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1 Introduction and Preliminaries

Throughout this paper, we always assume that E is a real Banach space. Let
UE = {x ∈ E : ‖x‖ = 1}. E is said to be uniformly convex if for any ǫ ∈ (0, 2]
there exists δ > 0 such that for any x, y ∈ UE ,

‖x − y‖ ≥ ǫ implies
∥

∥

∥

x + y

2

∥

∥

∥
≤ 1 − δ.

Let C be a nonempty subset of E and T : C → C be a mapping. Denote by F (T )
the set of fixed points of the mapping T . Recall that the mapping T is said to be
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nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Recall that the mapping T is said to be asymptotically nonexpansive if there exists
a positive sequence {tn} ⊂ [1,∞) with tn → 1 as n → ∞ such that

‖T nx − T ny‖ ≤ tn‖x − y‖, ∀x, y ∈ C, n ≥ 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [5] in 1972. They proved that, if C is a nonempty bounded closed
convex subset of a uniformly convex Banach space E, then every asymptotically
nonexpansive self-mapping T of C has a fixed point. Further, the set F (T ) of fixed
points of T is closed and convex. Since 1972, a host of authors have studied the
weak and strong convergence problems of the iterative algorithms for such a class
of mappings.

Recently, convergence problems of implicit iterative processes have been inves-
tigated by many authors.

In 2001, Xu and Ori [13] introduced the following implicit iteration process for
a finite family of nonexpansive mappings {T1, T2, · · · , TN} with a real sequence
{αn} in (0, 1) and an initial point x0 ∈ C:

x1 = α1x0 + (1 − α1)T1x1,

x2 = α2x1 + (1 − α2)T2x2,

· · ·

xN = αNxN−1 + (1 − αN )TNxN ,

xN+1 = αN+1xN + (1 − αN+1)T1xN+1,

· · · ,

which can be written in the following compact form:

xn = αnxn−1 + (1 − αn)Tnxn, ∀n ≥ 1, (1.1)

where Tn = Tn(modN) (here the mod N takes values in {1, 2, · · · , N}).

They proved the following weak theorem based on the iterative process (1.1).

Theorem XO. Let H be a real Hilbert space, C be a nonempty closed convex

subset of H and Ti : C → C be a nonexpansive self-mapping on C such that

F =
⋂N

i=1 F (Ti) 6= ∅ for each i ∈ {1, 2, · · · , N}. Let {xn} be defined by (1.1).
If {αn} is chosen so that αn → 0 as n → ∞, then {xn} converges weakly to a

common fixed point of the family of {Ti}N
i=1.

Recently, Khan, Yildirim and Ozdemir [9] considered convergence problems of
an implicit iterative algorithm for two families of nonexpansive mappings. Their
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implicit algorithm is expressed as follows:

x1 = α1x0 + β1S1x1 + γ1T1x1,

x2 = α2x1 + β2S2x2 + γ2T2x2,

· · ·

xN = αNxN−1 + βNSNxN + γNTNxN ,

xN+1 = αN+1xN + βN+1SN+1xN+1 + γN+1TN+1xN+1,

· · · ,

which can be written in the following compact form:

xn = αnxn−1 + βnSnxn + γnTnxn, ∀n ≥ 1, (1.2)

where Sn = Sn(modN) and Tn = Tn(modN) (here the mod N takes values in
{1, 2, · · · , N}).

Recall that a space X is said to satisfy Opial’s condition [10] if, for each
sequence {xn} in X , the convergence xn → x weakly implies that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X (y 6= x).

It is well known [10] that each lp (1 ≤ p < ∞) satisfies Opial’s condition. It is also
known [4] that any separable Banach space can be equivalently renormed to that
it satisfies Opial’s condition.

Khan, Yildirim and Ozdemir [9] obtained the following weak convergence the-
orem with the help of Opial’s condition.

Theorem KYO. Let E be a real uniformly convex Banach space which satisfies

The Opial’s condition and C be a nonempty closed convex subset of E. Let {Tj :
j ∈ J} and {Sj : j ∈ J} be two finite families of nonexpansive mappings of C with a

nonempty fixed point set F :=
(
⋂N

j=1 F (Tj)
)
⋂

(
⋂N

j=1 F (Sj)
)

. Let {αn}, {βn} and

{γn} be three real sequences satisfying αn+βn+γn = 1, 0 < a ≤ αn, βn, γn ≤ b < 1.

Then the sequence {xn} defined by (1.2) converges weakly to q ∈ F.

We remark that, from the view of computation, the implicit iterative processes
(1.1) and (1.2) is often impractical since, in many cases, to solve the operation
equation exactly is difficult. For each step, we must solve a nonlinear operator
equation. Therefore, one of the interesting and important problems in the theory of
implicit iterative processes is to consider the iterative processes with errors. That
is an efficient iterative process to compute approximately fixed point of nonlinear
mappings.

In this paper, motivated by the above results, we introduce the following iter-
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ative process for two families of asymptotically nonexpansive mappings:

x1 = α1x0 + β1S1x1 + γ1T1x1 + δ1u1,

x2 = α2x1 + β2S2x2 + γ2T2x2 + δ2u2,

· · ·

xN = αNxN−1 + βNSNxN + γNTNxN + δNuN ,

xN+1 = αN+1xN + βN+1S
2
1xN+1 + γN+1T

2
1 xN+1 + δN+1uN+1,

· · ·

x2N = α2Nx2N−1 + β2NS2
Nx2N + γ2NT 2

Nx2N + δ2Nu2N ,

x2N+1 = α2N+1x2N + β2N+1S
3
1x2N+1 + γ2N+1T

3
1 x2N+1 + δ2N+1u2N+1,

· · · ,

where x0 is the initial value, {un} is a bounded sequence in C and {αn}, {βn},
{γn} and {δn} are sequences [0, 1] such that αn + βn + γn + δn = 1 for each
n ≥ 1. Since for each n ≥ 1, it can be written as n = (h − 1)N + i, where
i = i(n) ∈ {1, 2, . . . , N}, h = h(n) ≥ 1 is a positive integer and h(n) → ∞ as
n → ∞. Hence the above table can be rewritten in the following compact form:

xn = αnxn−1 + βnS
h(n)
i(n) xn + γnT

h(n)
i(n) xn + δnun, ∀n ≥ 1. (1.3)

The purpose of this paper is to study the weak and strong convergence of
implicit iterative sequences generated in the implicit iterative process (1.3). Weak
and strong theorems are established in the framework of a uniformly convex Ba-
nach space. The results of this paper improve and extend the corresponding results
of Chang et al. [1], Chidume and Shahzad [3], Guo and Cho [7], Kahn, Yildirim
and Ozdemir [9], Thianwan and Suantai [12], Xu and Ori [13] and Zhou and Chang
[14].

Next, we state the following useful lemmas.

Lemma 1.1. ([2,6]) Let E be a uniformly convex Banach Space, C be a nonempty

closed convex subset of E and T : C → C be an asymptotically nonexpansive

mapping. Then I − T is demi-closed at zero, i.e., for each sequence {xn} ∈ C,

if {xn} converges weakly to q ∈ C and {(I − T )xn} converges strongly to 0, then

(I − T )q = 0.

Lemma 1.2. ([11]) Let {αn}, {βn} and {γn} be three nonnegative sequences sat-

isfying the following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞

n=0 cn < ∞ and
∑∞

n=0 bn < ∞. Then

(a) limn→∞ an exists;

(b) if there exists a subsequence {ani
} ⊂ {an} such that ani

→ 0, then an → 0.
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Lemma 1.3. ([8]) Let E be a uniformly convex Banach space, s > 0 be a pos-

itive number and Bs(0) be a closed ball of E. There exits a continuous, strictly

increasing and convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖ax + by + cz + dw‖2 ≤ a‖x‖2 + b‖y‖2 + c‖z‖2 + d‖w‖2 − abg(‖x − y‖)

for all x, y, z, w ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and a, b, c, d ∈ [0, 1] such that

a + b + c + d = 1.

2 Main Results

Now, we are ready to give our main results.

Theorem 2.1. Let E be a real uniformly convex Banach space which satisfies

Opial’s condition and C be a nonempty closed convex subset of E. Let N ≥ 1 be a

positive integer and I = {1, 2, 3, · · · , N}. Let Si be an asymptotically nonexpansive

mapping with the sequence {sn,i} ⊂ [1,∞) such that
∑∞

n=1(sn,i − 1) < ∞ and let

Ti be an asymptotically nonexpansive mapping with the sequence {tn,i} ⊂ [1,∞)
such that

∑∞

n=1(tn,i − 1) < ∞ for each i ∈ I. Let kn = max{sn, tn}, where

sn = max{sn,i : i ∈ I} and tn = max{tn,i : i ∈ I}. Assume that F =
(
⋂N

i=1 F (Si)
)
⋂

(
⋂N

i=1 F (Ti)
)

6= ∅. Let {xn} be the sequence generated in (1.3).
Let {αn}, {βn}, {γn} and {δn} be four real sequences satisfying αn+βn+γn+δn =
1 for each n ≥ 1 and {un} be a bounded sequence in C. Assume that the control

sequences {αn}, {βn}, {γn} and {δn} in [0, 1] satisfy the following restrictions

(a)
∑∞

n=1 δn < ∞;

(b) there exist constants a, b, c ∈ (0, 1) such that a ≤ αn, b ≤ βn and c ≤ γn,

∀n ≥ 1;

(c) (βn + γn)L < 1, where L = supn≥1{kn}, ∀n ≥ 1.

Then the sequence {xn} converges weakly to a point in F .

Proof. First, we show that the sequence generated in the implicit iterative process
(1.3) is well defined. For each n ≥ 1, define a mapping Rn : C → C by

Rn(x) = αnxn−1 + βnS
h(n)
i(n) x + γnT

h(n)
i(n) x + δnun, ∀x ∈ C.

Notice that

‖Rn(x) − Rn(y)‖

=
∥

∥

(

αnxn−1 + βnS
h(n)
i(n) x + γnT

h(n)
i(n) x + δnun

)

−
(

αnxn−1 + βnS
h(n)
i(n) y + γnT

h(n)
i(n) y + δnun

)∥

∥

≤ βn

∥

∥S
h(n)
i(n) x − S

h(n)
i(n) y

∥

∥ + γn

∥

∥T
h(n)
i(n) x − T

h(n)
i(n) y

∥

∥

≤ (βn + γn)L‖x − y‖, ∀x, y ∈ C.



526 Thai J. Math. 8 (3) (2010)/ S.Y. Cho et al.

From the restriction (c), we see that Rn is a contraction for each n ≥ 1. By Banach
contraction principle, we see that there exists a unique fixed point xn ∈ C such
that

xn = αnxn−1 + βnS
h(n)
i(n) xn + γnT

h(n)
i(n) xn + δnun, ∀n ≥ 1.

This shows that the sequence generated in the implicit iterative process (1.3) is
well defined.

Next, we show the sequence {xn} is bounded. For any p ∈ F , we have

‖xn − p‖ =
∥

∥

(

αnxn−1 + βnS
h(n)
i(n) xn + γnT

h(n)
i(n) xn + δnun

)

− p
∥

∥

≤ αn‖xn−1 − p‖ + βn

∥

∥S
h(n)
i(n) xn − p

∥

∥ + γn

∥

∥T
h(n)
i(n) xn − p

∥

∥ + δn‖un − p‖

≤ αn‖xn−1 − p‖ + (βn + γn)kh(n)‖xn − p‖ + δn‖un − p‖

≤ αn‖xn−1 − p‖ + (1 − αn)kh(n)‖xn − p‖ + δn‖un − p‖

≤ αn‖xn−1 − p‖ + (kh(n) − αn)‖xn − p‖ + δn‖un − p‖,

which yields from the restriction (b) that

‖xn − p‖ ≤ ‖xn−1 − p‖ +
(kh(n) − 1)

a
‖xn − p‖ +

δn

a
‖un − p‖.

Note that
∑∞

n=1(kn −1) < ∞. It follows that there exists some positive integer n0

such that for any h(n) ≥ no, kh(n) − 1 < a
2 . Therefore we get that

‖xn − p‖ ≤
a

a + 1 − kh(n)
‖xn−1 − p‖ +

δn

a + 1 − kh(n)
‖un − p‖

≤

(

1 +
kh(n) − 1

a + 1 − kh(n)

)

‖xn−1 − p‖ +
δn

a + 1 − kh(n)
‖un − p‖

≤

(

1 +
2(kh(n) − 1)

a

)

‖xn−1 − p‖ +
2δn

a
‖un − p‖

(2.1)

for all such n, where n is such that h(n) ≥ n0. In view of Lemma 1.2 this means
by the restriction (a) that the limit of limn→∞ ‖xn − p‖ exists. It follows that the
sequence {xn} is bounded.

On the other hand, we obtain from Lemma 1.3 that

‖xn − p‖2 =
∥

∥

(

αnxn−1 + βnS
h(n)
i(n) xn + γnT

h(n)
i(n) xn + δnun

)

− p
∥

∥

2

≤ αn‖xn−1 − p‖2 + βn

∥

∥S
h(n)
i(n) xn − p

∥

∥

2
+ γn

∥

∥T
h(n)
i(n) xn − p

∥

∥

2

+ δn‖un − p‖2 − αnβng1

(∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥

)

≤ αn‖xn−1 − p‖2 + (βn + γn)k2
h(n)‖xn − p‖2 + δn‖un − p‖2

− αnβng1

(
∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥

)

,
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which in turn yields that

αnβng1

(∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥

)

≤ αn‖xn−1 − p‖2 +
(

(βn + γn)k2
h(n) − 1

)

‖xn − p‖2 + δn‖un − p‖2

≤ αn

(

‖xn−1 − p‖2 − ‖xn − p‖2
)

+ (βn + γn)
(

k2
h(n) − 1

)

‖xn − p‖2

+ δn‖un − p‖2.

From the restrictions (a) and (b) and since limn→∞ ‖xn−p‖ exists, we obtain that

lim
n→∞

∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥ = 0. (2.2)

Reconsidering Lemma 1.3, we also have

‖xn − p‖2 ≤ αn‖xn−1 − p‖2 + (βn + γn)k2
h(n)‖xn − p‖ + δn‖un − p‖2

− αnγng2

(

‖xn−1 − T
h(n)
i(n) xn‖

)

,

which in turn yields that

αnγng2

(
∥

∥xn−1 − T
h(n)
i(n) xn

∥

∥

)

≤ αn

(

‖xn−1 − p‖2 − ‖xn − p‖2
)

+ (βn + γn)
(

k2
h(n) − 1

)

‖xn − p‖2

+ δn‖un − p‖2.

In view of the restrictions (a) and (b), we see that

lim
n→∞

∥

∥xn−1 − T
h(n)
i(n) xn

∥

∥ = 0. (2.3)

Notice that

‖xn − xn−1‖ ≤ βn

∥

∥S
h(n)
i(n) xn − xn−1

∥

∥ + γn

∥

∥T
h(n)
i(n) xn − xn−1

∥

∥ + δn‖un − xn−1‖.

It follows from (2.2) and (2.3) that

lim
n→∞

‖xn − xn−1‖ = 0. (2.4)

For each j ∈ I, we have

lim
n→∞

‖xn − xn+j‖ = 0, ∀j ∈ I. (2.5)

Next, we show that xn − Snxn → 0 as n → ∞. Since for any positive integer
n > N, it can be written as n = (h(n) − 1)N + i(n), where i(n) ∈ {1, 2, · · · , N}.

‖xn−1 − Snxn‖ ≤
∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥ +
∥

∥S
h(n)
i(n) xn − Snxn

∥

∥

=
∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥ +
∥

∥S
h(n)
i(n) xn − Si(n)xn

∥

∥

≤
∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥ + L
∥

∥S
h(n)−1
i(n) xn − xn

∥

∥

≤
∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥ + L
∥

∥S
h(n)−1
i(n) xn − S

h(n)−1
i(n−N)xn−N

∥

∥

+ L
∥

∥S
h(n)−1
i(n−N)xn−N − xn−N−1

∥

∥ + L‖xn−N−1 − xn‖.

(2.6)
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Since for each n > N , n = (n−N)(mod N), on the other hand, we obtain from n =
(h(n)−1)N+i(n) that n−N =

(

(h(n)−1)−1
)

N+i(n) = (h(n−N)−1)N+i(n−N).
That is,

h(n − N) = h(n) − 1 and i(n − N) = i(n).

Therefore we see

∥

∥S
h(n)−1
i(n) xn − S

h(n)−1
i(n−N)xn−N

∥

∥ =
∥

∥S
h(n)−1
i(n) xn − S

h(n)−1
i(n) xn−N

∥

∥

≤ L‖xn − xn−N‖
(2.7)

and
∥

∥S
h(n)−1
i(n−N)xn−N − xn−N−1

∥

∥ =
∥

∥S
h(n−N)
i(n−N) xn−N − xn−N−1

∥

∥. (2.8)

Substituting (2.7) and (2.8) into (2.6), we get that

‖xn−1 − Snxn‖ ≤
∥

∥xn−1 − S
h(n)
i(n) xn

∥

∥ + L2‖xn − xn−N‖

+ L
∥

∥S
h(n−N)
i(n−N) xn−N − xn−N−1

∥

∥ + L‖xn−N−1 − xn‖.

It follows from (2.2), (2.4) and (2.5) that

lim
n→∞

‖xn−1 − Snxn‖ = 0. (2.9)

Notice that
‖xn − Snxn‖ ≤ ‖xn − xn−1‖ + ‖xn−1 − Snxn‖.

This implies from (2.4) and (2.9) that

lim
n→∞

‖xn − Snxn‖ = 0. (2.10)

For any j ∈ I, we see that

‖xn − Sn+jxn‖ ≤ ‖xn − xn+j‖ + ‖xn+j − Sn+jxn+j‖ + ‖Sn+jxn+j − Sn+jxn‖

≤ (1 + L)‖xn − xn+j‖ + ‖xn+j − Sn+jxn+j‖.

In view of (2.5) and (2.10), we obtain that

lim
n→∞

‖xn − Sn+jxn‖ = 0, ∀j ∈ I. (2.11)

Note that any subsequence of a convergent number sequence converges to the same
limit. It follows that

lim
n→∞

‖xn − Slxn‖ = 0, ∀l ∈ I. (2.12)

In a similar way, we can obtain that

lim
n→∞

‖xn − Tlxn‖ = 0, ∀l ∈ I. (2.13)
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Noting that E is uniformly convex and {xn} is bounded, we have that there exists
a subsequence {xni

} of {xn} converging weakly to ω ∈ C. In view of Lemma 1.1,
we obtain from (2.12) and (2.13) that ω ∈ F .

Next, we show {xn} converges weakly to ω. Suppose the contrary. Then
there exists some subsequence {xnj

} of {xn} such that {xnj
} converges weakly

to ω̄ ∈ C, where ω 6= ω̄. In the same way, we can show that ω̄ ∈ F . Notice
that we have proved that limn→∞ ‖xn − p‖ exists for each p ∈ F . Assume that
limn→∞ ‖xn − ω‖ = Q, where Q is a nonnegative number. By virtue of Opial’s
condition of E, we have

Q = lim inf
ni→∞

‖xni
− ω‖ < lim inf

ni→∞
‖xni

− ω̄‖

= lim inf
nj→∞

‖xnj
− ω̄‖ < lim inf

nj→∞
‖xnj

− ω‖ = Q.

This is a contradiction. Hence ω = ω̄. This completes the proof.

Remark 2.2. Comparing with Theorem KYO in section 1, we have the following:
(a) From point of view of mappings, the class of nonexpansive mappings is

extended to the class of asymptotically nonexpansive mappings.
(b) From point of view of computation, the implicit iterative process (1.3) with

errors is more efficient than the implicit iterative process (1.2).

If Si = Ti for each i ∈ I in Theorem 2.1, we can get the following results easily.

Corollary 2.3. Let E be a real uniformly convex Banach space which satisfies

Opial’s condition and C be a nonempty closed convex subset of E. Let N ≥ 1 be a

positive integer and I = {1, 2, 3, · · · , N}. Let Si be an asymptotically nonexpansive

mapping with the sequence {sn,i} ⊂ [1,∞) such that
∑∞

n=1(sn,i − 1) < ∞ for each

i ∈ I. Let sn = max{sn,i : i ∈ I}. Assume that F =
⋂N

i=1 F (Si) 6= ∅. Let {αn},
{βn} and {γn} be three real sequences satisfying αn + βn + γn = 1 for each n ≥ 1
and {un} be a bounded sequence in C. Let {xn} be the sequence generated in the

following iterative process:

xn = αnxn−1 + βnS
h(n)
i(n) xn + γnun, ∀n ≥ 1. (2.14)

Assume that the control sequences {αn}, {βn} and {γn} in [0, 1] satisfy the fol-

lowing restrictions

(a)
∑∞

n=1 γn < ∞;
(b) there exist constants a, b ∈ (0, 1) such that a ≤ αn and b ≤ βn, ∀n ≥ 1;
(c) βnL < 1, where L = supn≥1{sn}, ∀n ≥ 1.

Then {xn} converges weakly to a point in F .

In 2005, Chidume and Shahzad [3] introduced the following conception. Recall

that a family {Ti}N
i=1 : C → C with F =

⋂N

i=1 F (Ti) 6= ∅ is said to satisfy
Condition (B) on C if there is a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that for all x ∈ C

max
1≤i≤N

{‖x − Tix‖} ≥ f(d(x, F )).
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Based on Condition (B), we introduced the following conception for two fi-
nite families of asymptotically nonexpansive mappings. Recall that two families
{Si}

N
i=1 : C → C and {Ti}

N
i=1 : C → C with F =

(
⋂N

i=1 F (Si)
)
⋂

(
⋂N

i=1 F (Ti)
)

6=
∅ is said to satisfy Condition (B′) on C if there is a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that
for all x ∈ C

max
1≤i≤N

{‖x − Six‖} + max
1≤i≤N

{‖x − Tix‖} ≥ f(d(x, F )).

Next, we give strong convergence theorems with the help of Condition (B′).

Theorem 2.4. Let E be a real uniformly convex Banach space which satisfies

Opial’s condition and C be a nonempty closed convex subset of E. Let N ≥ 1 be

a positive integer and I = {1, 2, 3, · · · , N}. Let Si be an asymptotically nonexpan-

sive mapping with the sequence {sn,i} ⊂ [1,∞) such that
∑∞

n=1(sn,i − 1) < ∞ and

Ti be an asymptotically nonexpansive mapping with the sequence {tn,i} ⊂ [1,∞)
such that

∑∞

n=1(tn,i − 1) < ∞ for each i ∈ I. Let kn = max{sn, tn}, where

sn = max{sn,i : i ∈ I} and tn = max{tn,i : i ∈ I}. Assume that F =
(
⋂N

i=1 F (Si)
)
⋂

(
⋂N

i=1 F (Ti)
)

6= ∅. Let {xn} be the sequence generated in (1.3).
Let {αn}, {βn}, {γn} and {δn} be four real sequences satisfying αn+βn+γn+δn =
1 for each n ≥ 1 and {un} be a bounded sequence in C. Assume that the control

sequences {αn}, {βn}, {γn} and {δn} in [0, 1] satisfy the following restrictions

(a)
∑∞

n=1 δn < ∞;
(b) there exist constants a, b, c ∈ (0, 1) such that a ≤ αn, b ≤ βn and c ≤ γn,

∀n ≥ 1;
(c) (βn + γn)L < 1, where L = supn≥1{kn}, ∀n ≥ 1.

If {Si}N
i=1 and {Ti}N

i=1 satisfy Condition (B′), then the sequence {xn} converges

strongly to a point in F .

Proof. In view of Condition (B′), we obtain from (2.12) and (2.13) that f(d(xn, F ))
→ 0, which implies d(xn, F ) → 0. Next, we show that the sequence {xn} is Cauchy.
Notice that (2.1) can be rewritten as

‖xn − p‖ ≤

(

1 +
2(kh(n) − 1)

a

)

‖xn−1 − p‖ +
2δn

a
‖un − p‖

≤ eλn‖xn−1 − p‖ + ηn,

where λn =
2(kh(n)−1)

a
, ηn = 2δn

a
‖un − p‖ and n is such that h(n) ≥ n0,. For any

n, where n is such that h(n) ≥ n0, we have

‖xm+n − xn‖ ≤ ‖xm+n − p‖ + ‖xn − p‖

≤
(

1 + e
Pm+n

k=n+1
λk

)

‖xn − p‖ +
m+n
∑

k=n+1

ηke
Pm+n−2

j=k+1 λj + ηm+n.

Since F is closed and convex, we see that x∗ ∈ F. This completes the proof.
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If Si = Ti for each i ∈ I in Theorem 2.4, we can get the desired results easily.

Corollary 2.5. Let E be a real uniformly convex Banach space which satisfies

Opial’s condition and C be a nonempty closed convex subset of E. Let N ≥ 1 be a

positive integer and I = {1, 2, 3, · · · , N}. Let Si be an asymptotically nonexpansive

mapping with the sequence {sn,i} ⊂ [1,∞) such that
∑∞

n=1(sn,i − 1) < ∞. Let

sn = max{sn,i : i ∈ I}. Assume that F =
⋂N

i=1 F (Si) 6= ∅. Let {xn} be the

sequence generated in (2.14). Let {αn}, {βn} and {γn} be three real sequences

satisfying αn + βn + γn = 1 for each n ≥ 1 and {un} be a bounded sequence in

C. Assume that the control sequences {αn}, {βn} and {γn} in [0, 1] satisfy the

following restrictions

(a)
∑∞

n=1 γn < ∞;
(b) there exist constants a, b ∈ (0, 1) such that a ≤ αn and b ≤ βn, ∀n ≥ 1;
(c) βnL < 1, where L = supn≥1{sn}, ∀n ≥ 1.

If {Si}N
i=1 satisfies Condition (B), then the sequence {xn} converges strongly to a

point in F .

Recall that a mapping T : C → C is said to be semicompact if for any bounded
sequence {xn} in C such that ‖xn − Txn‖ → 0 as n → ∞, then there exists a
subsequence {xni

} ⊂ {xn} such that xni
→ x ∈ C.

Next, we give strong convergence theorems with the help of the semicompact-
ness.

Theorem 2.6. Let E be a real uniformly convex Banach space which satisfies

Opial’s condition and C be a nonempty closed convex subset of E. Let N ≥ 1 be

a positive integer and I = {1, 2, 3, · · · , N}. Let Si be an asymptotically nonexpan-

sive mapping with the sequence {sn,i} ⊂ [1,∞) such that
∑∞

n=1(sn,i − 1) < ∞ and

Ti be an asymptotically nonexpansive mapping with the sequence {tn,i} ⊂ [1,∞)
such that

∑∞

n=1(tn,i − 1) < ∞ for each i ∈ I. Let kn = max{sn, tn}, where

sn = max{sn,i : i ∈ I} and tn = max{tn,i : i ∈ I}. Assume that F =
(
⋂N

i=1 F (Si)
)
⋂

(
⋂N

i=1 F (Ti)
)

6= ∅. Let {xn} be the sequence generated in (1.3).
Let {αn}, {βn}, {γn} and {δn} be four real sequences satisfying αn+βn+γn+δn =
1 for each n ≥ 1 and {un} be a bounded sequence in C. Assume that the control

sequences {αn}, {βn}, {γn} and {δn} in [0, 1] satisfy the following restrictions

(a)
∑∞

n=1 δn < ∞;
(b) there exist constants a, b, c ∈ (0, 1) such that a ≤ αn, b ≤ βn and c ≤ γn,

∀n ≥ 1;
(c) (βn + γn)L < 1, where L = supn≥1{kn}, ∀n ≥ 1.

If one of {Si}N
i=1 or one of {Ti}N

i=1 is semicompact, then the sequence {xn} con-

verges strongly to a point in F .

Proof. Without loss of generality, we may assume that S1 is semicompact. From
(2.12), we see that there exits a subsequence {xni

} of {xn} converges strongly
to x ∈ C. For each l ∈ I, we get that ‖x − Slx‖ = limni→∞ ‖xni

− Slxni
‖ = 0.

This implies x ∈
⋂N

l=1 F (Sl). In a similar way, we can get x ∈
⋂N

l=1 F (Tl). This
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means that x ∈ F. In view of Theorem 2.1, we obtain that limn→∞ ‖xn−x‖ exists.
Therefore, we can obtain the desired conclusion immediately.

If Si = Ti for each i ∈ I in Theorem 2.6, we can get the following results easily.

Corollary 2.7. Let E be a real uniformly convex Banach space which satisfies

Opial’s condition and C be a nonempty closed convex subset of E. Let N ≥ 1 be a

positive integer and I = {1, 2, 3, · · · , N}. Let Si be an asymptotically nonexpansive

mapping with the sequence {sn,i} ⊂ [1,∞) such that
∑∞

n=1(sn,i − 1) < ∞ for each

i ∈ I. Let sn = max{sn,i : i ∈ I}. Assume that F =
⋂N

i=1 F (Si) 6= ∅. Let {xn} be

the sequence generated in (2.14). Let {αn}, {βn} and {γn} be three real sequences

satisfying αn + βn + γn = 1 for each n ≥ 1 and {un} be a bounded sequence in

C. Assume that the control sequences {αn}, {βn} and {γn} in [0, 1] satisfy the

following restrictions

(a)
∑∞

n=1 γn < ∞;
(b) there exist constants a, b ∈ (0, 1) such that a ≤ αn and b ≤ βn, ∀n ≥ 1;

(c) βnL < 1, where L = supn≥1{sn}, ∀n ≥ 1.

If one of {Si}N
i=1 is semicompact, then {xn} converges strongly to a point in F .
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