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Rectangular Groups
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Abstract : A digraph (V,E) is a Cayley graph of semigroup(group) if there exists
a semigroup(group) S and A ⊆ S such that (V,E) is isomorphic to the Cayley
graph Cay(S,A). In this paper, we characterize digraphs which are Cayley graphs
of rectangular groups.
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1 Introduction

One of the previously known investigations of algebraic structures on Cayley
graphs can be found in Maschke’s Theorem from 1896 about groups of genus zero.
A group of genus zero is a group G which possess a generating system A such that
the Cayley graph Cay(G,A) is planar, see for example [16]. In [15] Cayley graphs
which represent groups are described. It is natural to investigate Cayley graphs for
semigroups which are unions of groups, so-called completely regular semigroups,
see for example [14]. In [1,13] Cayley graphs which represent completely regular
semigroups which are right (left) groups and Clifford semigroups are characterized.
We now characterize digraphs which are Cayley graphs of rectangular groups.

2 Basic definitions and results

All sets in this paper are assumed to be finite. A groupoid is a non-empty
set G together with a binary operation on G. A semigroup is a groupoid G which
is associative. A monoid is a semigroup G which contains an (two-sided) identity
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element eG ∈ G. A group is a monoid G such that for every a ∈ G there exists a
group inverse a−1 ∈ G such that a−1a = aa−1 = eG.

A semigroup S is said to be a right (left) zero semigroup if xy = y (xy = x)
for all x, y ∈ S.A semigroup S is called a right(left) group if it is isomorphic to
the direct product of a group and a right (left) zero semigroup. A semigroup S is
rectangular band if it is isomorphic to the direct product of a left zero semigroup
and a right zero semigroup. A semigroup S is called a rectangular group if it is
isomorphic to the direct product of a group and a rectangular band. It is clear
that a right (left) zero semigroup, a right(left) group, and a rectangular band are
rectangular groups.

Let (V1, E1) and (V2, E2) be digraphs. A mapping ϕ : V1 → V2 is called a
(digraph) homomorphism if (u, v) ∈ E1 implies (ϕ(u), ϕ(v)) ∈ E2, i.e. ϕ preserves
arcs. We write ϕ : (V1, E1) → (V2, E2). A digraph homomorphism ϕ : (V,E) →
(V,E) is called an (digraph) endomorphism. If ϕ : (V1, E1) → (V2, E2) is a bijective
digraph homomorphism and ϕ−1 is also a digraph homomorphism, then ϕ is called
an (digraph) isomorphism. A digraph isomorphism ϕ : (V,E) → (V,E) is called
an (digraph) automorphism. All digraph automorphisms form a group, called the
automorphism group of (V,E) and denoted by Aut(V,E).

Let S be a semigroup(group) and A ⊆ S. We define the Cayley graph
Cay(S,A) as follows: S is the vertex set and (u, v), u, v ∈ S, is an arc in Cay(S,A)
if there exists an element a ∈ A such that v = ua.

Theorem 2.1. ([2], [11], [15]) A digraph (V,E) is a Cayley graph of a group G if
and only if Aut(V,E) contains a subgroup △ which is isomorphic to G and for
any two vertices u, v ∈ V there exists σ ∈ △ such that σ(u) = v.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, V1 ∩ V2 = ∅. The disjoint

union of G1 and G2 is defined as G1

⋃̇
G2 := (V1 ∪ V2, E1 ∪ E2).

For terms in Graph Theory not defined here see for example [2].

3 Main results

A subdigraph (V ′, E′) of a graph (V,E) is called a strong subdigraph of (V,E)
if whenever u, v ∈ V ′ and (u, v) ∈ E, then (u, v) ∈ E′. In the next theorem, we
characterize digraphs which are Cayley graphs of rectangular groups.

Theorem 3.1. A digraph (V,E) is a Cayley graph of a rectangular group if and
only if then the following conditions hold:

(1) (V,E) is the disjoint union of n isomorphic subdigraphs (V1, E1), (V2, E2),...,
(Vn, En) for some n ∈ N,

(2) there exists a group G and m ∈ N such that for each i ∈ {1, 2, .., n}, (Vi, Ei)
contains m disjoint strong subdigraphs (Vi1, Ei1), (Vi2, Ei2), ..., (Vim, Eim)
which are Cayley graphs of G, and Vi =

⋃m

α=1
Viα,
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(3) for each α ∈ {1, 2, ..,m}, there exists a digraph isomorphism ϕiα : (Viα, Eiα) →
Cay(G,Aiα) for some Aiα ⊆ G, such that Ajα = Akα for all j, k ∈ {1, 2, ..., n},

(4) for each α, β ∈ {1, 2, ...,m}, and for each u ∈ Viα, v ∈ Viβ , (u, v) ∈ E if and
only if ϕiβ(v) = ϕiα(u)a for some a ∈ Aiβ .

Proof. (⇒) Let (V,E) be a Cayley graph of rectangular group. Then there exists
a rectangular group S = G × Ln × Rm where G is a group, Ln = {l1, l2, ..., ln} a
left zero semigroup, and Rm = {r1, r2, ..., rm} a right zero semigroup, such that
(V,E) ∼= Cay(S,A) for some A ⊆ S. Let f be an isomorphism from Cay(S,A)
onto (V,E).

(1) For each i ∈ {1, 2, ..., n}, set Vi := f(G × {li} × Rm), and Ei := E ∩
(Vi × Vi). Hence (Vi, Ei) is a strong subdigraph of (V,E). We will show
that (V1, E1), (V2, E2), ..., (Vn, En) are isomorphic subdigraphs. Let p, q ∈
{1, 2, .., n}, p 6= q, define a map φ from (Vp, Ep) to (Vq , Eq) by φ(f(g, lp, r)) =
f(g, lq, r). Since f is an isomorphism and |G×{lp}×Rm| = |G×{lq}×Rm|,
|Vp| = |Vq|. Therefore φ is a well defined bijection.

For f(g, lp, r), f(g′, lp, r
′) ∈ Vp, take (f(g, lp, r), f(g′, lp, r

′)) ∈ Ep. Since f
is an isomorphism and Ep ⊆ E, ((g, lp, r), (g

′, lp, r
′)) is an arc in Cay(S,A).

Then there exists (a, l, r′′) ∈ A such that (g′, lp, r
′) = (g, lp, r)(a, l, r

′′) =
(ga, lp, r

′′). Hence, g′ = ga, r′ = r′′, and thus (g′, lq, r
′) = (ga, lq, r

′′) =
(g, lq, r)(a, l, r

′′). Then ((g, lq, r), (g
′, lq, r

′)) is an arc in Cay(S,A). Since f
is an isomorphism, it follows that (f(g, lq, r), f(g′, lq, r

′)) ∈ Eq. This shows
that φ is a digraph homomorphism. Similarly, φ−1 is a digraph homomor-
phism. Hence φ is a digraph isomorphism.

Next, we will prove that (V,E) =
⋃̇n

i=1
(Vi, Ei), i.e. V =

⋃̇n

i=1
Vi and

E =
⋃̇n

i=1
Ei. By the definition of Vi and f is a digraph isomorphism, we get

Vi

⋂
Vj = ∅ for every i 6= j in {1, 2, ..., n}. Hence

⋃̇n

i=1
Vi :=

⋃̇n

i=1
f(G×{li}×

Rm) = f(
⋃̇n

i=1
G× {li} ×Rm) = f(S) = V . Suppose that E 6=

⋃̇n

i=1
Ei. By

the definition of Ei, we get
⋃̇n

i=1
Ei & E Then there exists (x, y) ∈ E such

that (x, y) /∈
⋃̇n

i=1
Ei. Therefore x = f(g, lk, r) ∈ Vk and y = f(g′, lt, r

′) ∈
Vt for some k, t ∈ {1, 2, ..., n}. . Hence (f(g, lk, r), f(g′, lt, r

′)) ∈ E, and
thus ((g, lk, r), (g

′, lt, r
′)) is an arc in Cay(S,A), since f is an isomorphism.

Then there exists (a, l, r′′) ∈ A such that (g′, lq, r
′) = (g, lp, r)(a, l, r

′′) =
(ga, lp, r

′′). Therefore lq = lp and thus q = p. This is a contradiction, so

E =
⋃̇n

i=1
Ei.

(2) For each i ∈ {1, 2, ..., n}, and α ∈ {1, 2, ...,m}, set Viα := f(G×{li}×{rα}),
Eiα := E ∩ (Viα × Viα), and Biα := {(g, li, rα)|(g, l, rα) ∈ A}. Therefore
(Vi1, Ei1), (Vi2, Ei2), ..., (Vim, Eim) are strong subdigraphs of (Vi, Ei). It is
clear that G × {li} × {rα} is a group, and Biα ⊆ G × {li} × {rα}. Define
ψiα : (Viα, Eiα) → Cay(G× {li} × {rα}, Biα) by

ψiα(f(g, li, rα)) = (g, li, rα).
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Since f is an isomorphism, ψiα is also an isomorphism. In particular, ψiα =
f−1|Viα

, where f−1|Viα
is the restriction of f−1 to Viα. Hence (Viα, Eiα) is

a Cayley graph of group G× {li} × {rα}.

Let α, β ∈ Rm and α 6= β. Since (G×{li}×{rα})∩(G×{li}×{rβ}) = ∅
and f is an isomorphism, we get f(G×{li}×{rα})∩f(G×{li}×{rβ}) = ∅,
thus Viα ∩ Viβ = ∅. By the definition of Eiα and Eiβ , we have Eiα ∩ Eiβ =
∅. Therefore (Viα, Eiα) and (Viβ , Eiβ) are disjoint subdigraphs of (Vi, Ei).
Hence

⋃m
α=1

V iα =
⋃m

α=1
f(G×{li}×{rα}) = f(

⋃m
α=1

(G×{li}×{rα})) =
f(G× {li} ×Rm) = Vi

(3) From (2), we have (Viα, Eiα) ∼= Cay(G × {li} × {rα}, Biα). Let p1 be the
projection of G × {li} × {rα} onto its first coordinate. Then p1 is a group
isomorphism from G × {li} × {rα} onto G, and p1(G × {li} × {rα}) = G.
Hence Cay(G × {li} × {rα}, Biα) ∼= Cay(p1(G × {li} × {rα}), p1(Biα)) =
Cay(G, p1(Biα)). Let Aiα := p1(Biα). Therefore (Viα, Eiα) ∼= Cay(G,Aiα),
thus we have an isomorphism

ϕiα = p1 ◦ ψiα : (Viα, Eiα) → Cay(G,Aiα).

Let k, t ∈ {1, 2, ..., n}. Take g ∈ Akα. Then we get (g, lk, rα) ∈ Bkα. By the
definition of Bkα, there exists l ∈ Ln such that (g, l, rα) ∈ A. Therefore we
have (g, lt, rα) ∈ Btα, hence g ∈ Atα. This shows that Akα ⊆ Atα. Similarly,
Atα ⊆ Akα. Thus Aiα = Ajα for all i, j ∈ {1, 2, ..., n}.

(4) For each i ∈ {1, 2, ..., n}, and α, β ∈ {1, 2, ...,m}, take f(g, li, rα) ∈ Viα, and
f(g′, li, rβ) ∈ Viβ . We will prove that (f(g, li, rα), f(g′, li, rβ)) ∈ E if and
only if ϕiα(f(g′, li, rβ)) = ϕiα(f(g, li, rα))a for some a ∈ Aiβ .
(⇒) Let (f(g, li, rα), f(g′, li, rβ)) ∈ E. Then ((g, li, α), (g′, li, β)) is an arc in
Cay(S,A), since f is an isomorphism. Hence there exists (a, lj , rξ) ∈ A such
that (g′, li, rβ) = (g, li, α)(a, lj , rξ) = (ga, li, rξ). Therefore g′ = ga, rβ = rξ.
Then we have (a, lj, rβ) = (a, lj , rξ) ∈ A. By the definition of Biβ , there
exists (a, li, rβ) ∈ Biβ , and hence a = p1((a, li, rβ)) ∈ p1(Biβ) = Aiβ . Since
ψiα = f−1|Viα

, we get ψiα(f(g′, li, rβ)) = (g′, li, rβ) and ψiα(f(g, li, rξ)) =
(g, li, rξ). Therefore p1 ◦ ψiα(f(g′, li, rβ)) = g′ and p1 ◦ ψiα(f(g, li, rξ)) = g.
Hence

p1 ◦ ψiα(f(g′, li, rβ)) = g′ = ga = p1 ◦ ψiα(f(g, li, rξ))a.

Since p1 ◦ ψiα = ϕiα, we have ϕiα(f(g′, li, rβ)) = ϕiα(f(g, li, rξ))a.
(⇐) Let ϕiα(f(g′, li, rβ)) = ϕiα(f(g, li, rα))a for some a ∈ Aiβ . Then there
exists (a, li, rβ) ∈ Biβ . Since ψiα = f−1|Viα

and ψiβ = f−1|Viβ
, we get

ψiα(f(g, li, rα)) = (g, li, rα) and ψiβ(f(g′, li, rβ)) = (g′, li, rβ), respectively.
Therefore ϕiα(f(g, li, rα)) = p1◦ψiα(f(g, li, rα)) = g and ϕiα(f(g′, li, rβ)) =
p1◦ψiβ(f(g′, li, rβ)) = g′. Hence g′ = ϕiα(f(g′, li, rβ)) = ϕiα(f(g, li, rα))a =
ga. By the definition of Biβ and (a, li, rβ) ∈ Biβ , we have (a, l, rβ) ∈ A for
some l ∈ Lm. Therefore (g′, li, rβ) = (ga, li, rβ) = (g, li, rα)(a, l, rβ). Then
((g, li, rα), (g′, li, rβ)) is an arc in Cay(S,A) and thus (f(g, li, rα), f(g′, li, rβ))
∈ E.
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(⇐) By (1) and (2), we get V =
⋃n

i=1

⋃m
α=1

Viα is the disjoint union. Choose
k ∈ {1, 2, ..., n}, and let A :=

⋃m

α=1
(Akα×{lk}×{rα}). We will show that (V,E) ∼=

Cay((G× Ln ×Rm), A). Define a map f from (V,E) to Cay((G× Ln × Rm), A)
by

f(v) = (ϕiα(v), li, rα) for any v ∈ Viα, i{1, 2, ..., n}, and α ∈ {1, 2, ...,m}.

Let u, v ∈ V and u = v. Then u = v ∈ Vjβ for some j ∈ {1, 2, ..., n} and
β ∈ {1, 2, ...,m}. Hence ϕjβ(u) = ϕjβ(v) and (ϕjβ(u), lj , rβ) = (ϕjβ(v), lj , rβ).
Therefore f is well defined. Let u, v ∈ V and f(u) = f(v). Then u ∈ Vjβ and
v ∈ Vtδ for some j, t ∈ {1, 2, ..., n} and β, δ ∈ {1, 2, ...,m}, thus

(ϕjβ(u), lj , rβ) = f(u) = f(v) = (ϕtδ(v), lt, rδ).

Hence ϕjβ(u) = ϕtδ(v), lj = lt, and rβ = rδ. Therefore j = t and β = δ. Then
u, v ∈ Vjβ and ϕjβ(u) = ϕjβ(v). Since ϕjβ is an isomorphism, u = v. This shows
that f is an injection.

By (2), we get |G| = |Viα| for all i ∈ {1, 2, ..., n} and α ∈ {1, 2, ...,m}. Thus

|G× Ln ×Rm| = |
⋃̇n

i=1

⋃̇m

α=1
Viα| = |V |. Hence f is a surjection.

Let u, v ∈ V and (u, v) ∈ E. By (1), we get u, v ∈ Vj for some j ∈
{1, 2, ..., n}. Then there are β, δ ∈ {1, 2, ...,m} such that u ∈ Vjβ and v ∈ Vjδ

by (2). From (4), we get ϕjδ(v) = ϕjβ(u)a for some a ∈ Ajδ. By (3), a ∈ Akδ.
Hence (a, lk, rδ) ∈ (Akδ × {lk} × {rδ}) ⊆ A. Since f(v) = (ϕjδ(v), lj , rδ) =
(ϕjβ(u)a, lj , rδ) = (ϕjβ(u), lj , rβ)(a, lk, rδ) = f(u)(a, lk, rδ), we have (f(u), f(v))
is an arc in Cay((G×Ln×Rm), A). This shows that f is a digraph homomorphism.

Let g, g′ ∈ G, j, t ∈ {1, 2, ..., n}, β, δ ∈ {1, 2, ...,m}, and let ((g, lj , rβ), (g′, lt, rδ))
be an arc in Cay(G × Ln × Rm, A). Then there exists (a, lq, rξ) ∈ A such that
(g′, lt, rδ) = (g, lj , rβ)(a, lq, rξ) = (ga, lj, rξ). Therefore g′ = ga, lt = lj , and
rδ = rξ. Thus t = j, and δ = ξ. By (3) and g, g′ ∈ G, there exists u ∈ Vjβ and
v ∈ Vjδ such that ϕjβ(u) = g and ϕjδ(v) = g′. Therefore ϕjδ(v) = g′ = ga =
ϕjβ(u)a. Since A =

⋃m

α=1
(Akα ×{lk}×{rα}) and (a, lq, rδ) ∈ A, we get q = k and

a ∈ Akδ. By (3) again, a ∈ Ajδ . From (4), we get (f−1(g, lj , rβ), f−1(g′, lt, rδ)) =
(f−1(ϕjβ(u), lj , rβ), f−1(ϕjδ(v), lj , rδ)) = (u, v) ∈ E. Thus f−1 is a digraph ho-
momorphism.

Example 3.5 will illustrate this result.
Consider a right group S = G×Rm whereG is a group, andRm = {r1, r2, ..., rm}

an n-element right zero semigroup. It is clear that G×Rm
∼= G×L1×Rm where L1

is the 1-element left zero semigroup. Hence we get a Cayley graph of a right group
is a Cayley graph of a rectangular group. Hence we have the following result.

Corollary 3.2. [1] Let (V,E) is a digraph. Then (V,E) is a Cayley graph of right
group if and only if the following conditions hold:

(1) there exists a group G and m ∈ N such that (V,E) contains m disjoint
strong subdigraph Cayley graphs of G (V1, E1), (V2, E2), ..., (Vm, Em), and
Vi =

⋃m

α=1
Viα,
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(2) for each α ∈ {1, 2, ..,m}, there exists a digraph isomorphism ϕα : (Vα, Eα) →
Cay(G,Aα), for some Aα ⊆ G,

(3) for each α, β ∈ {1, 2, ...,m}, and for each u ∈ Vα, v ∈ Vβ, (u, v) ∈ E if and
only if ϕβ(v) = ϕα(u)a for some a ∈ Aβ .

Consider a rectangular band S = Ln × Rm where Ln = {l1, l2, ..., ln} is a left
zero semigroup, and Rm = {r1, r2, ..., rm} a right zero semigroup. It is clear that
Ln × Rm

∼= G × Ln × Rm when G = {e} is the trivial group. Hence we have the
following result.

Corollary 3.3. [1] Let (V,E) is a digraph. Then (V,E) is a Cayley graph of left
group if and only if the following conditions hold:

(1) (V,E) is the disjoint union of n isomorphic subdigraphs (V1, E1), (V2, E2),...,
(Vn, En) for some n ∈ N,

(2) there exists a group G such that (Vi, Ei), i ∈ {1, 2, .., n}, are strong subdi-
graph Cayley graphs of G,

(3) there exists a digraph isomorphism ϕi : (Vi, Ei) → Cay(G,Ai), for some
Ai ⊆ G, and Aj = Ak for all j, k ∈ {1, 2, ..., n},

(4) for each α, β ∈ {1, 2, ...,m}, and u, v ∈ Vi, (u, v) ∈ E if and only if ϕi(v) =
ϕi(u)a for some a ∈ Ai.

Consider a rectangular band S = Ln × Rm where Ln = {l1, l2, ..., ln} is a left
zero semigroup, and Rm = {r1, r2, ..., rm} a right zero semigroup. It is clear that
Ln × Rm

∼= G × Ln × Rm when G = {e} is the trivial group. Hence we have the
following result.

Corollary 3.4. Let (V,E) is a digraph. Then (V,E) is a Cayley graph of rectan-
gular band if and only if the following conditions hold:

(1) (V,E) is the disjoint union of n isomorphic subdigraphs (V1, E1), (V2, E2),...,
(Vn, En) for some n ∈ N,

(2) there exists m ∈ N such that (Vi, Ei), i ∈ {1, 2, .., n}, contains m dis-
joint strong subdigraphs ({vi1}, Ei1), ({vi2}, Ei2), ..., ({vim}, Eim) and Vi =
{vi1, vi2, ..., vim}.

(3) for each α ∈ {1, 2, ..,m}, |Eiα| = |Ejα| for all i, j ∈ {1, 2, ..., n}.

(4) for each i ∈ {1, 2, .., n}, α, β ∈ {1, 2, ...,m}, and for each u ∈ Viα, v ∈ Viβ ,
(u, v) ∈ E if and only if (v, v) ∈ Eiβ .

Example 3.6 will illustrate this result.

Example 3.5. Consider the rectangular group S = Z4 × L2 × R3 where Z4 =
{0̄, 1̄, 2̄, 3̄} denotes the 4-element cyclic group, L2 = {l1, l2} the 2-element left zero
semigroup, and R3 = {r1, r2, r3} the 3-element right zero semigroup. For any
element (g, l, r) ∈ S, we may write (g, l, r) = glr. Let A = {(1̄, l1, r1), (2̄, l2, r2)}.
Then we give the Cayley graph Cay(S,A).
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From the picture, we have

(1) Cay(S,A) is the union of two isomorphic subdigraphs ((Z4×{l1}×R3), E1)
and ((Z4 × {l2} ×R3), E2).

(2) For each i ∈ {1, 2}, ((Z4 × {li} ×R3), Ei) contains three strong subdigraph
Cayley graphs of Z4

((Z4×{li}×{r1}), Ei1) ∼= Cay((Z4×{li}×{r1}), {(1, li, r1)}) ∼= Cay(Z4, {1̄}),
((Z4×{li}×{r2}), Ei2) ∼= Cay((Z4×{li}×{r2}), {(2, li, r2)}) ∼= Cay(Z4, {2̄}),
and ((Z4 × {li} × {r3}), Ei3) ∼= Cay((Z4 × {li} × {r3}), ∅) ∼= Cay(Z4, ∅).

(3) From (2), we have A12 = A22 = {2̄}, A13 = A23 = ∅, A11 = A21 = {1̄},
and p1 = ϕiα : ((Z4 × {li} × {rα}), Eiα) → Cay(Z4, Aiα) is a digraph
isomorphism for all i ∈ {1, 2} and α ∈ {1, 2, 3}.

(4) We see that ((g, li, rα), (g′, lj , rβ)) is an arc in Cay(S,A) if and only if g′ = ga
for some a ∈ Ajβ . For example, we have ((1̄, l1, r3), (3̄, l1, r2)) is an arc in
Cay(S,A), 3̄ = 1̄ + 2̄, and 2̄ ∈ A12.

Example 3.6. Consider the rectangular band S = L4×R3 where L4 = {l1, l2, l3, l4}
the 4-element left zero semigroup, and R3 = {r1, r2, r3} the 3-element right zero
semigroup. Let A = {(l1, r1), (l2, r2)}. Then we give the Cayley graph Cay(S,A).
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Fig. 2.
From the picture, we have

(1) Cay(S,A) is the union of four isomorphic subdigraphs (({l1}×R3), E1),(({l2}×
R3), E2), (({l3} ×R3), E3), and (({l4} ×R3), E4).

(2) For each i ∈ {1, 2, 3, 4}, (({li} ×R3), Ei) contains three strong subdigraphs
({lir1}, Ei1), ({lir2}), Ei2), ({lir3}), Ei3), where Ei1 = {(lir1, lir1)}, Ei2 =
{(lir2, lir2)}, and Ei3 = ∅.

(3) From (2), we have |E11| = |E21| = |E31| = |E41| = 1, |E12| = |E22| =
|E32| = |E42| = 1, |E13| = |E23| = |E33| = |E43| = 0.

(4) We see that ((li, rα), (lj , rβ)) is an arc in Cay(S,A)
if and only if ((lj , rα), (lj , rβ)) ∈ Ejβ . For example, we have ((l1, r3), (l1, r1))
is an arc in Cay(S,A), and ((l1, r1), (l1, r1)) ∈ E11.
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