay}(S, A)$ as follows: S is the vertex set and $(u, v), u, v \in S$, is an arc in $\operatorname{Cay}(S, A)$ if there exists an element $a \in A$ such that $v=u a$.

Theorem 2.1. ([2], $[11],[15])$ A digraph (V, E) is a Cayley graph of a group G if and only if $\operatorname{Aut}(V, E)$ contains a subgroup \triangle which is isomorphic to G and for any two vertices $u, v \in V$ there exists $\sigma \in \triangle$ such that $\sigma(u)=v$.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs, $V_{1} \cap V_{2}=\emptyset$. The disjoint union of G_{1} and G_{2} is defined as $G_{1} \cup \dot{U} G_{2}:=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.

For terms in Graph Theory not defined here see for example [2].

3 Main results

A subdigraph $\left(V^{\prime}, E^{\prime}\right)$ of a graph (V, E) is called a strong subdigraph of (V, E) if whenever $u, v \in V^{\prime}$ and $(u, v) \in E$, then $(u, v) \in E^{\prime}$. In the next theorem, we characterize digraphs which are Cayley graphs of rectangular groups.

Theorem 3.1. A digraph (V, E) is a Cayley graph of a rectangular group if and only if then the following conditions hold:
(1) (V, E) is the disjoint union of n isomorphic subdigraphs $\left(V_{1}, E_{1}\right),\left(V_{2}, E_{2}\right), \ldots$, (V_{n}, E_{n}) for some $n \in \mathbb{N}$,
(2) there exists a group G and $m \in \mathbb{N}$ such that for each $i \in\{1,2, . ., n\},\left(V_{i}, E_{i}\right)$ contains m disjoint strong subdigraphs $\left(V_{i 1}, E_{i 1}\right),\left(V_{i 2}, E_{i 2}\right), \ldots,\left(V_{i m}, E_{i m}\right)$ which are Cayley graphs of G, and $V_{i}=\bigcup_{\alpha=1}^{m} V_{i \alpha}$,
(3) for each $\alpha \in\{1,2, . ., m\}$, there exists a digraph isomorphism $\varphi_{i \alpha}:\left(V_{i \alpha}, E_{i \alpha}\right) \rightarrow$ $\operatorname{Cay}\left(G, A_{i \alpha}\right)$ for some $A_{i \alpha} \subseteq G$, such that $A_{j \alpha}=A_{k \alpha}$ for all $j, k \in\{1,2, \ldots, n\}$,
(4) for each $\alpha, \beta \in\{1,2, \ldots, m\}$, and for each $u \in V_{i \alpha}, v \in V_{i \beta},(u, v) \in E$ if and only if $\varphi_{i \beta}(v)=\varphi_{i \alpha}(u)$ a for some $a \in A_{i \beta}$.

Proof. (\Rightarrow) Let (V, E) be a Cayley graph of rectangular group. Then there exists a rectangular group $S=G \times L_{n} \times R_{m}$ where G is a group, $L_{n}=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$ a left zero semigroup, and $R_{m}=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ a right zero semigroup, such that $(V, E) \cong \operatorname{Cay}(S, A)$ for some $A \subseteq S$. Let f be an isomorphism from $\operatorname{Cay}(S, A)$ onto (V, E).
(1) For each $i \in\{1,2, \ldots, n\}$, set $V_{i}:=f\left(G \times\left\{l_{i}\right\} \times R_{m}\right)$, and $E_{i}:=E \cap$ $\left(V_{i} \times V_{i}\right)$. Hence $\left(V_{i}, E_{i}\right)$ is a strong subdigraph of (V, E). We will show that $\left(V_{1}, E_{1}\right),\left(V_{2}, E_{2}\right), \ldots,\left(V_{n}, E_{n}\right)$ are isomorphic subdigraphs. Let $p, q \in$ $\{1,2, . ., n\}, p \neq q$, define a $\operatorname{map} \phi$ from $\left(V_{p}, E_{p}\right)$ to $\left(V_{q}, E_{q}\right)$ by $\phi\left(f\left(g, l_{p}, r\right)\right)=$ $f\left(g, l_{q}, r\right)$. Since f is an isomorphism and $\left|G \times\left\{l_{p}\right\} \times R_{m}\right|=\left|G \times\left\{l_{q}\right\} \times R_{m}\right|$, $\left|V_{p}\right|=\left|V_{q}\right|$. Therefore ϕ is a well defined bijection.

For $f\left(g, l_{p}, r\right), f\left(g^{\prime}, l_{p}, r^{\prime}\right) \in V_{p}$, take $\left(f\left(g, l_{p}, r\right), f\left(g^{\prime}, l_{p}, r^{\prime}\right)\right) \in E_{p}$. Since f is an isomorphism and $E_{p} \subseteq E,\left(\left(g, l_{p}, r\right),\left(g^{\prime}, l_{p}, r^{\prime}\right)\right)$ is an arc in $\operatorname{Cay}(S, A)$. Then there exists $\left(a, l, r^{\prime \prime}\right) \in A$ such that $\left(g^{\prime}, l_{p}, r^{\prime}\right)=\left(g, l_{p}, r\right)\left(a, l, r^{\prime \prime}\right)=$ $\left(g a, l_{p}, r^{\prime \prime}\right)$. Hence, $g^{\prime}=g a, r^{\prime}=r^{\prime \prime}$, and thus $\left(g^{\prime}, l_{q}, r^{\prime}\right)=\left(g a, l_{q}, r^{\prime \prime}\right)=$ $\left(g, l_{q}, r\right)\left(a, l, r^{\prime \prime}\right)$. Then $\left(\left(g, l_{q}, r\right),\left(g^{\prime}, l_{q}, r^{\prime}\right)\right)$ is an arc in $\operatorname{Cay}(S, A)$. Since f is an isomorphism, it follows that $\left(f\left(g, l_{q}, r\right), f\left(g^{\prime}, l_{q}, r^{\prime}\right)\right) \in E_{q}$. This shows that ϕ is a digraph homomorphism. Similarly, ϕ^{-1} is a digraph homomorphism. Hence ϕ is a digraph isomorphism.

Next, we will prove that $(V, E)=\dot{\bigcup}_{i=1}^{n}\left(V_{i}, E_{i}\right)$, i.e. $V=\dot{\bigcup}_{i=1}^{n} V_{i}$ and $E=\dot{\bigcup}_{i=1}^{n} E_{i}$. By the definition of V_{i} and f is a digraph isomorphism, we get $V_{i} \bigcap V_{j}=\emptyset$ for every $i \neq j$ in $\{1,2, \ldots, n\}$. Hence $\dot{\bigcup}_{i=1}^{n} V_{i}:=\dot{\bigcup}_{i=1}^{n} f\left(G \times\left\{l_{i}\right\} \times\right.$ $\left.R_{m}\right)=f\left(\dot{\bigcup}_{i=1}^{n} G \times\left\{l_{i}\right\} \times R_{m}\right)=f(S)=V$. Suppose that $E \neq \dot{U}_{i=1}^{n} E_{i}$. By the definition of E_{i}, we get $\dot{\bigcup}_{i=1}^{n} E_{i} \varsubsetneqq E$ Then there exists $(x, y) \in E$ such that $(x, y) \notin \dot{\bigcup}_{i=1}^{n} E_{i}$. Therefore $x=f\left(g, l_{k}, r\right) \in V_{k}$ and $y=f\left(g^{\prime}, l_{t}, r^{\prime}\right) \in$ V_{t} for some $k, t \in\{1,2, \ldots, n\}$. . Hence $\left(f\left(g, l_{k}, r\right), f\left(g^{\prime}, l_{t}, r^{\prime}\right)\right) \in E$, and thus $\left(\left(g, l_{k}, r\right),\left(g^{\prime}, l_{t}, r^{\prime}\right)\right)$ is an arc in $\operatorname{Cay}(S, A)$, since f is an isomorphism. Then there exists $\left(a, l, r^{\prime \prime}\right) \in A$ such that $\left(g^{\prime}, l_{q}, r^{\prime}\right)=\left(g, l_{p}, r\right)\left(a, l, r^{\prime \prime}\right)=$ $\left(g a, l_{p}, r^{\prime \prime}\right)$. Therefore $l_{q}=l_{p}$ and thus $q=p$. This is a contradiction, so $E=\dot{\bigcup}_{i=1}^{n} E_{i}$.
(2) For each $i \in\{1,2, \ldots, n\}$, and $\alpha \in\{1,2, \ldots, m\}$, set $V_{i \alpha}:=f\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right)$, $E_{i \alpha}:=E \cap\left(V_{i \alpha} \times V_{i \alpha}\right)$, and $B_{i \alpha}:=\left\{\left(g, l_{i}, r_{\alpha}\right) \mid\left(g, l, r_{\alpha}\right) \in A\right\}$. Therefore $\left(V_{i 1}, E_{i 1}\right),\left(V_{i 2}, E_{i 2}\right), \ldots,\left(V_{i m}, E_{i m}\right)$ are strong subdigraphs of $\left(V_{i}, E_{i}\right)$. It is clear that $G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}$ is a group, and $B_{i \alpha} \subseteq G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}$. Define $\psi_{i \alpha}:\left(V_{i \alpha}, E_{i \alpha}\right) \rightarrow \operatorname{Cay}\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}, B_{i \alpha}\right)$ by

$$
\psi_{i \alpha}\left(f\left(g, l_{i}, r_{\alpha}\right)\right)=\left(g, l_{i}, r_{\alpha}\right)
$$

Since f is an isomorphism, $\psi_{i \alpha}$ is also an isomorphism. In particular, $\psi_{i \alpha}=$ $\left.f^{-1}\right|_{V_{i \alpha}}$, where $\left.f^{-1}\right|_{V_{i \alpha}}$ is the restriction of f^{-1} to $V_{i \alpha}$. Hence $\left(V_{i \alpha}, E_{i \alpha}\right)$ is a Cayley graph of group $G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}$.

Let $\alpha, \beta \in R_{m}$ and $\alpha \neq \beta$. Since $\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right) \cap\left(G \times\left\{l_{i}\right\} \times\left\{r_{\beta}\right\}\right)=\emptyset$ and f is an isomorphism, we get $f\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right) \cap f\left(G \times\left\{l_{i}\right\} \times\left\{r_{\beta}\right\}\right)=\emptyset$, thus $V_{i \alpha} \cap V_{i \beta}=\emptyset$. By the definition of $E_{i \alpha}$ and $E_{i \beta}$, we have $E_{i \alpha} \cap E_{i \beta}=$ \emptyset. Therefore $\left(V_{i \alpha}, E_{i \alpha}\right)$ and $\left(V_{i \beta}, E_{i \beta}\right)$ are disjoint subdigraphs of $\left(V_{i}, E_{i}\right)$. Hence $\bigcup_{\alpha=1}^{m}$ Vio $=\bigcup_{\alpha=1}^{m} f\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right)=f\left(\bigcup_{\alpha=1}^{m}\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right)\right)=$ $f\left(G \times\left\{l_{i}\right\} \times R_{m}\right)=V_{i}$
(3) From (2), we have $\left(V_{i \alpha}, E_{i \alpha}\right) \cong \operatorname{Cay}\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}, B_{i \alpha}\right)$. Let p_{1} be the projection of $G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}$ onto its first coordinate. Then p_{1} is a group isomorphism from $G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}$ onto G, and $p_{1}\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right)=G$. Hence $\operatorname{Cay}\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}, B_{i \alpha}\right) \cong \operatorname{Cay}\left(p_{1}\left(G \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right), p_{1}\left(B_{i \alpha}\right)\right)=$ $\operatorname{Cay}\left(G, p_{1}\left(B_{i \alpha}\right)\right)$. Let $A_{i \alpha}:=p_{1}\left(B_{i \alpha}\right)$. Therefore $\left(V_{i \alpha}, E_{i \alpha}\right) \cong \operatorname{Cay}\left(G, A_{i \alpha}\right)$, thus we have an isomorphism

$$
\varphi_{i \alpha}=p_{1} \circ \psi_{i \alpha}:\left(V_{i \alpha}, E_{i \alpha}\right) \rightarrow \operatorname{Cay}\left(G, A_{i \alpha}\right)
$$

Let $k, t \in\{1,2, \ldots, n\}$. Take $g \in A_{k \alpha}$. Then we get $\left(g, l_{k}, r_{\alpha}\right) \in B_{k \alpha}$. By the definition of $B_{k \alpha}$, there exists $l \in L_{n}$ such that $\left(g, l, r_{\alpha}\right) \in A$. Therefore we have $\left(g, l_{t}, r_{\alpha}\right) \in B_{t \alpha}$, hence $g \in A_{t \alpha}$. This shows that $A_{k \alpha} \subseteq A_{t \alpha}$. Similarly, $A_{t \alpha} \subseteq A_{k \alpha}$. Thus $A_{i \alpha}=A_{j \alpha}$ for all $i, j \in\{1,2, \ldots, n\}$.
(4) For each $i \in\{1,2, \ldots, n\}$, and $\alpha, \beta \in\{1,2, \ldots, m\}$, take $f\left(g, l_{i}, r_{\alpha}\right) \in V_{i \alpha}$, and $f\left(g^{\prime}, l_{i}, r_{\beta}\right) \in V_{i \beta}$. We will prove that $\left(f\left(g, l_{i}, r_{\alpha}\right), f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right) \in E$ if and only if $\varphi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=\varphi_{i \alpha}\left(f\left(g, l_{i}, r_{\alpha}\right)\right) a$ for some $a \in A_{i \beta}$.
(\Rightarrow) Let $\left(f\left(g, l_{i}, r_{\alpha}\right), f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right) \in E$. Then $\left(\left(g, l_{i}, \alpha\right),\left(g^{\prime}, l_{i}, \beta\right)\right)$ is an arc in $\operatorname{Cay}(S, A)$, since f is an isomorphism. Hence there exists $\left(a, l_{j}, r_{\xi}\right) \in A$ such that $\left(g^{\prime}, l_{i}, r_{\beta}\right)=\left(g, l_{i}, \alpha\right)\left(a, l_{j}, r_{\xi}\right)=\left(g a, l_{i}, r_{\xi}\right)$. Therefore $g^{\prime}=g a, r_{\beta}=r_{\xi}$. Then we have $\left(a, l_{j}, r_{\beta}\right)=\left(a, l_{j}, r_{\xi}\right) \in A$. By the definition of $B_{i \beta}$, there exists $\left(a, l_{i}, r_{\beta}\right) \in B_{i \beta}$, and hence $a=p_{1}\left(\left(a, l_{i}, r_{\beta}\right)\right) \in p_{1}\left(B_{i \beta}\right)=A_{i \beta}$. Since $\psi_{i \alpha}=\left.f^{-1}\right|_{V_{i \alpha}}$, we get $\psi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=\left(g^{\prime}, l_{i}, r_{\beta}\right)$ and $\psi_{i \alpha}\left(f\left(g, l_{i}, r_{\xi}\right)\right)=$ $\left(g, l_{i}, r_{\xi}\right)$. Therefore $p_{1} \circ \psi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=g^{\prime}$ and $p_{1} \circ \psi_{i \alpha}\left(f\left(g, l_{i}, r_{\xi}\right)\right)=g$. Hence

$$
p_{1} \circ \psi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=g^{\prime}=g a=p_{1} \circ \psi_{i \alpha}\left(f\left(g, l_{i}, r_{\xi}\right)\right) a
$$

Since $p_{1} \circ \psi_{i \alpha}=\varphi_{i \alpha}$, we have $\varphi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=\varphi_{i \alpha}\left(f\left(g, l_{i}, r_{\xi}\right)\right) a$.
(\Leftarrow) Let $\varphi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=\varphi_{i \alpha}\left(f\left(g, l_{i}, r_{\alpha}\right)\right) a$ for some $a \in A_{i \beta}$. Then there exists $\left(a, l_{i}, r_{\beta}\right) \in B_{i \beta}$. Since $\psi_{i \alpha}=\left.f^{-1}\right|_{V_{i \alpha}}$ and $\psi_{i \beta}=\left.f^{-1}\right|_{V_{i \beta}}$, we get $\psi_{i \alpha}\left(f\left(g, l_{i}, r_{\alpha}\right)\right)=\left(g, l_{i}, r_{\alpha}\right)$ and $\psi_{i \beta}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=\left(g^{\prime}, l_{i}, r_{\beta}\right)$, respectively. Therefore $\varphi_{i \alpha}\left(f\left(g, l_{i}, r_{\alpha}\right)\right)=p_{1} \circ \psi_{i \alpha}\left(f\left(g, l_{i}, r_{\alpha}\right)\right)=g$ and $\varphi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=$ $p_{1} \circ \psi_{i \beta}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=g^{\prime}$. Hence $g^{\prime}=\varphi_{i \alpha}\left(f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)=\varphi_{i \alpha}\left(f\left(g, l_{i}, r_{\alpha}\right)\right) a=$ $g a$. By the definition of $B_{i \beta}$ and $\left(a, l_{i}, r_{\beta}\right) \in B_{i \beta}$, we have $\left(a, l, r_{\beta}\right) \in A$ for some $l \in L_{m}$. Therefore $\left(g^{\prime}, l_{i}, r_{\beta}\right)=\left(g a, l_{i}, r_{\beta}\right)=\left(g, l_{i}, r_{\alpha}\right)\left(a, l, r_{\beta}\right)$. Then $\left(\left(g, l_{i}, r_{\alpha}\right),\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)$ is an arc in $C a y(S, A)$ and thus $\left(f\left(g, l_{i}, r_{\alpha}\right), f\left(g^{\prime}, l_{i}, r_{\beta}\right)\right)$ $\in E$.
(\Leftarrow) By (1) and (2), we get $V=\bigcup_{i=1}^{n} \bigcup_{\alpha=1}^{m} V_{i \alpha}$ is the disjoint union. Choose $k \in\{1,2, \ldots, n\}$, and let $A:=\bigcup_{\alpha=1}^{m}\left(A_{k \alpha} \times\left\{l_{k}\right\} \times\left\{r_{\alpha}\right\}\right)$. We will show that $(V, E) \cong$ $C a y\left(\left(G \times L_{n} \times R_{m}\right), A\right)$. Define a map f from (V, E) to $C a y\left(\left(G \times L_{n} \times R_{m}\right), A\right)$ by

$$
f(v)=\left(\varphi_{i \alpha}(v), l_{i}, r_{\alpha}\right) \text { for any } v \in V_{i \alpha}, i\{1,2, \ldots, n\}, \text { and } \alpha \in\{1,2, \ldots, m\} .
$$

Let $u, v \in V$ and $u=v$. Then $u=v \in V_{j \beta}$ for some $j \in\{1,2, \ldots, n\}$ and $\beta \in\{1,2, \ldots, m\}$. Hence $\varphi_{j \beta}(u)=\varphi_{j \beta}(v)$ and $\left(\varphi_{j \beta}(u), l_{j}, r_{\beta}\right)=\left(\varphi_{j \beta}(v), l_{j}, r_{\beta}\right)$. Therefore f is well defined. Let $u, v \in V$ and $f(u)=f(v)$. Then $u \in V_{j \beta}$ and $v \in V_{t \delta}$ for some $j, t \in\{1,2, \ldots, n\}$ and $\beta, \delta \in\{1,2, \ldots, m\}$, thus

$$
\left(\varphi_{j \beta}(u), l_{j}, r_{\beta}\right)=f(u)=f(v)=\left(\varphi_{t \delta}(v), l_{t}, r_{\delta}\right)
$$

Hence $\varphi_{j \beta}(u)=\varphi_{t \delta}(v), l_{j}=l_{t}$, and $r_{\beta}=r_{\delta}$. Therefore $j=t$ and $\beta=\delta$. Then $u, v \in V_{j \beta}$ and $\varphi_{j \beta}(u)=\varphi_{j \beta}(v)$. Since $\varphi_{j \beta}$ is an isomorphism, $u=v$. This shows that f is an injection.

By (2), we get $|G|=\left|V_{i \alpha}\right|$ for all $i \in\{1,2, \ldots, n\}$ and $\alpha \in\{1,2, \ldots, m\}$. Thus $\left|G \times L_{n} \times R_{m}\right|=\left|\dot{\bigcup}_{i=1}^{n}\right| \dot{\cup}_{\alpha=1}^{m} V_{i \alpha}|=|V|$. Hence f is a surjection.

Let $u, v \in V$ and $(u, v) \in E$. By (1), we get $u, v \in V_{j}$ for some $j \in$ $\{1,2, \ldots, n\}$. Then there are $\beta, \delta \in\{1,2, \ldots, m\}$ such that $u \in V_{j \beta}$ and $v \in V_{j \delta}$ by (2). From (4), we get $\varphi_{j \delta}(v)=\varphi_{j \beta}(u) a$ for some $a \in A_{j \delta}$. By (3), $a \in A_{k \delta}$. Hence $\left(a, l_{k}, r_{\delta}\right) \in\left(A_{k \delta} \times\left\{l_{k}\right\} \times\left\{r_{\delta}\right\}\right) \subseteq A$. Since $f(v)=\left(\varphi_{j \delta}(v), l_{j}, r_{\delta}\right)=$ $\left(\varphi_{j \beta}(u) a, l_{j}, r_{\delta}\right)=\left(\varphi_{j \beta}(u), l_{j}, r_{\beta}\right)\left(a, l_{k}, r_{\delta}\right)=f(u)\left(a, l_{k}, r_{\delta}\right)$, we have $(f(u), f(v))$ is an arc in $\operatorname{Cay}\left(\left(G \times L_{n} \times R_{m}\right), A\right)$. This shows that f is a digraph homomorphism.

Let $g, g^{\prime} \in G, j, t \in\{1,2, \ldots, n\}, \beta, \delta \in\{1,2, \ldots, m\}$, and let $\left(\left(g, l_{j}, r_{\beta}\right),\left(g^{\prime}, l_{t}, r_{\delta}\right)\right)$ be an arc in $\operatorname{Cay}\left(G \times L_{n} \times R_{m}, A\right)$. Then there exists $\left(a, l_{q}, r_{\xi}\right) \in A$ such that $\left(g^{\prime}, l_{t}, r_{\delta}\right)=\left(g, l_{j}, r_{\beta}\right)\left(a, l_{q}, r_{\xi}\right)=\left(g a, l_{j}, r_{\xi}\right)$. Therefore $g^{\prime}=g a, l_{t}=l_{j}$, and $r_{\delta}=r_{\xi}$. Thus $t=j$, and $\delta=\xi$. By (3) and $g, g^{\prime} \in G$, there exists $u \in V_{j \beta}$ and $v \in V_{j \delta}$ such that $\varphi_{j \beta}(u)=g$ and $\varphi_{j \delta}(v)=g^{\prime}$. Therefore $\varphi_{j \delta}(v)=g^{\prime}=g a=$ $\varphi_{j \beta}(u) a$. Since $A=\bigcup_{\alpha=1}^{m}\left(A_{k \alpha} \times\left\{l_{k}\right\} \times\left\{r_{\alpha}\right\}\right)$ and $\left(a, l_{q}, r_{\delta}\right) \in A$, we get $q=k$ and $a \in A_{k \delta}$. By (3) again, $a \in A_{j \delta}$. From (4), we get $\left(f^{-1}\left(g, l_{j}, r_{\beta}\right), f^{-1}\left(g^{\prime}, l_{t}, r_{\delta}\right)\right)=$ $\left(f^{-1}\left(\varphi_{j \beta}(u), l_{j}, r_{\beta}\right), f^{-1}\left(\varphi_{j \delta}(v), l_{j}, r_{\delta}\right)\right)=(u, v) \in E$. Thus f^{-1} is a digraph homomorphism.

Example 3.5 will illustrate this result.
Consider a right group $S=G \times R_{m}$ where G is a group, and $R_{m}=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ an n-element right zero semigroup. It is clear that $G \times R_{m} \cong G \times L_{1} \times R_{m}$ where L_{1} is the 1-element left zero semigroup. Hence we get a Cayley graph of a right group is a Cayley graph of a rectangular group. Hence we have the following result.

Corollary 3.2. [1] Let (V, E) is a digraph. Then (V, E) is a Cayley graph of right group if and only if the following conditions hold:
(1) there exists a group G and $m \in \mathbb{N}$ such that (V, E) contains m disjoint strong subdigraph Cayley graphs of $G\left(V_{1}, E_{1}\right),\left(V_{2}, E_{2}\right), \ldots,\left(V_{m}, E_{m}\right)$, and $V_{i}=\bigcup_{\alpha=1}^{m} V_{i \alpha}$,
(2) for each $\alpha \in\{1,2, . ., m\}$, there exists a digraph isomorphism $\varphi_{\alpha}:\left(V_{\alpha}, E_{\alpha}\right) \rightarrow$ $\operatorname{Cay}\left(G, A_{\alpha}\right)$, for some $A_{\alpha} \subseteq G$,
(3) for each $\alpha, \beta \in\{1,2, \ldots, m\}$, and for each $u \in V_{\alpha}, v \in V_{\beta},(u, v) \in E$ if and only if $\varphi_{\beta}(v)=\varphi_{\alpha}(u)$ a for some $a \in A_{\beta}$.
Consider a rectangular band $S=L_{n} \times R_{m}$ where $L_{n}=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$ is a left zero semigroup, and $R_{m}=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ a right zero semigroup. It is clear that $L_{n} \times R_{m} \cong G \times L_{n} \times R_{m}$ when $G=\{e\}$ is the trivial group. Hence we have the following result.

Corollary 3.3. [1] Let (V, E) is a digraph. Then (V, E) is a Cayley graph of left group if and only if the following conditions hold:
(1) (V, E) is the disjoint union of n isomorphic subdigraphs $\left(V_{1}, E_{1}\right),\left(V_{2}, E_{2}\right), \ldots$, $\left(V_{n}, E_{n}\right)$ for some $n \in \mathbb{N}$,
(2) there exists a group G such that $\left(V_{i}, E_{i}\right), i \in\{1,2, . ., n\}$, are strong subdigraph Cayley graphs of G,
(3) there exists a digraph isomorphism $\varphi_{i}:\left(V_{i}, E_{i}\right) \rightarrow \operatorname{Cay}\left(G, A_{i}\right)$, for some $A_{i} \subseteq G$, and $A_{j}=A_{k}$ for all $j, k \in\{1,2, \ldots, n\}$,
(4) for each $\alpha, \beta \in\{1,2, \ldots, m\}$, and $u, v \in V_{i},(u, v) \in E$ if and only if $\varphi_{i}(v)=$ $\varphi_{i}(u) a$ for some $a \in A_{i}$.
Consider a rectangular band $S=L_{n} \times R_{m}$ where $L_{n}=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$ is a left zero semigroup, and $R_{m}=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ a right zero semigroup. It is clear that $L_{n} \times R_{m} \cong G \times L_{n} \times R_{m}$ when $G=\{e\}$ is the trivial group. Hence we have the following result.

Corollary 3.4. Let (V, E) is a digraph. Then (V, E) is a Cayley graph of rectangular band if and only if the following conditions hold:
(1) (V, E) is the disjoint union of n isomorphic subdigraphs $\left(V_{1}, E_{1}\right),\left(V_{2}, E_{2}\right), \ldots$, $\left(V_{n}, E_{n}\right)$ for some $n \in \mathbb{N}$,
(2) there exists $m \in \mathbb{N}$ such that $\left(V_{i}, E_{i}\right), i \in\{1,2, . ., n\}$, contains m disjoint strong subdigraphs $\left(\left\{v_{i 1}\right\}, E_{i 1}\right),\left(\left\{v_{i 2}\right\}, E_{i 2}\right), \ldots,\left(\left\{v_{i m}\right\}, E_{i m}\right)$ and $V_{i}=$ $\left\{v_{i 1}, v_{i 2}, \ldots, v_{i m}\right\}$.
(3) for each $\alpha \in\{1,2, . . . m\},\left|E_{i \alpha}\right|=\left|E_{j \alpha}\right|$ for all $i, j \in\{1,2, \ldots, n\}$.
(4) for each $i \in\{1,2, . ., n\}, \alpha, \beta \in\{1,2, \ldots, m\}$, and for each $u \in V_{i \alpha}, v \in V_{i \beta}$, $(u, v) \in E$ if and only if $(v, v) \in E_{i \beta}$.
Example 3.6 will illustrate this result.
Example 3.5. Consider the rectangular group $S=\mathbb{Z}_{4} \times L_{2} \times R_{3}$ where $\mathbb{Z}_{4}=$ $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ denotes the 4 -element cyclic group, $L_{2}=\left\{l_{1}, l_{2}\right\}$ the 2 -element left zero semigroup, and $R_{3}=\left\{r_{1}, r_{2}, r_{3}\right\}$ the 3-element right zero semigroup. For any element $(g, l, r) \in S$, we may write $(g, l, r)=g l r$. Let $A=\left\{\left(\overline{1}, l_{1}, r_{1}\right),\left(\overline{2}, l_{2}, r_{2}\right)\right\}$. Then we give the Cayley graph Cay (S, A).

Fig. 1.
From the picture, we have
(1) $\operatorname{Cay}(S, A)$ is the union of two isomorphic subdigraphs $\left(\left(\mathbb{Z}_{4} \times\left\{l_{1}\right\} \times R_{3}\right), E_{1}\right)$ and $\left(\left(\mathbb{Z}_{4} \times\left\{l_{2}\right\} \times R_{3}\right), E_{2}\right)$.
(2) For each $i \in\{1,2\},\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times R_{3}\right), E_{i}\right)$ contains three strong subdigraph Cayley graphs of \mathbb{Z}_{4}
$\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times\left\{r_{1}\right\}\right), E_{i 1}\right) \cong \operatorname{Cay}\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times\left\{r_{1}\right\}\right),\left\{\left(1, l_{i}, r_{1}\right)\right\}\right) \cong \operatorname{Cay}\left(\mathbb{Z}_{4},\{\overline{1}\}\right)$, $\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times\left\{r_{2}\right\}\right), E_{i 2}\right) \cong \operatorname{Cay}\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times\left\{r_{2}\right\}\right),\left\{\left(2, l_{i}, r_{2}\right)\right\}\right) \cong \operatorname{Cay}\left(\mathbb{Z}_{4},\{\overline{2}\}\right)$, and $\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times\left\{r_{3}\right\}\right), E_{i 3}\right) \cong \operatorname{Cay}\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times\left\{r_{3}\right\}\right), \emptyset\right) \cong \operatorname{Cay}\left(\mathbb{Z}_{4}, \emptyset\right)$.
(3) From (2), we have $A_{12}=A_{22}=\{\overline{2}\}, A_{13}=A_{23}=\emptyset, A_{11}=A_{21}=\{\overline{1}\}$, and $p_{1}=\varphi_{i \alpha}:\left(\left(\mathbb{Z}_{4} \times\left\{l_{i}\right\} \times\left\{r_{\alpha}\right\}\right), E_{i \alpha}\right) \rightarrow \operatorname{Cay}\left(\mathbb{Z}_{4}, A_{i \alpha}\right)$ is a digraph isomorphism for all $i \in\{1,2\}$ and $\alpha \in\{1,2,3\}$.
(4) We see that $\left(\left(g, l_{i}, r_{\alpha}\right),\left(g^{\prime}, l_{j}, r_{\beta}\right)\right)$ is an arc in $\operatorname{Cay}(S, A)$ if and only if $g^{\prime}=g a$ for some $a \in A_{j \beta}$. For example, we have $\left(\left(\overline{1}, l_{1}, r_{3}\right),\left(\overline{3}, l_{1}, r_{2}\right)\right)$ is an arc in $\operatorname{Cay}(S, A), \overline{3}=\overline{1}+\overline{2}$, and $\overline{2} \in A_{12}$.

Example 3.6. Consider the rectangular band $S=L_{4} \times R_{3}$ where $L_{4}=\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\}$ the 4 -element left zero semigroup, and $R_{3}=\left\{r_{1}, r_{2}, r_{3}\right\}$ the 3-element right zero semigroup. Let $A=\left\{\left(l_{1}, r_{1}\right),\left(l_{2}, r_{2}\right)\right\}$. Then we give the Cayley graph Cay (S, A).

Fig. 2.
From the picture, we have
(1) $\operatorname{Cay}(S, A)$ is the union of four isomorphic subdigraphs $\left(\left(\left\{l_{1}\right\} \times R_{3}\right), E_{1}\right),\left(\left(\left\{l_{2}\right\} \times\right.\right.$ $\left.\left.R_{3}\right), E_{2}\right),\left(\left(\left\{l_{3}\right\} \times R_{3}\right), E_{3}\right)$, and $\left(\left(\left\{l_{4}\right\} \times R_{3}\right), E_{4}\right)$.
(2) For each $i \in\{1,2,3,4\},\left(\left(\left\{l_{i}\right\} \times R_{3}\right), E_{i}\right)$ contains three strong subdigraphs $\left.\left.\left(\left\{l_{i} r_{1}\right\}, E_{i 1}\right),\left(\left\{l_{i} r_{2}\right\}\right), E_{i 2}\right),\left(\left\{l_{i} r_{3}\right\}\right), E_{i 3}\right)$, where $E_{i 1}=\left\{\left(l_{i} r_{1}, l_{i} r_{1}\right)\right\}, E_{i 2}=$ $\left\{\left(l_{i} r_{2}, l_{i} r_{2}\right)\right\}$, and $E_{i 3}=\emptyset$.
(3) From (2), we have $\left|E_{11}\right|=\left|E_{21}\right|=\left|E_{31}\right|=\left|E_{41}\right|=1,\left|E_{12}\right|=\left|E_{22}\right|=$ $\left|E_{32}\right|=\left|E_{42}\right|=1,\left|E_{13}\right|=\left|E_{23}\right|=\left|E_{33}\right|=\left|E_{43}\right|=0$.
(4) We see that $\left(\left(l_{i}, r_{\alpha}\right),\left(l_{j}, r_{\beta}\right)\right)$ is an arc in $\operatorname{Cay}(S, A)$
if and only if $\left(\left(l_{j}, r_{\alpha}\right),\left(l_{j}, r_{\beta}\right)\right) \in E_{j \beta}$. For example, we have $\left(\left(l_{1}, r_{3}\right),\left(l_{1}, r_{1}\right)\right)$ is an arc in $\operatorname{Cay}(S, A)$, and $\left(\left(l_{1}, r_{1}\right),\left(l_{1}, r_{1}\right)\right) \in E_{11}$.

Acknowledgements : This research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

References

[1] Sr. Arworn, U. Knauer and N. Na Chiangmai, Characterization of Digraphs of Right (Left) Zero Unions of Groups, Thai Journal of Mathematics, 1 (2003), 131-140.
[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, London, 1996.
[4] M.-C. Heydemann, Cayley graphs and interconnection networks, in G. Hahn, G. Sabidussi (eds.), Graph Symmetry, Kluwer, (1997), 167-224.
[5] A. V. Kelarev, On Undirected Cayley Graphs, Australasian Journal of Combinatorics, 25 (2002), 73-78.
[6] A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.
[7] A. V. Kelarev, Labelled Cayley Graphs and Minimal Automata, Australasian Journal of Combinatorics, 30 (2004), 95-101.
[8] A. V. Kelarev and C. E. Praeger, On Transitive Cayley Graphs of Groups and Semigroups, European Journal of Combinatorics, 24 (2003), 59-72.
[9] A. V. Kelarev and S. J. Quinn, A Combinatorial Property and Cayley Graphs of Semigroups, Semigroup Forum, 66 (2003), 89-96.
[10] M. Kilp, U. Knauer and A. V. Mikhalev, Monoids, Acts and Categories, W. de Gruyter, Berlin, 2000.
[11] N. Na Chiangmai, On Graphs Defined from Algebraic Systems, Master Thesis, Chulalongkorn University, Bangkok, 1975.
[12] S. Panma, U. Knauer and Sr. Arworn, On Transitive Cayley Graphs of Right (Left) Groups and of Clifford Semigroups, Thai Journal of Mathematics, 2 (2004), 183-195.
[13] S. Panma, U. Knauer, N. Na Chiangmai and Sr. Arworn, Characterization of Clifford Semigroup Digraphs, Discrete Mathematics, 306 (2006), 1247-1252.
[14] M. Petrich and N. Reilly, Completely Regular Semigroups, J. Wiley, New York, 1999.
[15] G. Sabidussi, On a Class of fixed-point-free Graphs, Proc. Amer. Math. Soc., 9 (1958), 800-804.
[16] A. T. White, Graphs, Groups and Surfaces, Elsevier, Amsterdam, 2001.
(Received 3 August 2010)
S. Panma

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand
e-mail : panmayan@yahoo.com

